Equivalence of K-andJ -methods for limiting real interpolation spaces

Size: px
Start display at page:

Download "Equivalence of K-andJ -methods for limiting real interpolation spaces"

Transcription

1 Available online a wwwciencedireccom Journal of Funcional Analyi ) wwweleviercom/locae/jfa Equivalence of K-andJ -meho for limiing real inerpolaion pace Fernando Cobo a,,1, Thoma Kühn b,1 a Deparameno de Análii Maemáico, Faculad de Maemáica, Univeridad Compluene de Madrid, Plaza de Ciencia 3, Madrid, Spain b Mahemaiche Iniu, Fakulä für Mahemaik und Informaik, Univeriä Leipzig, Johannigae 26, D Leipzig, Germany Received 29 July 2010; acceped 31 Augu 2011 Available online 13 Sepember 2011 Communicaed by Alain Conne Abrac We conider limiing real inerpolaion pace defined by uing power of ieraed logarihm and how heir decripion by mean of he J -funcional Our reul allow o complemen ome eimae on approximaion of ochaic inegral 2011 Elevier Inc All righ reerved Keywor: Limiing inerpolaion pace; J -funcional; K-funcional; Lorenz Zygmund pace; Beov pace 1 Inroducion The real inerpolaion mehod A 0,A 1 ) θ,q play an ouanding role in applicaion of inerpolaion heory o funcional analyi, harmonic analyi, approximaion heory, parial differenial equaion and ome oher domain of mahemaic We refer, for example, o he book by Buzer and Beren [7], Bergh and Löfröm [5], Triebel [29], Benne and Sharpley [4], Brudnyĭ and Krugljak [6], Conne [12] and Amrein, Boue de Monvel and Georgecu [2] The mo familiar definiion of A 0,A 1 ) θ,q are hoe given by Peere K- and J -funcional The equivalence heorem ee [5, Secion 33]) how ha hee conrucion produce he ame * Correponding auhor addree: cobo@maucme F Cobo), kuehn@mahuni-leipzigde T Kühn) 1 Auhor have been uppored in par by he Spanih Minierio de Ciencia e Innovación MTM ) /$ ee fron maer 2011 Elevier Inc All righ reerved doi:101016/jjfa

2 F Cobo, T Kühn / Journal of Funcional Analyi ) pace Thi fac i an imporan iem in he developmen of he heory In fac, i yiel deniy of A 0 A 1 in A 0,A 1 ) θ,q if q<, and i i ueful o eablih he reieraion heorem or he dualiy heorem, among oher reul The definiion of A 0,A 1 ) θ,q require 0 <θ<1, bu cerain queion in funcion pace have moivaed he inveigaion of limiing real inerpolaion pace Then θ = 0orθ = 1, and he definiion may alo include logarihmic erm See, for example, he book by Milman [25] and he paper by Gomez and Milman [22], Dokorkii [13], Evan and Opic [15], Evan, Opic and Pick [16], Gogaihvili, Opic and Trebel [21], Cobo, Fernández-Cabrera, Kühn and Ullrich [9], Cobo, Fernández-Cabrera and Mayło [10], Fernández-Marínez and Signe [17] and Ahmed, Edmun, Evan and Karadzhov [1] Working wih limiing meho, i i naural o reric o ordered couple, where A 0 A 1 If θ = 0 hee meho produce pace which are very cloe o A 0, and when θ = 1 hey are very near o A 1 Among he limiing meho, K-meho have been more widely ued han J -meho Equivalence beween limiing K- and J -conrucion i only known for ome choice of parameer and, on he conrary o he cae of he real mehod, an adjumen i needed wih he effec ha a logarihmic facor hould be inered o obain he K-decripion of a limiing J - pace ee [9, Theorem 42] and [10, Corollary 510]) In Sepember 2009, Sefan Gei [18] aked one of he preen auhor abou he J -decripion of he K-pace defined by he condiion up e K,a) < 11) log ) α Here α>0 i arbirary The moivaion for hi queion i he poenial ue of a limiing equivalence heorem in ochaic finance, more pecifically, in approximaion of ochaic inegral ee [19,20]) K-pace defined by 11) have been conidered in [15,16,21,17] Even more general K- pace have been udied in hee reference, including in he definiion power of ieraed logarihm and no only he L -norm bu alo he L q -norm However, heir J -decripion ha no been inveigaed ye, excep for he cae α = 1 in 11) ee [9]) Accordingly, in hi paper we eablih J -decripion for all hee K-pace Our reul reveal a new phenomenon relaed o he facor of correcion: i change wih logarihm which define he K-pace The paper i organized a follow In Secion 2 we fix noaion and inroduce he K- and J -pace ha we are dealing wih Secion 3 conain ome baic properie of limiing pace a well a ome example The main reul of he paper are in Secion 4 where we prove he equivalence heorem Our argumen are baed on a modified verion of he o-called fundamenal lemma of inerpolaion heory and do no ue diviibiliy reul or rong form of he fundamenal lemma Finally, in Secion 5, we eablih limiing formulae for couple of vecorvalued equence pace and we how ha our reul can be ued o complemen ome eimae of C Gei, S Gei and M Hujo [19,20] on approximaion of ochaic inegral uing deerminiic equidian ne 2 Preliminarie For ieraed logarihm we ue he noaion L 0 ) =, L 1 ) = log and L j ) = log L j 1 ) ) if j>1

3 3698 F Cobo, T Kühn / Journal of Funcional Analyi ) Similarly, we wrie LL 1 ) = 1 + log and LL j ) = 1 + log LL j 1 ) ) if j>1 For ieraed exponenial funcion we pu E 0 ) =, E 1 ) = e and E j ) = e E j 1) if j>1 If ᾱ = α 0,α 1,,α m ) R m+1,wee ϕᾱ) = m L j ) α j j=0 A uual, given any 1 q, he conjugae index q i defined by 1/q + 1/q = 1, where we pu 1/ =0 If X, Y are quaniie depending on cerain parameer, by X Y we mean ha here i a conan c>0 independen of all parameer uch ha X cy We pu X Y if X Y and Y X Similarly, given wo non-negaive funcion f),g) defined on G R, we ay ha hey are equivalen and we wrie f g if here are conan c 1,c 2 > 0 uch ha c 1 f) g) c 2 f) for all G Le A 0,A 1 be Banach pace wih A 0 A 1 Here he ymbol mean coninuou embedding For >0, Peere K- and J -funcional are defined by and K,a) = K,a; A 0,A 1 ) = inf { } a 0 A0 + a 1 A1 : a = a 0 + a 1,a j A j, a A1, J,a)= J,a; A 0,A 1 ) = max { a A0, a A1 }, a A0 Definiion 21 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha he funcion ϕᾱ aifie 1 d ϕᾱ) q < if 1 q<, 21) 1 up ϕᾱ) < if q = a ᾱ,q;k = The K-pace A 0,A 1 )ᾱ,q;k coni of all a A 1 which have a finie norm up K,a) ϕᾱ) K,a) ϕᾱ) ) ) q 1/q d if 1 q<, if q =

4 F Cobo, T Kühn / Journal of Funcional Analyi ) The pace decribed in Definiion 21 are pecial cae of he general K-mehod udied in [6] and [27] For a A 1, i follow from ha a A1 K1,a) K,a), ) ) 1 q 1/q d a A1 ϕᾱ) a ᾱ,q;k 22) So A 0,A 1 )ᾱ,q;k ={0} if 21) doe no hold By 22), we have ha A 0,A 1 )ᾱ,q;k A 1 Moreover, uing ha i i eaily checked ha A 0 A 0,A 1 )ᾱ,q;k K,a) a A0 if a A 0, Example 22 If α 0 > 0, or α 0 = 0 and α 1 > 1/q hen ϕᾱ aifie 21) Condiion 21) alo hol if α 0 = 0, α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Example 23 If α 0 > 1 hen we have A 0,A 1 )ᾱ,q;k = A 1 becaue a ᾱ,q;k a A1 ϕᾱ) ) ) q 1/q d c a A1 Example 24 When m = 0 and ᾱ = θ) wih 0 <θ<1, we recover he claical real inerpolaion pace A 0,A 1 ) θ,q realized a a K-pace ee [5,29,4]) The cae m N and ᾱ R m+1 wih 0 <α 0 < 1 i a pecial cae of he well-known real mehod wih funcion parameer ee [23,24,28]) For hi reaon, we are only inereed here in he cae α 0 = 0 See [16,21,17] for oher reul on pace A 0,A 1 )ᾱ,q;k Nex we inroduce J -pace Definiion 25 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, m N {0} and le β = β 0,β 1,,β m ) R m+1 uch ha he funcion ϕ β aifie up ϕ β ) ) q d < if 1 <q, ϕ β ) < if q = 1 23)

5 3700 F Cobo, T Kühn / Journal of Funcional Analyi ) The pace A 0,A 1 ) β,q;j i formed by all hoe a A 1 for which here i a rongly meaurable funcion u) wih value in A 0 uch ha a = u) d convergence in A 1 ) 24) and J,u)) ϕ β ) ) ) q 1/q d < 25) he inegral hould be replaced by he upremum if q = ) The norm in A 0,A 1 ) β,q;j i a β,q;j = inf { J,u)) ϕ β ) ) ) q 1/q } d where he infimum i aken over all repreenaion u aifying 24) and 25) The pace A 0,A 1 ) β,q;j are paricular cae of he general J -mehod ee [6,27]) They are alo iing beween A 0 and A 1 Indeed, ince any a A 0 can be repreened a a = eem 1) ad/, embedding A 0 A 0,A 1 ) β,q;j follow by uing ha ϕ β i a coninuou funcion On he oher hand, given any a A 0,A 1 ) β,q;j and any J -repreenaion a = u) d/, we derive a A1 u) A1 d ϕ β ) ) q d J,u)) ϕ β ) ) ) q 1/q d By 23), he fir inegral in he la inequaliy i finie, o A 0,A 1 ) β,q;j A 1 Noe alo ha if 23) doe no hold hen a β,q;j = 0 for any a A 0 Thi fac can be hown by following he ame idea a in [7, Propoiion 327] Indeed, ake any a A 0 and le ψ) be a non-negaive funcion aifying ha ψ)/ϕ d β ))q )1/q = 1 Pu u) = ψ)/ a ψ) Then a = d u) Uing ha J,u)) u) A 0 for, we obain

6 F Cobo, T Kühn / Journal of Funcional Analyi ) ψ) ϕ β ) ϕ β ) ) a β,q;j = ψ) ψ) ) a β,q;j ) ) ψ) q d ϕ β ) Taking he upremum over all poible funcion ψ we derive ha ϕ β ) Thi yiel ha a β,q;j = 0 if 23) i no aified ) q a β,q;j a A 0 J,u)) ϕ β ) a A0 = a A0 ) ) q 1/q d Example 26 Condiion 23) i aified if β 0 < 1, or β 0 = 1 and β 1 < 1/q,orβ 0 = 1, β 1 = =β r 1 = 1/q and β r < 1/q for ome 2 r m Example 27 When m = 0 and β = θ) wih 0 <θ<1, we ge again he real inerpolaion pace A 0,A 1 ) θ,q bu hi ime in he form of a J -pace ee [5,29]) When m N and β R m+1 wih 0 <β 0 < 1 we recover pace decribed by he real mehod wih funcion parameer ee [23,24]) If m = 0 = β 0, we obain pace udied in [9] and [10] 3 Some properie and example of limiing K-pace Le B = B 0,B 1 ) be anoher couple of Banach pace wih B 0 B 1 By T LĀ, B) we mean ha T i a bounded linear operaor from A 1 ino B 1, whoe rericion o A 0 give a bounded linear operaor from A 0 ino B 0 We pu T Ai,B i for he norm of T acing from A i ino B i i = 0, 1) I i eay o check ha he rericion T : A 0,A 1 )ᾱ,q;k B 0,B 1 )ᾱ,q;k i alo bounded Nex we eimae i norm in he limi cae α 0 = 0 We hall need he funcion LL j Given any real number α, we pu α + = max{α, 0} Theorem 31 Le Ā = A 0,A 1 ), B = B 0,B 1 ) be couple of Banach pace wih A 0 A 1, B 0 B 1 Suppoe ha 1 q,m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q, orα 0 = 0,α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m If T LĀ, B) and M i = T Ai,B i for i = 0, 1, we have T A0,A 1 )ᾱ,q;k,b 0,B 1 )ᾱ,q;k { M0 if M 1 M 0, M 0 mj=1 LL α+ j j M 1 /M 0 ) if M 0 M 1

7 3702 F Cobo, T Kühn / Journal of Funcional Analyi ) Proof Since K,Ta; B 0,B 1 ) M 0 KM 1 /M 0,a; A 0,A 1 ), > 0, a A 1, and K,a) i an increaing funcion of,form 1 M 0 we obain Ta ᾱ,q;k M 0 KM1 /M 0,a) ϕᾱ) Suppoe now M 0 M 1 I follow by inducion ha ) ) q 1/q d M 0 a 0 ᾱ,q;k L k M 1 /M 0 ) L k )LL k M 1 /M 0 ), E k 1), k N 31) We obain Ta ᾱ,q;k M 0 M 0 M 0 up m j=1 KM1 /M 0,a) ϕᾱm 1 /M 0 ) { } ϕᾱm1 /M 0 ) ϕᾱ) ϕᾱm 1 /M 0 ) ϕᾱ) a ᾱ,q;k LL α+ j j M 1 /M 0 ) a ᾱ,q;k, ) ) q 1/q d where we have ued 31) in he la inequaliy The cae q = can be reaed analogouly In he pecial cae m = 1,α 0 = 0 and α 1 = 1, we recover a norm eimae eablihed in [9, Theorem 49] Nex we give example of limiing inerpolaion pace Le Ω, μ) be a σ -finie meaure pace and le wx) be a weigh on Ω, ha i, a poiive meaurable funcion on Ω A uual, we pu L q w) = { f : f Lq w) = wf Lq < } Le w 0,w 1 be weigh on Ω uch ha w 0 x) w 1 x) μ-ae Then L q w 0 ) L q w 1 ) Replacing w 1 x) by w 1 x)/, which only produce an equivalen norm in L q w 1 ), we may aume ha w 1 x) w 0 x) μ-ae in Ω Theorem 32 Le Ω, μ) be a σ -finie meaure pace, le 1 q, m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m

8 F Cobo, T Kühn / Journal of Funcional Analyi ) Le w 0 and w 1 be weigh on Ω uch ha w 1 x) w 0 x) μ-ae Pu wx) = w 0 x)l 1/q r ) w0 x) / m L α j j w 1 x) j=r ) w0 x) w 1 x) Then we have wih equivalen norm Lq w 0 ), L q w 1 ) ) ᾱ,q;k = L qw) Proof Since K,f; L q w 0 ), L q w 1 ) ) Ω [ min { w0 x), w 1 x) } fx) ] q dμx), we obain f ᾱ,q;k Ω fx) q Le I be he inerior inegral We have [ min{w0 x), w 1 x)} ϕᾱ) ] q d dμx) I = w 1 x) q w 0 x)/w 1 x) ) q d ϕᾱ) + w 0 x) q w 0 x)/w 1 x) ) 1 q d = I 1 + I 2 ϕᾱ) To eimae I 2, noe ha ) [ 1 q m ) q r 1 1 = L α j j ϕᾱ) ) L j )] j=r j=1 We le r 1 j=1 L j ) = 1ifr = 1 Take any ε>0 uch ha α r ε) > 1/q Uing ha and L ε r ) m j=r+1 L α j j ) i equivalen o a non-decreaing funcion L ε r ) m j=r+1 L α j j ) i equivalen o a non-increaing funcion

9 3704 F Cobo, T Kühn / Journal of Funcional Analyi ) we ge w 0 x)/w 1 x) 1 m j=r L α j j ))q [ m d L r 1 ) L 1 ) L α j j j=r ) ] q ) w0 x) w0 x) L r w 1 x) w 1 x) Hence ) [ I 2 w 0 x) q w0 x) m ) ] q L r L α j w0 x) j = wx) q w 1 x) w j=r 1 x) Nex we conider I 1 Clearly, I 1 0 Uing ha for any 0 <ε<1 he funcion ε /ϕ α ) i equivalen o a non-decreaing funcion, we obain ) I 1 w 1 x) q w0 x) q )) w0 x) q ϕᾱ w 1 x) w 1 x) [ r 1 = w 0 x) q j=1 ) ] 1[ w0 x) m L j L α j j w 1 x) j=r ) ] q w0 x) w 1 x) ) [ w 0 x) q w0 x) m ) ] q L r L α j w0 x) j I 2 w 1 x) w j=r 1 x) Conequenly, I wx) q Thi yiel ha f ᾱ,q;k Ω [ wx) fx) ] q dμx) Nex we wrie down a paricular cae of Theorem 32 which refer o weighed equence pace Corollary 33 Le 1 q, m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Then we have wih equivalen norm lq n 1/2 ) ),l q ᾱ,q;k = l qw n )

10 F Cobo, T Kühn / Journal of Funcional Analyi ) where w n = n 1/2 L 1/q r In paricular, for α>0, we derive l n 1/2 ) ),l n 1/2 ) m j=r L α j j n 1/2 ) 0,α), ;K = l n 1/2 1 + log n) α) In Secion 5 we will derive a vecor-valued verion of Corollary 33 which i ueful o approximae ochaic inegral When α 0 = 0 and α 1 = 1, Theorem 32 give back a reul eablihed in [9, Theorem 48] The following reieraion formulae beween he real mehod and he limiing K-mehod will allow u o how more example Theorem 34 Le A 0,A 1 be Banach pace wih A 0 A 1,le0 <θ<1, 1 q, m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Le ρ = ρ 0,ρ 1,,ρ m ) R m+1 he m + 1)-uple defined by ρ 0 = θ and { ρ1 = α 1 1/q and ρ j = α j for 2 j m if r = 1, ρ 1 = =ρ r 1 = 0, ρ r = α r 1/q, ρ j = α j, r + 1 j m if 2 r m Then we have wih equivalen norm ) A0,A 1 ) θ,q,a 1 ᾱ,q;k = A 0,A 1 ) ρ,q;k Proof By Holmed formula ee [5, Corollary 362]) we have Hence K ) 1/1 θ) [,a; A 0,A 1 ) θ,q,a 1 θ K,a; A 0,A 1 ) ] q a ᾱ,q;k = = 1/1 θ) 0 [ 0 0 [ θ K,a) max{, 1 θ } ϕᾱ) 1 ϕᾱ) ] q ) q d d ] θ K,a) ) q

11 3706 F Cobo, T Kühn / Journal of Funcional Analyi ) Proceeding a for I 2 in Theorem 32, we derive ha 1 ) q d ϕᾱ) = 1 m j=r L α j j ))q m d r 1 j=1 L j ) j=r L α j j )) ql r ) where = max{, 1 θ } I follow ha a ᾱ,q;k 0 θ ) ) K,a) q 1/q mj=r L α j j )Lr 1/q ) For 0 <<Em 1/1 θ) 1), wehavek,a) a A1 Whence E 1/1 θ) m 1) 0 θ K,a) ) q mj=r L α j j E m1))l 1 r ) E 1/1 θ) m 1) 0 ) 1 θ)q a q A 1 Conequenly, = c a q A 1 a ᾱ,q;k E 1/1 θ) m 1) E 1/1 θ) m 1) E 1/1 θ) m 1) 1 ϕ ρ) ) ) q a q A 1 θ K,a) mj=r L α j j 1 θ )Lr 1/q 1 θ ) K,a) ϕ ρ ) ) q θ K,a) ) ) q 1/q mj=r L α j j 1 θ )Lr 1/q 1 θ ) ) ) q 1/q Nex we wrie down a concree cae of hi reul for funcion pace Le Ω, μ) be a finie meaure pace For 1 <p, 1 q and ν j R for 1 j m, he generalized Lorenz Zygmund pace L p,q;ν1,,ν m coni of all equivalen clae of) meaurable funcion f on Ω

12 F Cobo, T Kühn / Journal of Funcional Analyi ) which have a finie norm μω) [ f = Lp,q;ν1,,νm 0 1/p m j=1 LL ν j j )f ) ] q d Here = max{,1/},f ) = 1/) 0 f ) and f i he non-increaing rearrangemen of f defined by f ) = inf { >0: μ { x Ω: fx) > }) } Thee pace are udied in [26] and [14] They are a pecial cae of o-called Lorenz Karamaa pace in [14] If m = 1, he pace L p,q;ν1 coincide wih he Lorenz Zygmund pace L p,q log L) ν1 inroduced in [3] Corollary 35 Le Ω, μ) be a finie meaure pace, le 1 <p<, 1 q,m N {0} and le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Then we have wih equivalence of norm L p,q,l 1 )ᾱ,q;k = L p,q;ν1,,ν m, where ν 1 = =ν r 1 = 0, ν r = 1/q) α r and ν j = α j for r + 1 j m Proof A i i well known, L p,q = L,L 1 ) 1/p,q Le ρ = 1/p, r 1 {}}{ 0,,0,α r 1/q, α r+1,,α m ) I follow from Theorem 33 ha L p,q,l 1 )ᾱ,q;k = L,L 1 ) ρ,q;k Uing he ideniy ee [5,29]), we derive 1/ K,f; L,L 1 ) = f ) = f 1/) 0 f Lp,q,L 1 )ᾱ,q;k f L,L 1 ) ρ,q;k [ / m = 1/p f 1/) L α j j )L 1/q r j=r ) ] q d

13 3708 F Cobo, T Kühn / Journal of Funcional Analyi ) The equivalence heorem E 1 m 1) 0 μω) 0 = f Lp,q;ν1,,νm [ / m ] q 1/p f 1/) LL α j d j )LL 1/q r ) j=r [ / m ] q 1/p f ) LL α j d j )LL 1/q r ) j=r [ 1/p LL 1/q) α r r ) m j=r+1 LL α j j )f ) ] q d Thi ecion i he cenral par of he paper I conain he J -decripion of limiing K-pace For hi aim, we fir inroduce pace baed on a modified K-funcional and he Lebegue meaure on 0, ) inead of d/ For n N, we pu K n, a) = K E n ), a ) = inf { a 0 A0 + E n ) a 1 A1 : a = a 0 + a 1,a j A j } Definiion 41 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, n N, m N {0} and le γ = γ 0,γ 1,,γ m ) R m+1 uch ha he funcion ϕ γ aifie We pu A 0,A 1 ) n) γ,q;k = { a A 1 : a n) γ,q;k = ) ) 1 q 1/q < 41) ϕ γ ) ) ) Kn, a) q 1/q < } ϕ γ ) A imilar argumen o he one given afer Definiion 21 how ha if 41) doe no hold hen A 0,A 1 ) n) γ,q;k ={0} Hence, if γ 0 < 1/q he pace i {0} On he oher hand, 41) i aified if γ 0 > 1/q, orγ 0 = γ 1 = =γ r 1 = 1/q and γ r > 1/q for ome 1 r m The nex lemma decribe he relaionhip beween Definiion 21 and 41 Lemma 42 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, n N, m N {0} and le γ = γ 0,γ 1,,γ m ) R m+1 uch ha he funcion ϕ γ aifie 41) Then A 0,A 1 ) n) γ,q;k = A 0,A 1 )ᾱ,q;k

14 F Cobo, T Kühn / Journal of Funcional Analyi ) where ᾱ i he m + n + 1)-uple given by n 1 ᾱ = {}}{ ) 0, 1/q,,1/q, γ 0,γ 1,,γ m Proof Aume fir 1 q< We make he change of variable = E n ), o = L n ) and We obain ) Kn, a) q = ϕ γ ) = = E m+n 1) E m+n 1) d L n 1 ) L 1 ) K,a) ϕ γ L n ))L n 1 ) L 1 ) ) K,a) q d ϕᾱ) To deal wih he cae q =, we wrie again = E n ) We ge K n, a) up = up ϕ γ ) E m+n 1) K,a) ϕ γ L n )) = up E m+n 1) K,a) ϕᾱ) ) q d n {}}{ where now ᾱ = 0,,0,γ 0,γ 1,,γ m ) Remark 43 Le ᾱ = α 0,α 1,,α m ) R m+1 uch ha α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Pu γ = α r,α r+1,,α m ) Then, according o Lemma 42, we have A 0,A 1 )ᾱ,q;k = A 0,A 1 ) r) γ,q;k Conequenly, he K-pace we are inereed in can alway be repreened in he new cale A 0,A 1 ) r) γ,q;k wih γ 0 > 1/q Subequenly, we conider only K r -pace of hi kind Remark 44 Noe alo ha he pace defined by condiion 11) in he Inroducion coincide wih A 0,A 1 ) 1) γ, ;K, where m = 0 and γ = γ ) wih γ>0 Now we conider pace defined by a modified J -funcional For n N,wee J n, a) = J E n ), a ) = max { a A0, E n ) a A1 }

15 3710 F Cobo, T Kühn / Journal of Funcional Analyi ) Definiion 45 Le A 0,A 1 be Banach pace wih A 0 A 1,le1 q, n N, m N {0} and le δ = δ 0,δ 1,,δ m ) R m+1 The pace A 0,A 1 ) n) δ,q;j i formed by all hoe a A 1 which can be repreened by a = v) convergence in A 1 ) 42) where v) i a rongly meaurable funcion wih value in A 0 and ) ) Jn, v)) q 1/q < 43) ϕ δ ) We pu { a n) δ,q;j = inf ) Jn, v)) q 1/q } ) ϕ δ ) where he infimum i aken over all v aifying 42) and 43) In order o compare he modified K- and J -pace, we fir prove a limi verion of he o-called fundamenal lemma of inerpolaion heory Lemma 46 Le A 0,A 1 be Banach pace wih A 0 A 1,len N and m N {0} Aume ha a A 1 wih lim K,a)/ = 0 Then here i a rongly meaurable funcion v :[, ) A 0 wih and a = v) convergence in A 1 ) ) K n 4,a) J n,v) c,, where c>0 i a conan independen of a and v Proof Chooe r 0 N uch ha 2 r 0 1 <2 r 0, e 0 = E n 1) and for k N pu k = E n 2 k ) and I k =[ k 1, k ) Find vecor a 0,k 1 A 0 and a 1,k 1 A 1 wih a = a 0,k 1 + a 1,k 1 and a 0,k 1 A0 + r0 +k a 1,k 1 A1 2K r0 +k,a)

16 F Cobo, T Kühn / Journal of Funcional Analyi ) Le v 0 = a 0,0 and v k = a 0,k a 0,k 1 for k N Then v k 1 ) A 0 and N a v j = a a 0,N A1 = a 1,N A1 2 A1 K r 0 +N,a) 0 r0 +N j=0 an Hence a = k=1 v k 1, where he erie converge in A 1 Nex define I i clear ha v) = { v 0 2 r 0 if [, 2 r 0), v k 2 r 0 +k 1 if [2 r0+k 1, 2 r0+k ), k = 1, 2, Moreover, for [, 2 r 0) we have v) = v k 1 = a k=1 ) 1 J n,v) 2 r 0 J ) n 2 r 0,v 0 1 [ ] a0,0 2 r A0 + r0 a a 1,0 A1 0 1 [ 2Kn 2 r r,a ) ] + r0 a A1 0 c 1 K n 2 r 0+1,a) 2 r 0 For k N and [2 r 0+k 1, 2 r 0+k ), we derive K n 4,a) c 1 ) 1 J n,v) 2 r 0+k 1 J n 2 r 0 +k ),v k 1 [ )] a0,k 2 r A0 + a 0,k 1 A0 + r0 +k a1,k A1 + a 1,k 1 A1 0+k 1 4K r 0 +k+1,a) 2 r 0+k 1 8K n4,a) = 4K n2 r 0+k+1,a) 2 r 0+k 1 The proof i complee

17 3712 F Cobo, T Kühn / Journal of Funcional Analyi ) Now we can eablih he equivalence heorem beween K n - and J n -pace Theorem 47 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, n N, m N {0} and le γ = γ 0,γ 1,,γ m ) R m+1 uch ha γ 0 > 1/q Le δ = γ 0 1,γ 1,,γ m ) Then we have wih equivalen norm A 0,A 1 ) n) γ,q;k = A 0,A 1 ) n) δ,q;j Proof For laer ue we noe ha he aumpion on γ 0 implie ha ϕ γ ) = j=0 L j ) γ j equivalen o an increaing funcion and ha here i a conan c 1 > 0 wih i Take any a A 0,A 1 ) n) value in A 0 uch ha γ,q;k ϕ γ 2) c 1 ϕ γ ), 44) By Lemma 46, here i a rongly meaurable funcion v) wih a = v) ) K n 4,a) wih J n,v) c, Thi inequaliy and 44) yield ) Jn, v)) q c ) Kn 4,a) q 1/q ) ϕ δ ) = c c 2 ϕ δ ) ) Kn 4,a) q 1/q ) ϕ γ ) ) Kn 4,a) q ϕ γ 4) a n) γ,q;k Therefore, a belong o A 0,A 1 ) n) wih a n) a n) δ,q;j δ,q;j γ,q;k Take now a A 0,A 1 ) n) δ,q;j and le a = v) be a J n-repreenaion of a wih We have ) Jn, v)) q ϕ δ ) 2 a n) δ,q;j

18 F Cobo, T Kühn / Journal of Funcional Analyi ) K n, a) = K n,v) ) min { 1, E n )/E n ) } J n,v) ) J n,v) ) + En ) J n, v)) E n ) Thu a n) γ,q;k = + ) Kn, a) q 1/q d) ϕ γ ) 1 ϕ γ ) = I 1 + I 2 E n ) ϕ γ ) J n,v) ) ) q d J n, v)) E n ) ) q d We fir eimae I 1 Chooe ε>0 uch ha ρ = γ 0 ε>1/q Uing Hölder inequaliy, we ge J n,v) ) = Jn, v)) ϕ δ ) Jn, v)) ϕ δ ) ) q 1/q ) ε ) q 1/q ) ε ϕ δ ) ε ϕ γ ) 1+ε ) q ) q Since ρ<γ 0, he funcion ϕ γ )/ ρ i equivalen o an increaing funcion I follow ha Conequenly, ϕ γ ) ρ ) 1 q 1+ε ρ ϕ γ ) ρ 1 q 1 ε+ρ = ϕ γ ) ε 1 q

19 3714 F Cobo, T Kühn / Journal of Funcional Analyi ) I 1 = εq 1 [ ϕ δ ) Jn, v)) ϕ δ ) ) ) q 1/q ] ε d ) Jn, v)) q ) ε εq 1 d ) Jn, v)) q ϕ δ ) 2 a n) δ,q;j Nex we proceed wih I 2 Fir we conider he cae q = 1 We have I 2 = J n, v)) E n ) ) E n ) ϕ γ ) d The econd inegral behave like E n )/ϕ γ) becaue E n )/e /2 ϕ γ) i equivalen o an increaing funcion and o I follow ha E n ) e /2 ϕ γ ) e/2 d E n) e /2 ϕ γ ) e /2 d E n) ϕ γ ) I 2 = J n, v)) ϕ γ ) J n, v)) ϕ δ ) 2 a n) δ,1;j J n, v)) ϕ γ ) Suppoe now ha 1 <q By Hölder inequaliy we derive I 2 2 [ E n ) ϕ γ ) [ E n ) ϕ γ ) ) Jn, v)) q 1/q ) ϕ δ ) ϕ δ ) E n ) ϕ δ ) E n ) ) q ] q d ) q a n) δ,q;j ] q d Since e /2 ϕ δ )/E n) i equivalen o a decreaing funcion, he inner inegral behave like

20 F Cobo, T Kühn / Journal of Funcional Analyi ) ϕ δ )/E n) and o I 2 2 q d a n) δ,q;j The la inegral i finie becaue 1 <q Conequenly, a n) γ,q;k I 1 + I 2 a n) δ,q;j Thi complee he proof Nex we how he relaion of J n -pace o he uual J -pace Lemma 48 Le A 0,A 1 be Banach pace wih A 0 A 1 Suppoe ha 1 q, n N, m N {0} and le β = β 0,β 1,,β m ) R m+1 Then A 0,A 1 ) n) β,q;j = A 0,A 1 ) ρ,q;j {}}{ where ρ i he m + n + 1)-uple given by ρ = 0, 1/q,, 1/q,β 0,β 1,,β m ) Proof Le a = v) Making he change of variable = L n) wih we obain where a = Moreover, if q =,wehave E m+n 1) n 1 = d/l n 1 ) L 1 ) vl n )) d = L n 1 ) L 1 ) E m+n 1) u) = v L n ) ) /L n 1 ) L 1 ) u) d J m, v)) J,vL n ))) up ϕ β ) = up E m+n 1) ϕ β L n)) J,u)) = up E m+n 1) ϕ β L n))l n 1 ) L 1 )) 1 = up E m+n 1) J,u)) ϕ ρ )

21 3716 F Cobo, T Kühn / Journal of Funcional Analyi ) Similarly, for 1 q<, we derive ) Jn, v)) q ϕ β ) = = E m+n 1) E m+n 1) J,u)) ) q d ϕ β L n))[l n 1 ) L 1 )] 1 L n 1 ) L 1 ) J,u)) ϕ ρ ) ) q d Thi yiel ha A 0,A 1 ) n) β,q;j A 0,A 1 ) ρ,q;j To check he convere incluion, ake any a A 0,A 1 ) ρ,q;j wih J -repreenaion a = d E m+n1) u) We make he change of variable = E n) wih = d/l n 1 ) L 1 ) Pu v) = ue n ))E n 1 ) E 1 ) Then Moreover, a = u E n ) ) E n 1 ) E 1 ) = v) E m+n 1) J,u)) ϕ ρ ) ) q d = = J n, v)) ϕ ρ E n )) n 1 k=1 E k) ) Jn, v)) q ϕ β ) ) q n 1 E k ) k=1 Thi complee he proof Now we eablih he equivalence heorem for limiing K-pace Corollary 49 Le A 0,A 1 be Banach pace wih A 0 A 1,le1 q, m N {0} and uppoe ha ᾱ = α 0,α 1,,α m ) R m+1 wih α 0 = 0 and α 1 > 1/q in hi cae we le r = 1), or α 1 = =α r 1 = 1/q and α r > 1/q for ome 2 r m Then we have wih equivalen norm r 1 A 0,A 1 )ᾱ,q;k = A 0,A 1 ) β,q;j {}}{ where β = 0, 1/q,, 1/q,α r 1,α r+1,,α m )

22 F Cobo, T Kühn / Journal of Funcional Analyi ) Proof Le γ = α r,α r+1,,α m ) R m r+1 and ω = α r 1,α r+1,,α m ) R m r+1 Uing Lemma 42, Theorem 47 and Lemma 48, we derive A 0,A 1 )ᾱ,q;k = A 0,A 1 ) r) γ,q;k = A 0,A 1 ) r) ω,q;j = A 0,A 1 ) β,q;j Corollary 49 how ha in he equivalence heorem for he limiing cae, i i needed he correcion facor Ψ)= r L j ) j=1 which depen on he logarihm ha define he K-pace bu i doe no depend on he L q -norm: Condiion K,a) mj=1 L j ) α j L q ) d i equivalen o he fac ha a can be J -repreened by ome u) uch ha Ψ)J,u)) mj=1 L j ) α j ) d L q A a direc conequence we ge he following J -decripion for he K-pace menioned in he Inroducion Corollary 410 Le A 0,A 1 be Banach pace wih A 0 A 1,le1 q, α>0 and ρ> 1/q Then we have wih equivalen norm and A 0,A 1 ) 0,α), ;K = A 0,A 1 ) 0,α 1), ;J, A 0,A 1 ) 0,1/q,ρ),q;K = A 0,A 1 ) 0, 1/q,ρ 1),q;J For q< we have alo he following deniy reul Corollary 411 Le A 0,A 1 be Banach pace wih A 0 A 1,le1 q<, m N {0} and uppoe ha ᾱ = α 0,α 1,,α m ) R m+1 wih α 0 = 0 and α 1 > 1/q, orα 0 = 0,α 1 = = α r 1 = 1/q and α r > 1/q for ome 2 r m Then A 0 i dene in A 0,A 1 )ᾱ,q;k Proof By Corollary 49, we have wih equivalence of norm A 0,A 1 )ᾱ,q;k = A 0,A 1 ) β,q;j r 1 {}}{ where β = 0, 1/q,, 1/q,α r 1,α r+1,,α m ) Take any a A 0,A 1 ) β,q;j and le a = u) d/ be a J -repreenaion of a Given any ε>0, ince q<, i follow from 25)

23 3718 F Cobo, T Kühn / Journal of Funcional Analyi ) ha here i > uch ha Moreover u) d A0 J,u)) ϕ β ) J,u)) ϕ β ) ϕ β )d J,u)) ϕ β ) ) ) q 1/q d <ε ) ) q 1/q d d ϕ β )q < becaue ϕ β )q / i a coninuou funcion Le w = u) d/ Then we have ha w A 0 wih a w = u) d/ and ) ) J,u)) q 1/q a w β,q;j d ϕ β ) <ε 5 Remark on approximaion of ochaic inegral In hi la ecion we will how ome complemen o he reul of C Gei, S Gei and M Hujo [19,20] Le F be a Banach pace, le λ n ) be a equence of poiive number and 1 q We define l q λ n F) a he collecion of all equence x = x n ) F having a finie norm ) q x lq λ n F) = λn x n F We are inereed in inerpolaion properie of he couple l q n 1/2 F),l q F )) Since for any x = x n ) l F ) we have n=1 K,x; l q n 1/2 F ),l q F ) ) { = min n 1/2, } ) q x n F, 51) n=1 we can proceed a in he calar cae ee Theorem 32 and Corollary 33) and obain, for 1 q and α>1/q, he formula lq n 1/2 F ),l q F ) ) 0,α),q;K = l q n 1/2 1 + log n) 1/q) α F ) 52) The following reul refer o he non-diagonal cae

24 F Cobo, T Kühn / Journal of Funcional Analyi ) Theorem 51 Le F be a Banach pace, le 1 q< and α>1/q Then l n 1/2 F ),l F ) ) 0,α),q;K l q n 1/2 1/q 1 + log n) α F ) l n 1/2 1 + log n α F ) Proof Le x = x n ) l F ) Fixn N and le n 1/2 By 51), we have Whence x 0,α),q;K K,x) n 1/2 x n F Taking he upremum over n N we obain 1 K,x) LL α 1 ) n 1/2 x n F n ) ) q 1/q d d LL αq 1 ) n 1/2 1 + log n) 1/q) α x n F l n 1/2 F ),l F ) ) 0,α),q;K l n 1/2 1 + log n α F ) On he oher hand, ince K,x) n 1/2 x n F for n 1/2 <n+ 1) 1/2, we derive Thi how ha ) x q K,x) q 0,α),q;K d LL α 1 ) 1 n+1) 1/2 n 1/2 ) q d x n F LL αq n=1 n 1/2 1 ) n 1/2 ) q 1 1 x n F n 1/2 n n=1 1/2 LL αq 1 n) = n 1/2 1/q 1 + log n) α ) q x n F n=1 l n 1/2 F ),l F ) ) 0,α),q;K l q n 1/2 1/q 1 + log n) α F ) and complee he proof

25 3720 F Cobo, T Kühn / Journal of Funcional Analyi ) Remark 52 Noe ha he pace A = l q n 1/2 1/q 1 + log n) α), B = l n 1/2 1 + log n α) are no comparable Indeed, ake any N N and conider he equence x = x n ) defined by { n x n = 1/q 1/2 1 + log n) α for n N, 0 ele Then x A = N n=1 1 = N 1/q bu x B = max n1 + log n) = N 1/q 1 + log N 1 n N So A i no coninuouly embedded in B On he oher hand, ake he equence y = y n ) defined by y n = n 1/2 1 + log n) α 1/q Clearly y belong o B wih y B = 1, bu i doe no belong o A becaue n 1/2 1/q 1 + log n) α ) q 1 y n = n1 + log n) = n=1 In order o relae he previou reul on limiing inerpolaion pace o approximaion of ochaic inegral, le γ be he andard Gauian meaure on he real line, le h n ) n=1 be he orhonormal bai of L 2 γ ) given by Hermie polynomial and conider he Sobolev pace { 1/2 } D 1,2 γ ) = f = λ n h n L 2 γ ): f D1,2 γ ) = n + 1)λn) 2 < n=1 By real inerpolaion in he ordered couple D 1,2 γ ), L 2 γ )) we obain he Beov pace B 1 θ 2,q γ ) = D 1,2γ ), L 2 γ )) θ,q ee [29,5,30]) Beov pace wih a more general moohne have been alo conidered in he lieraure o deal wih a number of problem in funcion pace ee, for example, [8,31,32,11]) We are inereed here in limiing Beov pace generaed by he 0,α),q; K)-mehod wih α>1/q n=1 n=1 B 1,α 2,q γ ) = D 1,2 γ ), L 2 γ ) ) 0,α),q;K 53) The following reul i a conequence of 53), Theorem 51 and he inerpolaion propery Theorem 31) Corollary 53 Le T : L 2 γ ) l L 2 γ )) be a bounded linear operaor uch ha he rericion o D 1,2 γ ) define a bounded operaor T : D 1,2 γ ) l nl 2 γ )) If1 q and α>1/q, hen he rericion are bounded T : B 1,α 2,q γ ) l q n 1/2 1/q 1 + log n) α L 2 γ ) ), T : B 1,α 2,q γ ) l n 1/2 1 + log n α L 2 γ ) )

26 F Cobo, T Kühn / Journal of Funcional Analyi ) Corollary 53 allow u o complemen he reul by C Gei, S Gei and M Hujo [19,20] on approximaion of ochaic inegral uing deerminiic equidian ne of cardinaliy n + 1 They howed, in paricular, ha for f D 1,2 γ ) he opimal approximaion rae n 1/2 i aained, while for f B 1 θ 2, γ ) wih 0 <θ<1 he rae i only n 1/2+θ/2 In he limiing cae θ = 0, Corollary 53 provide addiional informaion Indeed, by our reul and he argumen given in [20, pp ], i follow ha for f B 1,α 2, γ ) wih α>0he approximaion rae i n 1/2 1 + log n) α, o he opimal rae n 1/2 i achieved up o a logarihmic facor Reference [1] I Ahmed, DE Edmun, WD Evan, GE Karadzhov, Reieraion heorem for he K-inerpolaion mehod in limiing cae, Mah Nachr ) [2] WO Amrein, A Boue de Monvel, V Georgecu, C 0 -Group, Commuaor Meho and Specral Theory of N- Body Hamilonian, Progr Mah, vol 135, Birkhäuer, Bael, 1996 [3] C Benne, K Rudnick, On Lorenz Zygmund pace, Dieraione Mah ) 1 67 [4] C Benne, R Sharpley, Inerpolaion of Operaor, Academic Pre, Boon, 1988 [5] J Bergh, J Löfröm, Inerpolaion Space An Inroducion, Springer, Berlin, 1976 [6] YuA Brudnyĭ, NYa Krugljak, Inerpolaion Funcor and Inerpolaion Space, vol 1, Norh-Holland, Amerdam, 1991 [7] PL Buzer, H Beren, Semi-Group of Operaor and Approximaion, Springer, New York, 1967 [8] F Cobo, DL Fernandez, Hardy Sobolev pace and Beov pace wih a funcion parameer, in: Funcion Space and Applicaion, in: Lecure Noe in Mah, vol 1302, Springer, Berlin, 1988, pp [9] F Cobo, LM Fernández-Cabrera, T Kühn, T Ullrich, On an exreme cla of real inerpolaion pace, J Func Anal ) [10] F Cobo, LM Fernández-Cabrera, M Mayło, Abrac limi J -pace, J London Mah Soc 2) ) [11] F Cobo, T Kühn, Approximaion and enropy number in Beov pace of generalized moohne, J Approx Theory ) [12] A Conne, Noncommuaive Geomery, Academic Pre, San Diego, 1994 [13] RYa Dokorkii, Reieraion relaion of he real inerpolaion mehod, Sovie Mah Dokl ) [14] DE Edmun, WD Evan, Hardy Operaor, Funcion Space and Embedding, Springer, Berlin, 2004 [15] WD Evan, B Opic, Real inerpolaion wih logarihmic funcor and reieraion, Canad J Mah ) [16] WD Evan, B Opic, L Pick, Real inerpolaion wih logarihmic funcor, J Inequal Appl ) [17] P Fernández-Marínez, T Signe, Real inerpolaion wih ymmeric pace and lowly varying funcion, Q J Mah 2010), doi:101093/qmah/haq009, in pre [18] S Gei, Privae communicaion, Sepember 2009 [19] C Gei, S Gei, On approximaion of a cla of ochaic inegral and inerpolaion, Soch Soch Rep ) [20] S Gei, M Hujo, Inerpolaion and approximaion in L 2 γ ), J Approx Theory ) [21] A Gogaihvili, B Opic, W Trebel, Limiing reieraion for real inerpolaion wih lowly varying funcion, Mah Nachr ) [22] ME Gomez, M Milman, Exrapolaion pace and almo-everywhere convergence of ingular inegral, J London Mah Soc ) [23] J Guavon, A funcion parameer in connecion wih inerpolaion of Banach pace, Mah Scand ) [24] S Janon, Minimal and maximal meho of inerpolaion, J Func Anal ) [25] M Milman, Exrapolaion and Opimal Decompoiion, Lecure Noe in Mah, vol 1580, Springer, Berlin, 1994 [26] B Opic, L Pick, On generalized Lorenz Zygmund pace, Mah Inequal Appl ) [27] J Peere, A Theory of Inerpolaion of Normed Space, Noa Ma, vol 39, In Ma Pura Apl, Rio de Janeiro, 1968

27 3722 F Cobo, T Kühn / Journal of Funcional Analyi ) [28] L-E Peron, Inerpolaion wih a parameer funcion, Mah Scand ) [29] H Triebel, Inerpolaion Theory, Funcion Space, Differenial Operaor, Norh-Holland, Amerdam, 1978 [30] H Triebel, Theory of Funcion Space, Birkhäuer, Bael, 1983 [31] H Triebel, The Srucure of Funcion, Birkhäuer, Bael, 2001 [32] H Triebel, Theory of Funcion Space III, Birkhäuer, Bael, 2006

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Annales Academiæ Scieniarum Fennicæ Mahemaica Volumen 31, 2006, 39 46 CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR Joaquim Marín and Javier

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points

On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points J. Mah. Anal. Appl. 322 26) 97 6 www.elevier.com/locae/jmaa On cerain ubclae o cloe-o-convex and quai-convex uncion wih repec o -ymmeric poin Zhi-Gang Wang, Chun-Yi Gao, Shao-Mou Yuan College o Mahemaic

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 12, Page 3783 3793 S 0002-9939(03)06940-5 Aricle elecronically publihed on February 28, 2003 GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES Communicaion on Sochaic Analyi Vol. 5, No. 1 211 121-133 Serial Publicaion www.erialpublicaion.com ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES TERHI KAARAKKA AND PAAVO SALMINEN Abrac. In hi paper we udy

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

Buckling of a structure means failure due to excessive displacements (loss of structural stiffness), and/or

Buckling of a structure means failure due to excessive displacements (loss of structural stiffness), and/or Buckling Buckling of a rucure mean failure due o exceive diplacemen (lo of rucural iffne), and/or lo of abiliy of an equilibrium configuraion of he rucure The rule of humb i ha buckling i conidered a mode

More information

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła Inroducion Upper Bound on Synacic Complexiy of Suffix-Free Language Univeriy of Wrocław, Poland Join work wih Januz Brzozowki Univeriy of Waerloo, Canada DCFS, 25.06.2015 Abrac Inroducion Sae and ynacic

More information

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques Algorihm Deign Technique CS : Nework Flow Dan Sheldon April, reedy Divide and Conquer Dynamic Programming Nework Flow Comparion Nework Flow Previou opic: deign echnique reedy Divide and Conquer Dynamic

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

T-Rough Fuzzy Subgroups of Groups

T-Rough Fuzzy Subgroups of Groups Journal of mahemaic and compuer cience 12 (2014), 186-195 T-Rough Fuzzy Subgroup of Group Ehagh Hoeinpour Deparmen of Mahemaic, Sari Branch, Ilamic Azad Univeriy, Sari, Iran. hoienpor_a51@yahoo.com Aricle

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Pathwise description of dynamic pitchfork bifurcations with additive noise

Pathwise description of dynamic pitchfork bifurcations with additive noise Pahwie decripion of dynamic pichfork bifurcaion wih addiive noie Nil Berglund and Barbara Genz Abrac The low drif (wih peed ) of a parameer hrough a pichfork bifurcaion poin, known a he dynamic pichfork

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract Waiing Time Aympoic for Time Varying Mulierver ueue wih Abonmen Rerial A. Melbaum Technion Iniue Haifa, 3 ISRAEL avim@x.echnion.ac.il M. I. Reiman Bell Lab, Lucen Technologie Murray Hill, NJ 7974 U.S.A.

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5 Mah 225-4 Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie: Recall, The Laplace

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

NEUTRON DIFFUSION THEORY

NEUTRON DIFFUSION THEORY NEUTRON DIFFUSION THEORY M. Ragheb 4//7. INTRODUCTION The diffuion heory model of neuron ranpor play a crucial role in reacor heory ince i i imple enough o allow cienific inigh, and i i ufficienly realiic

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

Endpoint Strichartz estimates

Endpoint Strichartz estimates Endpoin Sricharz esimaes Markus Keel and Terence Tao (Amer. J. Mah. 10 (1998) 955 980) Presener : Nobu Kishimoo (Kyoo Universiy) 013 Paricipaing School in Analysis of PDE 013/8/6 30, Jeju 1 Absrac of he

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Heat semigroup and singular PDEs

Heat semigroup and singular PDEs Hea emigroup and ingular PDE I. BAILLEUL 1 and F. BERNICOT wih an Appendix by F. Bernico & D. Frey Abrac. We provide in hi work a emigroup approach o he udy of ingular PDE, in he line of he paraconrolled

More information

On the goodness of t of Kirk s formula for spread option prices

On the goodness of t of Kirk s formula for spread option prices On he goodne of of Kirk formula for pread opion price Elia Alò Dp. d Economia i Emprea Univeria Pompeu Fabra c/ramon ria Farga, 5-7 08005 Barcelona, Spain Jorge A. León y Conrol Auomáico CINVESAV-IPN Aparado

More information

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005 CS 473G Lecure 1: Max-Flow Algorihm and Applicaion Fall 200 1 Max-Flow Algorihm and Applicaion (November 1) 1.1 Recap Fix a direced graph G = (V, E) ha doe no conain boh an edge u v and i reveral v u,

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Characterization of interpolation between Grand, small or classical Lebesgue spaces

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Characterization of interpolation between Grand, small or classical Lebesgue spaces INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Characerizaion of inerolaion beween Grand, mall or claical Lebegue ace Albero Fiorenza Maria Roaria Formica Amiran Gogaihvili Tengiz Koaliani Jean

More information

Classification of 3-Dimensional Complex Diassociative Algebras

Classification of 3-Dimensional Complex Diassociative Algebras Malayian Journal of Mahemaical Science 4 () 41-54 (010) Claificaion of -Dimenional Complex Diaociaive Algebra 1 Irom M. Rihiboev, Iamiddin S. Rahimov and Wiriany Bari 1,, Iniue for Mahemaical Reearch,,

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

Lower and Upper Approximation of Fuzzy Ideals in a Semiring nernaional Journal of Scienific & Engineering eearch, Volume 3, ue, January-0 SSN 9-558 Lower and Upper Approximaion of Fuzzy deal in a Semiring G Senhil Kumar, V Selvan Abrac n hi paper, we inroduce he

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

Macroeconomics 1. Ali Shourideh. Final Exam

Macroeconomics 1. Ali Shourideh. Final Exam 4780 - Macroeconomic 1 Ali Shourideh Final Exam Problem 1. A Model of On-he-Job Search Conider he following verion of he McCall earch model ha allow for on-he-job-earch. In paricular, uppoe ha ime i coninuou

More information

A NOTE ON EXTREME CASES OF SOBOLEV EMBEDDINGS. Anisotropic spaces, Embeddings, Sobolev spaces

A NOTE ON EXTREME CASES OF SOBOLEV EMBEDDINGS. Anisotropic spaces, Embeddings, Sobolev spaces A NOTE ON EXTREME CASES OF SOBOLEV EMBEDDINGS F.J. PÉREZ Absrac. We sudy he spaces of funcions on R n for which he generalized parial derivaives D r k k f exis and belong o differen Lorenz spaces L p k,s

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

Research Article An Upper Bound on the Critical Value β Involved in the Blasius Problem

Research Article An Upper Bound on the Critical Value β Involved in the Blasius Problem Hindawi Publihing Corporaion Journal of Inequaliie and Applicaion Volume 2010, Aricle ID 960365, 6 page doi:10.1155/2010/960365 Reearch Aricle An Upper Bound on he Criical Value Involved in he Blaiu Problem

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Average Case Lower Bounds for Monotone Switching Networks

Average Case Lower Bounds for Monotone Switching Networks Average Cae Lower Bound for Monoone Swiching Nework Yuval Filmu, Toniann Piai, Rober Robere, Sephen Cook Deparmen of Compuer Science Univeriy of Torono Monoone Compuaion (Refreher) Monoone circui were

More information

A combined variational-topological approach for dispersion-managed solitons in optical fibers

A combined variational-topological approach for dispersion-managed solitons in optical fibers Z. Angew. Mah. Phy. c 2 Springer Bael AG DOI.7/33--84- Zeichrif für angewande Mahemaik und Phyik ZAMP A combined variaional-opological approach for diperion-managed olion in opical fiber Rober Hakl and

More information