On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions.

Size: px
Start display at page:

Download "On AP-Henstock Integrals of Interval-Valued. Functions and Fuzzy-Number-Valued Functions."

Transcription

1 Applied Mthemtis, 206, 7, ISSN Olie: ISSN Prit: O AP-Hestok Itegrls of Itervl-Vlued Futios d Fuzzy-Numer-Vlued Futios Muwy Elsheikh Hmid *, Alshikh Hmed Elmuiz, Mohmmed Eldirdiri Sheim 2 Shool of Mgemet, Ahfd Uiversity for Wome, Omdurm, Sud 2 Fulty of Egieerig, Uiversity of Khrtoum, Khrtoum, Sud How to ite this pper: Hmid, M.E., Elmuiz, A.H. d Sheim, M.E. (206) O AP-Hestok Itegrls of Itervl-Vlued Futios d Fuzzy-Numer-Vlued Futios. Applied Mthemtis, 7, Reeived: Otoer 8, 206 Aepted: Novemer 29, 206 Pulished: Deemer 2, 206 Copyright 206 y uthors d Sietifi Reserh Pulishig I. This work is liesed uder the Cretive Commos Attriutio Itertiol Liese (CC BY 4.0). Ope Aess Astrt I 2000, Wu d Gog [] itrodued the thought of the Hestok itegrls of itervl-vlued futios d fuzzy-umer-vlued futios d otied umer of their properties. The im of this pper is to itrodue the thought of the AP- Hestok itegrls of itervl-vlued futios d fuzzy-umer-vlued futios whih re extesios of [] d ivestigte umer of their properties. Keywords Fuzzy Numers, AP-Hestok Itegrls of Itervl-Vlued Futios, AP-Hestok Itegrls of Fuzzy-Numer-Vlued Futios. Itrodutio As it is well kow, the Hestok itegrl for rel futio ws first defied y Hestok [2] i 963. The Hestok itegrl is lot of powerful d esier th the Leesgue, Wieer d Rihrd Phillips Feym itegrls. Furthermore, it is lso equl to the Dejoy d the Perro itegrls [2] [3]. I 206, Hmid d Elmuiz [4] itrodued the oept of the Hestok-Stieltjes ( HS ) itegrls of itervl-vlued futios d fuzzy-umer-vlued futios d disussed umer of their properties. I this pper, we itrodue the oept of the AP-Hestok itegrls of itervl-vlued futios d fuzzy-umer-vlued futios d disuss some of their properties. The pper is orgized s follows. I Setio 2, we hve tedey to provide the prelimiry termiology used i this pper. Setio 3 is dedited to disussig the AP-Hestok itegrl of itervl-vlued futios. I Setio 4, we itrodue the AP- Hestok itegrl of fuzzy-umer-vlued futios. The lst setio provides olusios. DOI: /m Deemer 2, 206

2 2 Prelimiries Let E e mesurle set d let e rel umer. The desity of E t is defied y ( E( h, h) ) µ de = lim, h 0 2h (2.) provided the limit exists. The poit is lled poit of desity of E if de=. The set E. d E represets the set of ll poits x E suh tht x is poit of desity of A mesurle set Sx [, ] is lled pproximte eighorhood (r.p-d) of x [, ] if it otiig x s poit of desity. We hoose p-d Sx [, ] for eh x E [, ] d deote hoie o E y S = { Sx : x E}. A tgged itervl-poit pir ([ uv, ], ξ ) is sid to e S -fie if ξ [ uv, ] d uv, S ξ. A divisio P is fiite olletio of itervl-poit pirs ([ ui, vi] {[ u, v ]} = is i i i re o-overlppig suitervls of [, ] i i ; ) divisio of [, ] if [ u, v] = [, ] 2) S -fie divisio of [, ] i =, 2,,. { }, where P = {( ui, vi }. We sy tht [ ] if ξi [ ui, vi] d ([ i, i], i) u v ξ is S -fie for ll Defiitio 2.. [2] [3] A rel-vlued futio f: [, ] R is sid to e Hestok itegrle to A o [, ] if for every ε >0, there is futio δ >0 suh tht for y δ -fie divisio P = {[ u, v ]; ξ } = of [, ], we hve i i i i ( ξ )( ) f i vi ui A < ε, (2.2) where the sum is uderstood to e over P d we write ( ) ( )d [, ] f H. H f t t = A, d Defiitio 2.2. [5] A futio f: [, ] R is AP-Hestok itegrle if there exists rel umer A R suh tht for eh ε >0 there is hoie S suh tht for eh S -fie divisio P = ([ ui, vi] of [, ] f ( ξi)( vi ui) A < ε (2.3) { } A APH f. itegrl of f o [, ], d we write = ( ). A is lled AP-Hestok Theorem 2.. If f d g re AP-Hestok itegrle o [, ] d f lmost everywhere o [, ], the g ( APH ) f ( APH ) g. (2.4) 2286

3 Proof. The proof is similr to the Theorem 3.6 i [3]. 3. The AP-Hestok Itegrl of Itervl-Vlued Futios I this setio, we shll give the defiitio of the AP-Hestok itegrls of itervl-vlued futios d disuss some of their properties. Defiitio 3.. [] Let IR = { I = I, I : I is the losed ouded itervl o the rel lie R}. For AB, IR, we defie A B iff A B d A B, A B = C iff C = A B d C A B A B= : A, B, where d =, d { } ( A B) mi { A B, A B, A B, A B } = (3.) ( A B) { A B A B A B A B } Defie d ( AB, ) mx ( A B, A B ) d B. = mx,,,. (3.2) = s the diste etwee itervls A Defiitio 3.2. [] Let [ ] every 0 we hve F:, IR e itervl-vlued futio. I0 IR, for { i, i, i} i ε > there is δ > 0 suh tht for y δ -fie divisio = [ ] the F( t ) is sid to e Hestok itegrle over [, ] ( IH ) F d t = I0. For revity, we write F IH [ ] P u v ξ = d F( ξi)( vi ui), I0 ε, (3.3) d write,. Defiitio 3.3. A itervl-vlued futio F: [, ] IR I I, if for every ε >0 there exists hoie S o [, ] is AP-Hestok itegr- suh tht le to 0 R { } d F( ξi)( vi ui), I0 ε, (3.4) wheever P = ([ ui, vi] is S -fie divisio of [, ] ( APIH ) F = I0 d F APIH [ ] Theorem 3.. If F APIH [, ] 2,., we write, the the itegrl vlue is uique. Proof. Let itegrl vlue is ot uique d let ( ) ( ) B = APIH F. Let 0 tht B = APIH F d ε > e give. The there exists hoie S o [, ] suh ε d F( ξi)( vi ui), B, (3.5)

4 { } ε d F( ξi)( vi ui), B2 (3.6) 2 wheever P = ([ ui, vi] is S -fie divisio of [, ] Whee it follows from the Trigle Iequlity tht:. ε ε d, d, d,. 2 2 ( B B2) = F( ξi)( vi ui) B F( ξi)( vi ui) B2 < = ε (3.7) Sie for ε > 0, there exists hoie S o [, ] Theorem 3.2. A itervl-vlued futio F APIH [, ], [, ] d F F APH Proof. Let F APIH [, ] s ove so B = B. 2 if d oly if ( APIH ) F = ( APH ) F,( APH ) F. (3.8), from Defiitio 3.3 there is uique itervl umer I = I, I with the property tht for y >0, suh tht { } ε there exists hoie S o [ ] d F( ξi)( vi ui), I0 ε, (3.9) wheever P = ([ ui, vi] is S -fie divisio of [, ] i, we hve. Sie v u 0 for i i d F( ξi)( vi ui), I0 ε = mx F( ξi)( vi ui) I0, F( ξi)( vi ui) I 0 < ε. = mx F ( ξi)( vi ui) I0, F ( ξi)( vi ui) I0 ε. (3.0) Hee F ( ξi)( vi ui) I0 < ε, F ( ξi)( vi ui) I0 < ε wheever = {([ i, i] ; i) } is S -fie divisio of [, ]. Thus F, F APH [, ] P u v ξ d ( APIH ) F = ( APH ) F,( APH ) F. (3.) Coversely, let F, F APH [, ] ε there exists hoie S o [, ]. The there exists H, H R with the property tht give >0 suh 2 tht F ( i)( vi ui) H, F ( i)( vi ui) H2 ξ < ε ξ < ε { } wheever P = ([ ui, vi] is S -fie divisio of [, ]. We defie = [, ], the if P = {[ ui, vi], ξ i} i = is S -fie divisio of [, ] I H H 0 2, we hve 2288

5 d d F( ξi)( vi ui), I0 ε. (3.2) Hee F: [, ] IR is AP-Hestok itegrle o [, ]. Theorem 3.3. If F, G APIH [, ] d βγ, R. The βf γg APIH [, ] ( APIH ) ( βf γg) = β( APIH ) F γ ( APIH ) G. (3.3) Proof. If F, G APIH [, ], the F, F, G, G APH [, ] Hee βf γg βf γg βf γg βf γg APH [ ] () If β > 0 d γ > 0, the y Theorem 3.2.,,,,. ( APH ) ( βf γg) = ( APH ) ( βf γg ) (2) If β < 0 d γ < 0, the ( ) γ ( ) = β APH F APH G ( ) γ ( ) = β APIH F APIH G = β ( APIH ) F γ ( APIH ) G. ( APH ) ( βf γg) = ( APH ) ( βf γg ) ( ) γ ( ) = β APH F APH G ( ) γ ( ) = β APIH F APIH G = β (3) If β > 0 d γ < 0, (or β < 0 d γ < 0, ( APIH ) F γ ( APIH ) G. ), the ( APH ) ( βf γg) = ( APH ) ( βf γg ) Similrly, for four ses ove we hve ( ) γ ( ) = β APH F APH G = β ( ( APIH )) F γ ( APIH ) G = β( APIH ) F γ ( APIH ) G. 2289

6 ( APH ) ( βf γg) = β( APIH ) F γ ( APIH ) G. (3.4) Hee y Theorem 3.2 βf γg APIH [, ] d ( APIH ) ( βf γg) = β( APIH ) F γ ( APIH ) G. (3.5) Theorem 3.4. If F APIH [, ] d F APIH [, ], the F APIH [, ] d ( APIH ) F = ( APIH ) F ( APIH ) F. (3.6) Proof. If F APIH [, ] d F APIH [, ], the y Theorem 3.2, [, ] d F, F APH [, ]. Hee F, F APH [, ] F F APH ( ) = ( ) ( ) APH F APH F APH F = ( APIH ) F ( APIH ) F. d Similrly, ( APH ) F = ( APIH ) F ( APIH ) F. Hee y Theorem 3.2 [, ] F APIH d ( APIH ) F = ( APIH ) F ( APIH ) F. (3.7) Theorem 3.5. If F G erly everywhere o [, ] Proof. Let F G erly everywhere o [, ] [ ] F, F, G, G APH, d F G, F G d F, G APIH [, ], the ( APIH ) F ( APIH ) G. (3.8) d F, G APIH [, ] The erly everywhere o [, ] By Theorem 2. ( APH ) F ( APH ) G d ( APH ) F ( APH ) G. Hee y Theorem 3.2. Theorem 3.6. Let F, G APIH [, ] d d (, ) [, ]. The Proof. By defiitio of diste, ( APIH ) F ( APIH ) G, (3.9) d, d,. FG is Leesgue itegrle o ( APIH ) F ( APIH ) G ( L) ( F G) (3.20) 2290

7 d ( APIH ) F, ( APIH ) G = mx ( APIH ) F ( APIH ) G, ( APIH ) F ( APIH ) G = mx, ( APH ) ( F G ) ( APH ) ( F G ) mx ( L) F G,( L) F G ( L) mx ( F G, F G ) ( L) ( FG) d,. = (3.2) 4. The AP-Hestok Itegrl of Fuzzy-Numer-Vlued Futios This setio itrodues the oept of the AP-Hestok itegrl of fuzzy-umervlued futios d ivestigtes some of their properties. Defiitio 4.. [6] [7] [8] Let A F( R) e fuzzy suset o R. If for y [ 0, ], A = A, A d A φ, where A = { t: At ( ) }, the A is lled fuzzy umer. If A is ovex, orml, upper semi-otiuous d hs the ompt support, we sy tht A is ompt fuzzy umer. Let R deote the set of ll fuzzy umers. Defiitio 4.2. [6] Let AB, R, we defie A B iff A B for ll ( 0, ], A B = C iff A B C 0,, A B = D iff A B = D for y ( 0, ]. C For AB, R, = for y ( ] ( ) ( ) D AB, = sup d A, B is lled the diste etwee A d [ 0,] B. Lemm 4.. [9] If mppig H :[ 0, ] I R, H( ) = [ m, ], stisfies m, m, A : = H( ) R (4.) ( 0,] d where =. = ( ) A = H, (4.2) ( ) Defiitio 4.3. [] Let F :[, ] R. If the itervl-vlued futio F = F, F is Hestok itegrle o [, ] for y ( ] sy tht F is Hestok itegrle o [, ] 0,, the we d the itegrl vlue is defied y 229

8 ( ) ( ) ( 0,] ( ) ( ) FH F t d t: = IH F t dt = ( H) F d, t ( H) F d t. ( 0,] For revity, we write F FH [, ]. Defiitio 4.4. Let F :[, ] R. If the itervl-vlued futio F = F, F ) is AP-Hestok itegrle o [, ] for y ( ] the F is lled AP-Hestok itegrle o [, ] d the itegrl vlue is defied y ( ) ( ) ( 0,] ( ) ( ) APFH F t d t : = APIH F t dt 0,, = ( APH ) F dt, ( APH ) F d t. ( 0,] We write F APFH [, ]. Theorem 4.. F APFH [, ], the ( ) ( )d where =. ( ) Proof. Let ( ] APFH F t t R d ( APFH ) F dt = ( APIH ) F d, t (4.3) = H : 0, I R, e defied y Sie ( ) d ( ) 0 <, we hve F F, F F, o [ ] H ( ) = ( APH ) F d, t ( APH ) F d t. F t F t re iresig d deresig o respetively, therefore, whe 2 From Theorem 3.5 we hve 2 2 ( APH ) F d, t ( APH ) F dt ( APH ) F d, t ( APH ) F d t. (4.4) 2 2 From Theorem 3.2 d Lemm 4. we hve APFH F t d t : = APH F d, t APH F dt R (4.5) (0,] ( ) ( ) ( ) ( ) APFH F t dt APIH F t d, t where = d for ll ( 0, ], ( ) ( ) = ( ) ( ) =. ( ) d Theorem 4.2. If F, G APFH [, ] d, R.,. βγ The βf γg APFH [, ] ( ) ( β γ ) = β( ) ( ) γ ( ) ( ) APFH F G dt APFH F t dt APFH G t d. t (4.6) Proof. If F, G APFH [, ], the the itervl-vlued futio 2292

9 = ( ) ( ) d G G, G F () t F t, F t = re AP-Hestok itegrle o APFH F t dt = ( APIH ) F dt ( 0,] d = ( ) ( 0,] ( ) d. From Theorem 3.3 we hve F γg APIH [, ] d [, ] for y ( 0,] d ( ) ( ) ( ) ( ) β APFH G t t APIH G t t ( APIH ) ( β F γ G) dt = β ( APIH ) Fdt γ ( APIH ) Gdt for y ( 0,] Hee βf γg APFH [, ] d ( ) ( ) ( 0,] ( ) ( ) APFH βf γg dt = APIH βf γg dt ( ) d ( ) ( 0, ] (0,] ( ) ( ) γ ( ) ( ). = β( APIH ) Fdt γ ( APIH ) Gdt ( 0,] = β APIH F t γ APIH G dt = β APFH F t dt APFH G t d. t F APFH, d Theorem 4.3. If F APFH [, ] d F APFH [, ], the [ ] ( ) ( ) = ( ) ( ) ( ) ( ) APFH F t dt APFH F t dt APFH F t d. t (4.7) Proof. If F APFH [, ] d F APFH [, ] F = F, F is AP-Hestok itegrle o [, ] d [, ] ( 0,] d ( APFH ) F dt = ( APIH ) F dt d ( ) ( ), the the itervl-vlued futio for y ( 0,] d = ( ) ( 0,] ( ) d. From Theorem 3.4 we hve APFH F t t APIH F t t APIH [, ] d ( APIH ) F d t ( APIH ) F d t ( APIH ) F d = t for y F d ( 0,]. Hee F APFH [, ] ( ) ( ) ( 0,] ( ) ( ) APFH F t dt = APIH F t dt = ( APIH ) F dt ( APIH ) F dt ( 0,] ( ) ( ) d ( ) ( ) = APIH F t t APIH F t dt ( 0, ] (0,] ( ) ( ) ( ) ( ) = APFH F t dt APFH F t d. t 2293

10 Theorem 4.4. If F G, ], APFH [, ], the F G ( ) ( ) ( ) ( ) d APFH F t dt APFH G t d. t (4.8) Proof. If F G erly everywhere o [, ] d F, G APFH [, ] ( ) ( ) erly everywhere o [, ] for y ( 0,] d F d re AP-Hestok itegrle o [, ] for y ( 0,] d F t G t G ( ) ( ) d = ( ) ( ) d d ( 0,] APFH F t t APIH F t t ( ) ( ) d = ( ) ( ) d. From Theorem 3.5 we hve ( 0,] APFH G t t APIH G t t ( APIH ) F dt ( APIH ) G dt for y ( 0,] 5. Colusio ( ) ( ) ( 0,] ( 0,]. Hee ( ) ( ) APFH F t dt = APIH F t dt = ( ) ( ) APIH G t dt ( ) ( ) APFH G t d. t, the I this pper, we hve tedey to itrodue the oept of the AP-Hestok itegrls of itervl-vlued futios d fuzzy umer-vlued futios d ivestigte some properties of those itegrls. Referees [] Wu, C.X. d Gog, Z. (2000) O Hestok Itegrls of Itervl-Vlued Futios d Fuzzy-Vlued Futios. Fuzzy Sets d Systems, 5, [2] Hestok, R. (963) Theory of Itegrtio. Butterworth, Lodo. [3] Peg-Yee, L. (989) Lzhou Letures o Hestok Itegrtio. World Sietifi, Sigpore. [4] Hmid, M.E. d Elmuiz, E.H. (206) O Hestok-Stieljes Itegrls of Itervl-Vlued Futios d Fuzzy-Vlued Futios. Jourl of Applied Mthemtis d Physis, 4, [5] Prk, J.M., Prk, C.G., Kim, J.B., Lee, D.H. d Lee, W.Y. (2004) The Itegrls of s-perro, sp-perro d p-mshe. Czehoslovk Mthemtil Jourl, 54, [6] Nd, S. (989) O Itegrtio of Fuzzy Mppigs. Fuzzy Sets d Systems, 32, [7] Wu, C.X. d M, M. (99) Emeddig Prolem of Fuzzy Numer Spes: Prt I. Fuzzy 2294

11 Sets d Systems, 44, [8] Wu, C.X. d M, M. (992) Emeddig Prolem of Fuzzy Numer Spes: Prt II. Fuzzy Sets d Systems, 45, [9] Cheg, Z.L. d Demou, W. (983) Extesio of the Itegrl of Itervl-Vlued Futio d the Itegrl of Fuzzy-Vlued Futio. Fuzzy Mth, 3, Sumit or reommed ext musript to SCIRP d we will provide est servie for you: Aeptig pre-sumissio iquiries through Emil, Feook, LikedI, Twitter, et. A wide seletio of jourls (ilusive of 9 sujets, more th 200 jourls) Providig 24-hour high-qulity servie User-friedly olie sumissio system Fir d swift peer-review system Effiiet typesettig d proofredig proedure Disply of the result of dowlods d visits, s well s the umer of ited rtiles Mximum dissemitio of your reserh work Sumit your musript t: Or ott m@sirp.org 2295

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients

Neighborhoods of Certain Class of Analytic Functions of Complex Order with Negative Coefficients Ge Mth Notes Vol 2 No Jury 20 pp 86-97 ISSN 229-784; Copyriht ICSRS Publitio 20 wwwi-srsor Avilble free olie t http://wwwemi Neihborhoods of Certi Clss of Alyti Futios of Complex Order with Netive Coeffiiets

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

On The Homogeneous Quintic Equation with Five Unknowns

On The Homogeneous Quintic Equation with Five Unknowns IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-78,p-ISSN: 319-76X, Volume 7, Issue 3 (Jul. - Aug. 013), PP 7-76 www.iosrjourls.org O The Homogeeous Quitic Equtio with Five Ukows y y 3 3 ( y ) 3(( y)( z w

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Fuzzy Neutrosophic Equivalence Relations

Fuzzy Neutrosophic Equivalence Relations wwwijirdm Jur 6 Vl 5 ssue SS 78 Olie u eutrsphi Equivlee eltis J Mrti Je eserh Shlr Deprtmet f Mthemtis irml Cllege fr Wme Cimtre mil du di rkiri riipl irml Cllege fr Wme Cimtre mil du di strt: his pper

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator Itertiol Jourl of Moder Egieerig Reserch (IJMER) Vol., Issue.3, My-Jue 0-56-569 ISSN: 49-6645 N. D. Sgle Dertmet of Mthemtics, Asheb Dge College of Egieerig, Asht, Sgli, (M.S) Idi 4630. Y. P. Ydv Dertmet

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran

S. Ostadhadi-Dehkordi and B. Davvaz* Department of Mathematics, Yazd University, Yazd, Iran IJST (03) 37A3: 5-63 Iri Jourl of Siee & Tehology http://ijstsshirzuir Idel theory i -semihyperrigs S Ostdhdi-Dehkordi d B Dvvz* Deprtmet of Mthemtis, Yzd Uiversity, Yzd, Ir E-mil: dvvz@yzdir Astrt The

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Bayesian Estimation and Prediction for. a Mixture of Exponentiated Kumaraswamy. Distributions

Bayesian Estimation and Prediction for. a Mixture of Exponentiated Kumaraswamy. Distributions Iteratioal Joural of Cotemporary Mathematial Siees Vol. 11, 2016, o. 11, 497-508 HIKARI Ltd, www.m-hikari.om https://doi.org/10.12988/ijms.2016.61165 Bayesia Estimatio ad Preditio for a Mixture of Expoetiated

More information

The Modified Heinz s Inequality

The Modified Heinz s Inequality Journl of Applied Mthemtics nd Physics, 03,, 65-70 Pulished Online Novemer 03 (http://wwwscirporg/journl/jmp) http://dxdoiorg/0436/jmp03500 The Modified Heinz s Inequlity Tkshi Yoshino Mthemticl Institute,

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Repeated Root and Common Root

Repeated Root and Common Root Repeted Root d Commo Root 1 (Method 1) Let α, β, γ e the roots of p(x) x + x + 0 (1) The α + β + γ 0, αβ + βγ + γα, αβγ - () (α - β) (α + β) - αβ (α + β) [ (βγ + γα)] + [(α + β) + γ (α + β)] +γ (α + β)

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 for BST 695: Speial Topis i Statistial Theory Kui Zhag, Chapter 8 Hypothesis Testig Setio 8 Itrodutio Defiitio 8 A hypothesis is a statemet about a populatio parameter Defiitio 8 The two omplemetary

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS *

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS * J. ci. I. R. Ir Vol., No. 3, ummer 2000 GENERALIZED POITIVE DEFINITE FUNCTION AND COMPLETELY MONOTONE FUNCTION ON FOUNDATION EMIGROUP * M. Lshkrizdeh Bmi Deprtmet of Mthemtics, Istitute for tudies i Theoreticl

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

MAT Analysis II. Notes on Measure Theory. Table of Contents. Riemann, We Have a Problem. Wm C Bauldry. Henri Léon Lebesgue ( )

MAT Analysis II. Notes on Measure Theory. Table of Contents. Riemann, We Have a Problem. Wm C Bauldry. Henri Léon Lebesgue ( ) MAT 5620. Alysis II. Notes o Mesure Theory. Wm C Buldry BuldryWC@ppstte.edu Autum, 2006 Heri Léo Leesgue (1875 1941) Tle of Cotets Riem, We Hve Prolem. 0. Riem, We Hve Prolem. 1. Towrd Uit of Mesure 1.1

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information

Basic Limit Theorems

Basic Limit Theorems Bsic Limit Theorems The very "cle" proof of L9 usig L8 ws provided to me by Joh Gci d it ws this result which ispired me to write up these otes. Absolute Vlue Properties: For rel umbers x, d y x x if x

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT ALGEBRA II (3 CREDIT HOURS) SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT - ALGEBRA II (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig seod degree equtios

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information