Radiometry and Photometry

Size: px
Start display at page:

Download "Radiometry and Photometry"

Transcription

1 Radiometry and Photometry Measuring spatial properties of light Radiant power Radiant intensity Irradiance Inverse square law and cosine law Radiance Radiant exitance (radiosity) From London and Upton Goal is to perform lighting calculations in the physically correct way

2 Radiant Energy and Power Power: Watts (radiometry) Φ vs. Lumens (photometry) Spectral efficacy Energy efficiency P o w e r Heat Radio Infra- Red Ultra- Violet X-Rays IR R G B UV Gamma R a y s Cosmic R a y s Wavelength (NM) Energy: Joules vs. Talbot Exposure Film response Skin - sunburn Photometric luminance Y = V( λ) L( λ) dλ

3 Radiant Intensity

4 Radiant Intensity Definition: The radiant (luminous) intensity is the power per unit solid angle emanating from a point source. I( ω) dφ dω! W "! lm " # = cd = candela % sr $ & # % sr $ &

5 Angles and Solid Angles Angle l = r circle has 2 π radians Solid angle Ω = A R sphere has 4 π steradians 2

6 Differential Solid Angles r sin dφ r d da = ( r d )( r sin dφ ) = r 2 sin d dφ φ

7 Differential Solid Angles r sin dφ r d da = ( r d )( r sin dφ ) = r 2 sin d dφ φ dω da = = sin d dφ 2 r

8 Differential Solid Angles r sin dω = sin d dφ dφ φ r d Ω = = = S 2 π 2π π 1 0 = 4π dω sin d dφ d cos dφ

9 Isotropic Point Source Sphere 2 S Φ = S 2 = 4π I I dω I = Φ 4π

10 Warn s Spotlight ω! Â! I ( ω) = cos s = ( ω Aˆ ) s

11 Warn s Spotlight ω! Â! I ( ω) = cos s = ( ω Aˆ ) s 2π 1 Φ = 0 0 I( ω) d cos dϕ

12 Warn s Spotlight ω! Â! I ( ω) = cos s = ( ω Aˆ ) s 2π 1 1 s 2π Φ = I( ω) d cos dϕ = 2π cos d cos = s

13 Warn s Spotlight ω! Â! I ( ω) = cos s = ( ω Aˆ ) s 2π 1 1 s 2π Φ = I( ω) d cos dϕ = 2π cos d cos = s s + 1 I( ω) = Φ cos 2π s

14 Light Source Goniometric Diagrams

15 Irradiance

16 Irradiance Definition: The irradiance (illuminance) is the power per unit area incident on a surface. dφ E( x) i da! W "! lm " # = 2 2 lux % m $ & # % m $ & Sometimes referred to as the radiant (luminous) incidence.

17 Typical Values of Illuminance [lm/m 2 ] Sunlight plus skylight 100,000 lux Sunlight plus skylight (overcast) 10,000 Interior near window (daylight) 1,000 Artificial light (minimum) 100 Moonlight (full) 0.02 Starlight

18 Beam Power in Terms of Irradiance E = Φ A

19 Beam Power Falling on the Surface

20 Projected Area A

21 Lambert s Cosine Law A

22 Irradiance: Isotropic Point Source h I = Φ 4π r

23 Irradiance: Isotropic Point Source dω h I = Φ 4π r da dφ = I dω

24 Irradiance: Isotropic Point Source dω h I = Φ 4π r da dω = cos r 2 da

25 Irradiance: Isotropic Point Source dω h I = Φ 4π r da I dω = Φ 4π cos r 2 da

26 Irradiance: Isotropic Point Source dω h I = Φ 4π r da Φ cos I dω = da = E da 4π r 2 E = Φ 4π cos r 2

27 The Invention of Photometry Bouguer s classic experiment Compare a light source and a candle Move until they both appear equally bright Intensity is proportional to ratio of distances squared Definition of a candela Originally a standard candle Currently 550 nm laser with 1/683 W/sr 1 of 6 fundamental SI units

28 Radiance

29 Area Lights Surface Radiance Definition: The surface radiance (luminance) is the intensity per unit area leaving a surface L( x, ω) dω L( x, ω) = di( x, ω) da d 2 Φ( x, ω) dωda da! W "! cd lm " # $ # = = nit $ % sr m & % m sr m &

30 Typical Values of Luminance [cd/m 2 ] Surface of the sun 2,000,000,000 nit Sunlight clouds 30,000 Clear sky 3,000 Overcast sky 300 Moon 0.03

31 Directional Power Leaving a Surface 2 d Φ ( x, ω) = L ( x, ω)cosdadω o o L (, o x ω dω ) da Same da for all directions

32 Radiant Exitance (Radiosity)

33 Radiant Exitance Definition: The radiant (luminous) exitance is the energy per unit area leaving a surface. dφ M( x) o da! W "! lm " = lux # m 2 $ # m 2 $ % & % & In computer graphics, this quantity is usually referred to as the radiosity (B)

34 Area Light Source 2 d Φ ( x, ω) = L ( x, ω)cosdadω o o dω L (, o x ω ) da

35 Area Light Source 2 d Φ ( x, ω) dm ( x, ω) = o = L ( x, ω)cos dω o da dω L (, o x ω ) da

36 Area Light Source dm ( x, ω) = L ( x, ω)cos dω o dω L (, o x ω ) da

37 Area Light Source M = dm ( x, ω) = L ( x, ω)cos dω o H 2 2 H dω L (, o x ω ) H 2 Hemisphere da

38 Uniform Diffuse Emitter M = L cos dω H 2 o L ( x, ω ) = L o o = L o H 2 cos dω dω Uniform means Lo is not a function of direction da

39 Projected Solid Angle Ω! cos dω Ω dω cos dω

40 Projected Solid Angle Ω! cos dω Ω dω cos dω Ω! = cos dω = H 2 π

41 Uniform Diffuse Emitter M = L cos dω H 2 o = = L o πl H o 2 cos dω M dω L o L o = M π da

42 Radiometry and Photometry Summary

43 Radiometric and Photometric Terms Physics Radiometry Photometry Energy Radiant Energy Luminous Energy Flux (Power) Radiant Power Luminous Power Flux Density Irradiance Radiosity Illuminance Luminosity Angular Flux Density Radiance Luminance Intensity Radiant Intensity Luminous Intensity

44 Photometric Units Photometry Units MKS CGS British Luminous Energy Luminous Power Illuminance Talbot Lumen Lux Phot Footcandle Luminosity Luminance Nit Stilb Apostilb, Blondel Lambert Footlambert Luminous Intensity Candela (Candle, Candlepower, Carcel, Hefner) Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?, James Kajiya

Radiometry and Photometry

Radiometry and Photometry Light Visible electromagnetic radiation Power spectrum Polarization Photon (quantum effects) Wave (interference, diffraction) From London and Upton Radiometry and Photometry Measuring spatial properties

More information

Light Sources and Illumination. Blackbody. Page 1

Light Sources and Illumination. Blackbody. Page 1 Light Sources and Illumination Properties of light sources Power Spectrum Radiant and luminous intensity Directional distribution goniometric diagram Shape Illumination Irradiance and illuminance Area

More information

Rays. CS348B Lecture 4 Pat Hanrahan, 2004

Rays. CS348B Lecture 4 Pat Hanrahan, 2004 Page 1 Light Visible electomagnetic adiation Powe spectum 1 10 10 4 10 6 10 8 10 10 10 1 10 14 10 16 10 18 10 0 10 10 4 10 6 Powe Heat Radio Ulta- X-Rays Gamma Cosmic Infa- Red Violet Rays Rays 10 16 10

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry CMPT 461/761 Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically Based Rendering

More information

VI. Terminology for Display

VI. Terminology for Display Special Topics in Display Technology 1 st semester, 2015 VI. Terminology for Display * Reference books: [Light Measurement Handbook] (http://www.intl-light.com) [ 응용광학 ] ( 두양사 ) 21 장 Radiometry and Photometry

More information

Section 22. Radiative Transfer

Section 22. Radiative Transfer OPTI-01/0 Geometrical and Instrumental Optics Copyright 018 John E. Greivenkamp -1 Section Radiative Transfer Radiometry Radiometry characterizes the propagation of radiant energy through an optical system.

More information

Section 10. Radiative Transfer

Section 10. Radiative Transfer Section 10 Radiative Transfer 10-1 OPTI-50 Optical Design and Instrumentation I Copyright 017 John E. Greivenkamp Radiometry Radiometry characterizes the propagation of radiant energy through an optical

More information

Key objectives in Lighting design

Key objectives in Lighting design Key objectives in Lighting design Visual performance Physiological conditions Visual quality no strong "contrasts" good "color rendering" adequate "light levels" no "disturbing reflections" no direct "glare"

More information

Mathieu Hébert, Thierry Lépine

Mathieu Hébert, Thierry Lépine 1 Introduction to Radiometry Mathieu Hébert, Thierry Lépine Program 2 Radiometry and Color science IOGS CIMET MINASP 3DMT Introduction to radiometry Advanced radiometry (2 nd semester) x x x x x o o Color

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Light. Topics. Page 1. Visible electromagnetic radiation Power spectrum. Polarization Photon (quantum effects) Wave (interference, diffraction)

Light. Topics. Page 1. Visible electromagnetic radiation Power spectrum. Polarization Photon (quantum effects) Wave (interference, diffraction) Light Visible electmagnetic adiatin Pwe spectum 1 10 10 4 10 6 10 8 10 10 10 1 10 14 10 16 10 18 10 0 10 10 4 10 6 Pwe Heat Radi Ulta- X-Rays Gamma Csmic Infa- Red Vilet Rays Rays 10 16 10 14 10 1 10 10

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 3 Introductory Photometry Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 017 Sayfa 1 Introduction

More information

Radiometry. Energy & Power

Radiometry. Energy & Power Radiometry Radiometry is the measurement of optical radiation, corresponding to wavelengths between 0.01 and 1000 μm, and includes the regions commonly called the ultraviolet, the visible and the infrared.

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

Describing the Potency of Light

Describing the Potency of Light Describing the Potency of Light Douglas A. Kerr, P.E. (Ret.) Issue 3 September 19, 2013 INTRODUCTION In many types of technical work it is necessary to quantify the potency 1 of light. The matter is complicated

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

LUMINOUS MEASUREMENTS

LUMINOUS MEASUREMENTS Chapter 5. LUMINOUS MEASUREMENTS 5.. Luminous flux (luminous output)............................ 47 5.2. Amount of light (luminous energy)........................... 48 5.3. Luminous intensity.......................................

More information

Describing the Strength of Visible Light

Describing the Strength of Visible Light Describing the Strength of Visible Light Douglas A. Kerr, P.E. Issue 2 August 31, 2003 INTRODUCTION In many types of technical work it is necessary to describe the strength 1 of visible light. The matter

More information

Radiometry, photometry, measuring color

Radiometry, photometry, measuring color Radiometry, photometry, measuring color Lecture notes are done by Géza Várady, based on the lecture notes of Prof. János Schanda varady.geza@mik.pte.hu University of Pécs, Faculty of Engineering and Information

More information

Introduction to Computer Vision Radiometry

Introduction to Computer Vision Radiometry Radiometry Image: two-dimensional array of 'brightness' values. Geometry: where in an image a point will project. Radiometry: what the brightness of the point will be. Brightness: informal notion used

More information

A Guide to Integrating Sphere Theory and Applications

A Guide to Integrating Sphere Theory and Applications A Guide to Integrating Sphere Theory and Applications Leadership in Reflectance Technology T E C H G U I D E TABLE OF CONTENTS 1.0 Integrating Sphere Theory...2-5 1.1 Radiation Exchange Within a Spherical

More information

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre A*STAR Seminar on LED and Solid State Lighting Standards and Technologies available at NMC for LED Measurements 05 August 2011 LIU Yuanjie National Metrology Centre Outline NMC overview Basic optical quantities

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION ELECTROMAGNETIC RADIATION 1. Types of electromagnetic radiation Use different resources to sort the types of electromagnetic radiation according to rising wavelength, find sources, uses and mention if

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Optics for Engineers Chapter 12

Optics for Engineers Chapter 12 Optics for Engineers Chapter 12 Charles A. DiMarzio Northeastern University Apr. 214 Radiometry Power is Proportional to Area of Aperture Stop Area of Field Stop Brightness of the Source (Radiance) Apr.

More information

ASSESSMENT OF NON-COHERENT LIGHT SOURCES

ASSESSMENT OF NON-COHERENT LIGHT SOURCES ASSESSMENT OF NON-COHERENT LIGHT SOURCES David Egan Snr Team Leader Laser Science Support Orion Laser Facility AWE, UK Page 1 Introduction Laser safety is accepted However there is a certain reticence

More information

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis Radiometry Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput Radiometry Terms Note: Power is sometimes in units of Lumens. This is the same as power in watts (J/s) except

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL SYSTEMS LIGHT http://map.gsfc.nasa.gov/media/ Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 study carrel in Phillips Exeter Library; a celebration of light and of material (by L. Kahn) Kahn on Light

More information

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs General Information Explanation of Technical Data Vishay light emitting diodes and displays are generally designated in accordance with the Vishay designation system: TL... = Light emitting diode TD...

More information

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. Preface p. xiii Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. 4 Fundamental Definitions p. 7 Lambertian Radiators

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Lighting fundamentals

Lighting fundamentals Lighting fundamentals About light and photometrics Generation of light Human vision Black body Colour Basic principles of lighting Light sources Light Vision Colour What is light? Light is electromagnetic

More information

Photobiological Safety of Luminaires: Refining the New Approach

Photobiological Safety of Luminaires: Refining the New Approach Photobiological Safety of Luminaires: Refining the New Approach Leslie Lyons Bentham Instruments Limited Reading, UK llyons@bentham.co.uk We are all familiar with the visual characteristics of lighting

More information

TECHNICAL NOTE. Relating Photochemical and Photobiological Quantities to Photometric Quantities

TECHNICAL NOTE. Relating Photochemical and Photobiological Quantities to Photometric Quantities TECHNICAL NOTE Relating Photochemical and Photobiological Quantities to Photometric Quantities CIE TN 002:2014 CIE Technical Notes (TN) are short technical papers summarizing information of fundamental

More information

Facts of light. Sanjay Joshi. PDF version by Baldasso, L. F.

Facts of light. Sanjay Joshi. PDF version by Baldasso, L. F. Facts of light Sanjay Joshi PDF version by Baldasso, L. F. Introduction: Part I: What is Light? The choice of lighting is one the most important decisions to make when setting up a reef tank. The light

More information

White Paper Luminance & Illuminance. Brief explanation of photometry for the application of tunnel lighting control

White Paper Luminance & Illuminance. Brief explanation of photometry for the application of tunnel lighting control White Paper Luminance & Illuminance Brief explanation of photometry for the application of tunnel lighting control 1 General This document gives a brief explanation of photometry, the basics of tunnel

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING - II Dr. A. Bhattacharya The Radiation Framework The information about features on the Earth s surface using RS depends on measuring energy emanating from the

More information

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS BOGDAN GABRIEL LUCIAN, ENG. S. C. UZINA MECANICA SADU S. A. e-mail: lucianbog@yahoo.com ABSTRACT: The study of the evolution of the luminous

More information

Introduction to Colorimetry

Introduction to Colorimetry IES NY Issues in Color Seminar February 26, 2011 Introduction to Colorimetry Jean Paul Freyssinier Lighting Research Center, Rensselaer Polytechnic Institute Troy, New York, U.S.A. sponsored by www.lrc.rpi.edu/programs/solidstate/assist

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS 12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS TA: NIRAJ INAMDAR 1) Radiation Terminology. We are asked to define a number of standard terms. See also Table 1. Intensity: The amount of energy

More information

The ANSI PH Specification And the Myth of the 18% Light Meter Calibration

The ANSI PH Specification And the Myth of the 18% Light Meter Calibration The ANSI PH3.49-1971 Specification And the Myth of the 18% Light Meter Calibration David R. Spielman Brooks Institute of Photography May, 2001 Table of Contents 1.1 Introduction PG-3 2.0 Light Meter Calibration

More information

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE

SI UNITS AND SOME CONVERSION FACTORS. A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE SI UNITS AND SOME CONVERSION FACTORS A. Woldai, B. Makkawi, and D. Al-Gobaisi International Center for Water and Energy Systems, Abu Dhabi, UAE Keywords : SI units, Dynamic viscosity, Surface tension,

More information

Module 1. Illumination Engineering Basics. Version 2 EE IIT, Kharagpur 1

Module 1. Illumination Engineering Basics. Version 2 EE IIT, Kharagpur 1 Module 1 Illumination Engineering Basics Version 2 EE IIT, Kharagpur 1 Lesson 2 Radiation Version 2 EE IIT, Kharagpur 2 Instructional objectives 1. State the Visible Range of light. 2. State the range

More information

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 Jensen, Jensen, Ways of of Energy Transfer Energy is is the the ability to to do do work. In In the the process of of doing work, energy

More information

How to evaluate daylight. Initiated by the VELUX Group

How to evaluate daylight. Initiated by the VELUX Group Initiated by the VELUX Group Daylight in buildings Daylight in buildings is composed of a mix direct sunlight, diffuse skylight, and light reflected from the ground and surrounding elements. Direct sunlight

More information

INFRAMET. 2.1 Basic laws

INFRAMET. 2.1 Basic laws tel: 048 60844873, fax 48 6668780. Basic laws.. Planck law All objects above the temperature of absolute zero emit thermal radiation due to thermal motion of the atoms and the molecules. The hotter they

More information

LED Measurement Instrumentation

LED Measurement Instrumentation R.Young LED Measurement Instrumentation Optronic Laboratories, Inc. ABSTRACT The production and use of LEDs is increasing rapidly. They are being used in applications previously occupied by traditional

More information

Remote sensing of planetary surfaces

Remote sensing of planetary surfaces Remote sensing of planetary surfaces Urs Mall, Max-Planck Institut fuer Aeronomie 18.11.2003 What is remote sensing? Intuitive definition We perceive our surrounding world through our five senses Sight

More information

On Skylight and Aerial Perspective. A.J. Preetham ATI Research

On Skylight and Aerial Perspective. A.J. Preetham ATI Research On Skylight and Aerial Perspective A.J. Preetham ATI Research (preetham@ati.com) Introduction Outline Atmosphere Skylight Simulation models Analytic models Aerial Perspective Scattering using graphics

More information

Chapter 5. Daylighting

Chapter 5. Daylighting Chapter 5. Daylighting 5.1. History of Daylighting The history of daylighting and the history of architecture were one. The major structural changes in buildings reflected the goal of increasing the amount

More information

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision After the mid-17th century, scientists were divided into two sides. One side, including Isaac Newton, believed in the

More information

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors.

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors. CHAPTER 0 Light and opto-semiconductors - -2 Light Opto-semiconductors P. 0 P. 3 2 Opto-semiconductor lineup P. 5 3 Manufacturing process of opto-semiconductors P. 6 9 CHAPTER 0. Light and opto-semiconductors

More information

AT622 Section 2 Elementary Concepts of Radiometry

AT622 Section 2 Elementary Concepts of Radiometry AT6 Section Elementary Concepts of Radiometry The object of this section is to introduce the student to two radiometric concepts intensity (radiance) and flux (irradiance). These concepts are largely geometrical

More information

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums Light E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums 1) requires no medium but can travel through them 2) is energy

More information

FluxGage - A Photometric Test System for LED Luminaires Based on Solar Panels

FluxGage - A Photometric Test System for LED Luminaires Based on Solar Panels FluxGage - A Photometric Test System for LED Luminaires Based on Solar Panels Efi Rotem, Raphael Cohen, Shimon Elstein, Daniel Sebbag, Ephraim Greenfield Abstract We present a novel photometric test system

More information

DAYLIGHTING MEASURES FOR ECOHOUSING

DAYLIGHTING MEASURES FOR ECOHOUSING DAYLIGHTING MEASURES FOR ECOHOUSING Poorva Keskar Head Of Department Environmental Planning and Architecture BNCA,Pune Eco Housing & daylight Daylight Basics Sunlight, in the broad sense, is the total

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

Definition: The radiant (luminous) intensity is the power per unit solid angle from a point. CS348B Lecture 5 Pat Hanrahan, Spring 2000

Definition: The radiant (luminous) intensity is the power per unit solid angle from a point. CS348B Lecture 5 Pat Hanrahan, Spring 2000 Radant and Lumnous Intensty Defnton: The adant (lumnous) ntensty s the powe pe unt sold angle fom a pont. dφ I(ω) Φ S I( ω) W candela cd s lm s The Inventon of Photomety Bougue s Classc expement Compae

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

2. Lighting Terms. Contents

2. Lighting Terms. Contents Contents 2. Lighting Terms 2.1 Vision 2.2 Spectral sensitivity of the eye 2.3 Radiometric quantities 2.4 Photometric quantities 2.5 Energy and light efficiency 2.6 Colour coordinates 2.7 Colour temperature

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Photogrammetry: Definition & applications What are we trying to do? Data acquisition systems 3-D viewing of 2-D imagery Automation (matching problem) Necessary tools: Image formation

More information

11/5/12 Richard R. Auelmann. Low Light Imaging

11/5/12 Richard R. Auelmann. Low Light Imaging Low Light Imaging Nearly all Earth imaging from space is performed in daylight using reflected sunlight illumination in the visible near infrared (VNIR) band. Night imaging, if at all available, is performed

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the system absorbs the unwanted heat and pumps it through

More information

OSHNET SCHOOL OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH

OSHNET SCHOOL OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH Module 1.2 Optical Radiation RICCARDO DI LIBERTO 1 Occupational Health & Safety NETworking in

More information

Appendix A: Photometric Units

Appendix A: Photometric Units Appendix A: Photometric Units A casual reading of manufacturers' handbooks reveals that the light output of various lasers is quoted in watts (W), the conventional measure of electrical power, while the

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

Radiometry HW Problems 1

Radiometry HW Problems 1 Emmett J. Ientilucci, Ph.D. Digital Imaging and Remote Sensing Laboratory Rochester Institute of Technology March 7, 007 Radiometry HW Problems 1 Problem 1. Your night light has a radiant flux of 10 watts,

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Islamic University of Gaza - Palestine. Department of Industrial Engineering

Islamic University of Gaza - Palestine. Department of Industrial Engineering Department of Industrial Engineering Ergonomics Human Machine Work Environment Greatest Goal: Humanization of Work Design with E & E : Ease and Efficiency The Basics of Ergonomics Core courses (The Three

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl350u1

LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl350u1 LM-79-08 Test Report For Simkar Corporation (Brand Name: ) LED Luminaire Model name(s):salho2xl350u1 Test & Report By: Garman Mo Engineer: Garman Mo Date: Feb.20,2017 Review By: Manager: Tommy Liang Note:

More information

CERTIFIED TEST REPORT No

CERTIFIED TEST REPORT No Lighting Sciences www.lightingsciences.com Lighting Sciences Inc. 7826 E. Evans Road Scottsdale, Arizona 85260 USA Tel: 480-991-9260 Fax: 480-991-0375 INTENSITY(CANDLEPOWER) SUMMARY ANGLE MEAN CP LUMENS

More information

LIGHT CALCULATIONS AND MEASUREMENTS

LIGHT CALCULATIONS AND MEASUREMENTS LIGHT CALCULATIONS AND MEASUREMENTS PHILIPS TECHNICAL LIBRARY LIGHT CALCULATIONS AND MEASUREMENTS An introduction to the system of quantities and units in light-technology and to photometry H.A.E. KEITZ

More information

UNIT & DIMENSIONS AND MEASUREMENT STRAIGHT LINES

UNIT & DIMENSIONS AND MEASUREMENT STRAIGHT LINES UNIT & DIMENSIONS AND MEASUREMENT STRAIGHT LINES PHYSICAL QUANTITIES The quantities which can be measured by an instrument and by means of which we can describe the laws of physics are called physical

More information

SI base units. SI : Système International d'unités (International System of Units)

SI base units. SI : Système International d'unités (International System of Units) 2 Units SI base units SI : Système International d'unités (International System of Units) Unite name (symbol) Definition established mass kilogram (kg) The mass of the International Prototype of the Kilogram

More information

NVLAP LAB CODE LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl5s50u1

NVLAP LAB CODE LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl5s50u1 LM-79-08 Test Report For Simkar Corporation (Brand Name: ) LED Luminaire Model name(s):salho2xl5s50u1 Test & Report By: Garman Mo Engineer: Garman Mo Date: Dec.05,2016 Review By: Manager: Tommy Liang Note:

More information

Optical Theory Basics - 1 Radiative transfer

Optical Theory Basics - 1 Radiative transfer Optical Theory Basics - 1 Radiative transfer Jose Moreno 3 September 2007, Lecture D1Lb1 OPTICAL THEORY-FUNDAMENTALS (1) Radiation laws: definitions and nomenclature Sources of radiation in natural environment

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

NVLAP LAB CODE LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl4s50u1

NVLAP LAB CODE LM Test Report. For. Simkar Corporation. (Brand Name: ) LED Luminaire. Model name(s):salho2xl4s50u1 LM-79-08 Test Report For Simkar Corporation (Brand Name: ) LED Luminaire Model name(s):salho2xl4s50u1 Test & Report By: Garman Mo Engineer: Garman Mo Date: Mar. 01,2017 Review By: Manager: Tommy Liang

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below)

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below) CALIFORNIA MECHANICAL CODE MATRIX ADOPTION TABLE APPENDIX D UNIT CONVERSION TABLES (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state agency authority

More information

Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi

Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 50 Daylighting (contd.) So, we will look into

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Distributed Real-Time Control Systems. Lecture 11 Distributed Control Concepts and Models

Distributed Real-Time Control Systems. Lecture 11 Distributed Control Concepts and Models Distributed Real-Time Control Systems Lecture 11 Distributed Control Concepts and Models 1 Distributed Estimationand Control Distribute computation, sensing and control between the different agents of

More information

TECHNICAL GUIDE. Integrating Sphere Radiometry and Photometry

TECHNICAL GUIDE. Integrating Sphere Radiometry and Photometry TECHNICAL GUIDE Integrating Sphere Radiometry and Photometry sales@labsphere.com www.labsphere.com TABLE OF CONTENTS 1.0 Introduction to Sphere Measurements 1 2.0 Terms and Units 2 3.0 The Science of

More information

LED display s effectiveness and success. Photometry and Radiometry. Optical Measurement Systems

LED display s effectiveness and success. Photometry and Radiometry. Optical Measurement Systems A Guide to Human Visual Perception and the Optical Characteristics of LED Displays Application Brief D-004 Introduction Many industrial, commercial, and military systems have LEDs (light emitting diodes)

More information

Lecture 2 Overview of Light in Water

Lecture 2 Overview of Light in Water Lecture 2 Overview of Light in Water Collin Roesler Department of Earth and Oceanographic Science Bowdoin College http://marketingdeviant.com/wp-content/uploads/ 2008/01/underwater-light-beams.jpg 10 July

More information

Lighting Sciences

Lighting Sciences Lighting Sciences www.lightingsciences.com Lighting Sciences Inc. 7826 E. Evans Road Scottsdale, Arizona 85260 USA Tel: 480-991-9260 Fax: 480-991-0375 INTENSITY(CANDLEPOWER) SUMMARY OUTPUT BEAM SIDE LUMENS

More information

Index. Symbols , 143

Index. Symbols , 143 Index Symbols 802.15.4, 143 A Absorption, lenses, 137 AC 277VAC, 101 bridge rectifier, 103 brownout, 102 frequency, 103 Japan, 102 peak voltage, 102 rectification, 103 capacitance, 104 half-wave, 104 safety,

More information

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only.

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. cen54261_ch21.qxd 1/25/4 11:32 AM Page 95 95 Vacuum chamber Hot object Radiation FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. Person 3 C Radiation Air 5 C Fire 9 C FIGURE

More information

LIGHT POLLUTION: Petteri Teikari. Definition, legislation, measurement, modeling and environmental effects.

LIGHT POLLUTION: Petteri Teikari. Definition, legislation, measurement, modeling and environmental effects. B ARCELONA, CATALUNYA SEPTEMBER 19, 2007 LIGHT POLLUTION: Definition, legislation, measurement, modeling and environmental effects Petteri Teikari petteri.teikari@tkk.fi TABLE OF CONTENTS Table of Contents...

More information