Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Size: px
Start display at page:

Download "Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p."

Transcription

1 Preface p. xiii Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. 4 Fundamental Definitions p. 7 Lambertian Radiators and Lambert's Cosine Law p. 13 Radiance, Irradiance, Intensity, and Flux Relationships p. 15 Connection with Electromagnetic Theory p. 20 Polarization p. 22 Photon Flux p. 25 Example Problem 1.1 p. 28 Example Problem 1.2 p. 30 References p. 32 Fundamental Concepts of Photometry p. 33 Light p. 33 Photometric Definitions p. 37 Radiation Luminous Efficacy, K[superscript r], and the V-lambda Function p. 41 Lighting System Luminous Efficacy, K[superscript s] p. 43 Luminance and Brightness p. 45 Luminance and Vision p. 47 Disability Glare p. 50 Discomfort Glare p. 52 Illumination p. 54 Illuminance Selection p. 55 Example Problem 2.1 p. 57 Example Problem 2.2 p. 59 Example Problem 2.3 p. 61 References p. 61 Blackbodies and Other Sources p. 63 Blackbody Radiation p. 63 Planck's Law p. 64 Wien Displacement Law p. 68 Luminous Efficacy of Blackbody Radiation p. 69 Color and Distribution Temperatures p. 71 Emission into an Imperfect Vacuum p. 72 Radiation Exchange p. 73 Experimental Approximation of a Blackbody p. 73 Other Real Sources p. 74 Example Problem 3.1 p. 82 Example Problem 3.2 p. 82

2 Example Problem 3.3 p. 83 Example Problem 3.4 p. 83 Example Problem 3.5 p. 84 References p. 84 Source/Receiver Flux Transfer Calculations p. 87 Introduction p. 87 Geometry and Definitions p. 87 Case 1 p. 90 Case 2 p. 91 Case 3 p. 92 Case 4 p. 93 Case 5 p. 95 Case 6 p. 96 Case 7 p. 98 Monte Carlo Method p. 99 Configuration Factor p. 100 Net Exchange of Radiation p. 102 Summary p. 103 Example Problem 4.1 p. 104 References p. 105 The Invariance of Radiance and the Limits of Optical Concentration p. 107 Introduction p. 107 Radiance is a Field Quantity p. 107 Pencils of Rays p. 108 Elementary Beam of Radiation p. 109 Radiance Invariance p. 111 Radiance Invariance at an Interface p. 112 Radiance Through a Lens p. 114 Radiance in Absorbing and Scattering Media p. 115 Concentrating Radiance Meter p. 116 The Limits of Optical Concentration p. 120 Example Problem 5.1 p. 123 Example Problem 5.2 p. 124 References p. 125 Optical Properties of Materials p. 127 Introduction p. 127 Terminology p. 128 Surface and Interface Optical Properties p. 130 Conductor Optical Properties p. 130 Nonconductor Optical Properties p. 131 Surface Emission Properties p. 132

3 Angular Dependence of Dielectric Optical Properties p. 136 Rough Surfaces p. 141 Bulk Medium Optical Properties p. 142 Properties of Plane Parallel Plates p. 148 Nonscattering Media p. 148 Scattering Media p. 154 Angular Dependence p. 156 Broadband Angle Properties p. 160 Transmittance and Reflectance Equations p. 160 Specular and Diffuse Optical Properties p. 162 Spectral Dependence p. 164 Broadband Spectral Properties p. 165 Spectral Selectivity p. 167 Example Problem 6.1 p. 174 Example Problem 6.2 p. 175 References p. 175 The Detection of Radiation p. 179 Introduction p. 179 Basic Concepts p. 180 Classification of Detectors p. 187 Thermal Detectors p. 187 Photemissive Detectors p. 191 Semiconductor Devices p. 197 Multi-element Detectors, Charge Transfer Devices, and Imagers p. 205 Detector Noise p. 209 Signal Modulation and Radiation Chopping p. 211 Characterization of Detector Performance p. 215 Responsivity, R p. 216 Quantum Efficiency, [eta] p. 216 Noise Equivalent Power, NEP p. 217 Detectivity, D p. 218 Photon Noise-Limited Performance p. 219 Flux Conditioning Prior to the Detector p. 220 Cosine Response Correction p. 221 Photopic Correction p. 224 Spectral Filtering p. 224 Signal Conditioning After the Detector p. 227 Detector Calibration p. 227 Example Detectors and Their Characteristics p. 229 Example Problem 7.1 p. 234 References p. 237

4 Appendix 7A p. 240 Optical Systems p. 243 Introduction p. 243 Optical Axis p. 244 Idealized (Thin) Lens Theory p. 245 Radiance and Irradiance of Images p. 250 Vignetting p. 253 Aberrations p. 254 Spherical Aberration p. 254 Chromatic Aberration p. 257 Distortion p. 258 Coma p. 258 Astigmatism p. 259 Field Curvature p. 261 Correcting Aberrations p. 261 The Diffraction Limit p. 261 Image Quality p. 263 Flux Distribution p. 265 Nonimaging Optical Systems p. 266 Throughput p. 269 Integrating Spheres p. 271 Cosine Correction p. 274 Transmissometers and Reflectometers p. 274 Monochromators p. 280 Spectral Filters p. 280 Scanning Monochromators p. 287 Windows p. 293 Sources p. 294 Goniometers p. 295 Transmissometers/Reflectometers p. 296 Scattering Meters, Nephelometers, Turbidimeters, and Haze Meters p. 296 Example Problem 8.1 p. 297 References p. 300 Radiometers and Photometers p. 303 Introduction p. 303 General Design Factors p. 305 Broadband Irradiance and Radiance Meters p. 306 Restricted Spectral Band Irradiance Meters for the Ultraviolet Through the Infrared p. 310 Illuminance and Luminance Meters p. 311 Spectroradiometers p. 312 Calibration of Radiometers and Photometers p. 314

5 Transfer Standards p. 316 Broadband Irradiance Standard Sources p. 318 Standard Sources for Spectral Irradiance and Spectral Radiance p. 319 Absolute Radiometry p. 322 Standard Illuminance and Luminance Sources p. 326 Radiometer/Photometer Calibration Using Standard Sources p. 327 Spectroradiometer Calibration p. 328 National Standards Laboratories p. 329 Example Problem 9.1 p. 329 Example Problem 9.2 p. 330 References p. 330 Metric Primer and Additional Radiometric and Photometric Quantities and Units p. 333 Introduction p. 333 The SI System of Units p. 334 Basic Metric Principles p. 334 Metric Units for Radiometry and Photometry p. 336 The I-P System of Units p. 336 Photon Flux Units p. 336 Other Quantities and Units p. 338 References p. 340 Basic Concepts of Color Science p. 343 Introduction p. 343 Basic Concepts and Definitions p. 344 Systems of Color Specification p. 349 Munsell Color System p. 349 CIE 1976 (L*a*b*) Color Space p. 352 Tristimulus Colorimetry p. 352 CIE 1931 Color System p. 354 CIE 1964 Supplementary Observer Color System p. 359 CIE 1976 Uniform Color Space p. 359 Color Temperature p. 364 Standard Illuminants and Reflection Colorimetry p. 366 Blackbody Illuminants p. 367 Daylight Illuminants p. 369 Reflection Colorimetry p. 371 Color Rendering Index p. 372 References p. 375 Correspondence Between Finite Elements and the Calculus p. 377 Introduction p. 377 Definition of the Derivative p. 378 Definition of the Integral p. 380

6 Integrals as Sums p. 382 Sums Over Solid Angles p. 383 References p. 387 About the Author p. 389 Index p. 391 Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.

Electro-Optical System. Analysis and Design. A Radiometry Perspective. Cornelius J. Willers SPIE PRESS. Bellingham, Washington USA

Electro-Optical System. Analysis and Design. A Radiometry Perspective. Cornelius J. Willers SPIE PRESS. Bellingham, Washington USA Electro-Optical System Analysis and Design A Radiometry Perspective Cornelius J Willers SPIE PRESS Bellingham, Washington USA Nomenclature xvii Preface xxiii 1 Electro-Optical System Design 1 11 Introduction

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Radiometry and Photometry

Radiometry and Photometry Light Visible electromagnetic radiation Power spectrum Polarization Photon (quantum effects) Wave (interference, diffraction) From London and Upton Radiometry and Photometry Measuring spatial properties

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

Radiometry, photometry, measuring color

Radiometry, photometry, measuring color Radiometry, photometry, measuring color Lecture notes are done by Géza Várady, based on the lecture notes of Prof. János Schanda varady.geza@mik.pte.hu University of Pécs, Faculty of Engineering and Information

More information

COLOR SCIENCE. Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons New York Chichester Brisbane Toronto Singapore

COLOR SCIENCE. Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons New York Chichester Brisbane Toronto Singapore COLOR SCIENCE Concepts and Methods, Quantitative Data and Formulae, 2nd Edition GÜNTER WYSZECKI National Research Council, Ottawa, Ontario, Canada W. S. STILES Richmond, Surrey, England t^- n M 1982 A

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Section 22. Radiative Transfer

Section 22. Radiative Transfer OPTI-01/0 Geometrical and Instrumental Optics Copyright 018 John E. Greivenkamp -1 Section Radiative Transfer Radiometry Radiometry characterizes the propagation of radiant energy through an optical system.

More information

Measurement method for the proficiency testing program

Measurement method for the proficiency testing program APLAC T088 Appendix Measurement method for the proficiency testing program Introductions This measurement method is prepared for use by the APLAC Proficiency Testing Program Photometric measurement of

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

TECHNICAL GUIDE. Integrating Sphere Radiometry and Photometry

TECHNICAL GUIDE. Integrating Sphere Radiometry and Photometry TECHNICAL GUIDE Integrating Sphere Radiometry and Photometry sales@labsphere.com www.labsphere.com TABLE OF CONTENTS 1.0 Introduction to Sphere Measurements 1 2.0 Terms and Units 2 3.0 The Science of

More information

Section 10. Radiative Transfer

Section 10. Radiative Transfer Section 10 Radiative Transfer 10-1 OPTI-50 Optical Design and Instrumentation I Copyright 017 John E. Greivenkamp Radiometry Radiometry characterizes the propagation of radiant energy through an optical

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

INFRAMET. 2.1 Basic laws

INFRAMET. 2.1 Basic laws tel: 048 60844873, fax 48 6668780. Basic laws.. Planck law All objects above the temperature of absolute zero emit thermal radiation due to thermal motion of the atoms and the molecules. The hotter they

More information

LED Measurement Instrumentation

LED Measurement Instrumentation R.Young LED Measurement Instrumentation Optronic Laboratories, Inc. ABSTRACT The production and use of LEDs is increasing rapidly. They are being used in applications previously occupied by traditional

More information

Mathieu Hébert, Thierry Lépine

Mathieu Hébert, Thierry Lépine 1 Introduction to Radiometry Mathieu Hébert, Thierry Lépine Program 2 Radiometry and Color science IOGS CIMET MINASP 3DMT Introduction to radiometry Advanced radiometry (2 nd semester) x x x x x o o Color

More information

Introduction to Colorimetry

Introduction to Colorimetry IES NY Issues in Color Seminar February 26, 2011 Introduction to Colorimetry Jean Paul Freyssinier Lighting Research Center, Rensselaer Polytechnic Institute Troy, New York, U.S.A. sponsored by www.lrc.rpi.edu/programs/solidstate/assist

More information

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis Radiometry Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput Radiometry Terms Note: Power is sometimes in units of Lumens. This is the same as power in watts (J/s) except

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

VI. Terminology for Display

VI. Terminology for Display Special Topics in Display Technology 1 st semester, 2015 VI. Terminology for Display * Reference books: [Light Measurement Handbook] (http://www.intl-light.com) [ 응용광학 ] ( 두양사 ) 21 장 Radiometry and Photometry

More information

Optical Measurement Guidelines for High-Power LEDs and Solid State Lighting Products

Optical Measurement Guidelines for High-Power LEDs and Solid State Lighting Products White Paper Optical Measurement Guidelines for High-Power LEDs and Solid State Lighting Products 1. Introduction The LED industry is growing rapidly and this naturally brings up an important need for reliable

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 3 Introductory Photometry Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 017 Sayfa 1 Introduction

More information

A Guide to Integrating Sphere Theory and Applications

A Guide to Integrating Sphere Theory and Applications A Guide to Integrating Sphere Theory and Applications Leadership in Reflectance Technology T E C H G U I D E TABLE OF CONTENTS 1.0 Integrating Sphere Theory...2-5 1.1 Radiation Exchange Within a Spherical

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Radiometry and Photometry

Radiometry and Photometry Radiometry and Photometry Measuring spatial properties of light Radiant power Radiant intensity Irradiance Inverse square law and cosine law Radiance Radiant exitance (radiosity) From London and Upton

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically Based Rendering

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry CMPT 461/761 Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Uncertainty determination of correlated color temperature for high intensity discharge lamps.

Uncertainty determination of correlated color temperature for high intensity discharge lamps. Uncertainty determination of correlated color temperature for high intensity discharge lamps A.B. El-Bialy 1, M.M. El-Ganainy 2 and E.M. El-Moghazy 3 1 University College for Woman for Art, science and

More information

Practical Optical Measurements of OLED Panels for Lighting Applications

Practical Optical Measurements of OLED Panels for Lighting Applications Practical Optical Measurements of OLED Panels for Lighting Applications TOKI KAWABATA KONICA MINOLTA, INC. JAPAN YOSHI OHNO National Institute of Standards and Technology U.S.A. * This work was conducted

More information

Radiometry. Energy & Power

Radiometry. Energy & Power Radiometry Radiometry is the measurement of optical radiation, corresponding to wavelengths between 0.01 and 1000 μm, and includes the regions commonly called the ultraviolet, the visible and the infrared.

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

Integrating Spheres in Molecular Spectrophotometry

Integrating Spheres in Molecular Spectrophotometry Integrating Spheres in Molecular Spectrophotometry Theory and Practice 2012 Perkin Elmer 2012 Perkin Elmer General Sphere Theory 3 Integrating Spheres Types of Sphere Measurements Total Reflectance (Specular

More information

Uncertainty determination of correlated color temperature for high intensity discharge lamps

Uncertainty determination of correlated color temperature for high intensity discharge lamps Uncertainty determination of correlated color temperature for high intensity discharge lamps A.B. El-Bialy 1, M.M. El-Ganainy 2 and E.M. El-Moghazy 3 1 University College for Woman for Art, science and

More information

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision After the mid-17th century, scientists were divided into two sides. One side, including Isaac Newton, believed in the

More information

High Collection Nonimaging Optics

High Collection Nonimaging Optics High Collection Nonimaging Optics W. T. WELFORD Optics Section Department of Physics Imperial College of Science, Technology and Medicine University of London London, England R. WINSTON Enrico Fermi Institute

More information

NIST Role in Supporting Solid State Lighting Initiative

NIST Role in Supporting Solid State Lighting Initiative CORM 2007 Annual Meeting, Gaithersburg, May 8-11, 2007 NIST Role in Supporting Solid State Lighting Initiative Yoshi Ohno, Ph.D. Optical Technology Division National Institute of Standards and Technology

More information

Spectrophotometry. Introduction

Spectrophotometry. Introduction Spectrophotometry Spectrophotometry is a method to measure how much a chemical substance absorbs light by measuring the intensity of light as a beam of light passes through sample solution. The basic principle

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Accurate Measurement of Transmittance and Reflectance for Engineering Applications

Accurate Measurement of Transmittance and Reflectance for Engineering Applications Accurate Measurement of Transmittance and Reflectance for Engineering Applications Dr. Chen Fangzhi Laboratory Manager Façade & Roof Materials Testing Laboratory OTM Solutions Pte Ltd PerkinElmer INTour

More information

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre A*STAR Seminar on LED and Solid State Lighting Standards and Technologies available at NMC for LED Measurements 05 August 2011 LIU Yuanjie National Metrology Centre Outline NMC overview Basic optical quantities

More information

Improvement Uncertainty of Total luminous Flux Measurements by Determining Some Correction Factors

Improvement Uncertainty of Total luminous Flux Measurements by Determining Some Correction Factors ISSN: 2347-325 Volume 3 Number 6 (June-205) pp. 264-274 www.ijcrar.com Improvement Uncertainty of Total luminous Flux Measurements by Determining Some Correction Factors Manal A. Haridy* Photometry and

More information

Astronomical Instrumentation and Statistics

Astronomical Instrumentation and Statistics Astronomical Instrumentation and Statistics This figure is a nice summary of the impact of new technology on new discoveries. It plots the time the necessary technology was available prior to making a

More information

Annex E: Laboratory premises

Annex E: Laboratory premises Aalto University School of Electrical Engineering Metrology Research Institute Tomi Pulli Petri Kärhä Annex E: Laboratory premises Version 1.2 24/11/2017 Annex E: Laboratory premises Page 2 (5) 1. Location

More information

Methods of total spectral radiant flux realization at VNIIOFI

Methods of total spectral radiant flux realization at VNIIOFI Journal of Physics: Conference Series PAPER OPEN ACCESS Methods of total spectral radiant flux realization at VNIIOFI To cite this article: Evgeniy Ivashin et al 2018 J. Phys.: Conf. Ser. 972 012011 View

More information

March 26, Title: TEMPO 21 Report. Prepared for: Sviazinvest, OJSC. Prepared by: Cree Durham Technology Center (DTC) Ticket Number: T

March 26, Title: TEMPO 21 Report. Prepared for: Sviazinvest, OJSC. Prepared by: Cree Durham Technology Center (DTC) Ticket Number: T March 26, 2012 Title: TEMPO 21 Report Prepared for: Sviazinvest, OJSC Prepared by: Cree Durham Technology Center (DTC) Ticket Number: 10806-T Co NVLAP lab code 500070-0 The accreditation of the Cree Durham

More information

Key objectives in Lighting design

Key objectives in Lighting design Key objectives in Lighting design Visual performance Physiological conditions Visual quality no strong "contrasts" good "color rendering" adequate "light levels" no "disturbing reflections" no direct "glare"

More information

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017)

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) NAME: HOMEWORK 3 Due Date: November 21st in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework)

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

HIGH TEMPERATURE MEASUREMENT BY THERMOGRAPHY ON CSP

HIGH TEMPERATURE MEASUREMENT BY THERMOGRAPHY ON CSP HIGH TMPRATUR MASURMNT BY THRMOGRAPHY ON CSP Dr. Jesús Ballestrín CIMAT-Plataforma Solar de Almería (SPAIN) 4 th SFRA Summer School 1 Visible range Snake IR vision 2 CCD spectral response Human eye response

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Physics of Light and Optics

Physics of Light and Optics Physics of Light and Optics Justin Peatross and Harold Stokes Brigham Young University Department of Physics and Astronomy All Publication Rights Reserved (2001) Revised April 2002 This project is supported

More information

= (fundamental constants c 0, h, k ). (1) k

= (fundamental constants c 0, h, k ). (1) k Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different

More information

FUNDAMENTALS OF POLARIZED LIGHT

FUNDAMENTALS OF POLARIZED LIGHT FUNDAMENTALS OF POLARIZED LIGHT A STATISTICAL OPTICS APPROACH Christian Brosseau University of Brest, France A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York - Chichester. Weinheim. Brisbane

More information

Optical models for color reproduction

Optical models for color reproduction Optical models for color reproduction Mathieu Hébert Institut d'optique Graduate School, Saint-Etienne. mathieu.hebert@univ-st-etienne.fr October 03 Content. Introduction... 4. Light... 5.. Wave optics

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

AT622 Section 2 Elementary Concepts of Radiometry

AT622 Section 2 Elementary Concepts of Radiometry AT6 Section Elementary Concepts of Radiometry The object of this section is to introduce the student to two radiometric concepts intensity (radiance) and flux (irradiance). These concepts are largely geometrical

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Infrared thermography

Infrared thermography Infrared thermography In microwave radiometry hν

More information

The steps to an uncertainty budget

The steps to an uncertainty budget The steps to an uncertainty budget Emma Woolliams 4 April 2017 Prepared by Paul Miller http://www.emceoc.org Uncertainty Where to start? What to do? How to be consistent? Make it easy. At the end of this

More information

application note LED measurement radiant power measurement

application note LED measurement radiant power measurement application note LED measurement radiant power measurement Contents 1 Introduction... 3 2 Setup... 4 2.1 Introduction... 4 2.2 Measurement setup... 4 2.3 Integrating spheres... 5 3 LED measurement procedure...

More information

Characterization and Calibration of a Fourier Transform Spectroradiometer for Solar UV Irradiance Measurements

Characterization and Calibration of a Fourier Transform Spectroradiometer for Solar UV Irradiance Measurements EMRP-ENV03 Solar UV WP 3: Improvement of Reference Spectroradiometers Characterization and Calibration of a Fourier Transform Spectroradiometer for Solar UV Irradiance Measurements Peter Meindl, Christian

More information

Calibration of instruments measuring broadband and spectral solar (UV) irradiance

Calibration of instruments measuring broadband and spectral solar (UV) irradiance Calibration of instruments measuring broadband and spectral solar (UV) irradiance Gregor Hülsen, Julian Gröbner and Luca Egli Physikalisch-Meteorologisches Observatorium Davos, World radiation Center (PMOD/WRC)

More information

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008)

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) NAME: HOMEWORK II Due Date: 24 th April in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework.

More information

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL SYSTEMS LIGHT http://map.gsfc.nasa.gov/media/ Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 study carrel in Phillips Exeter Library; a celebration of light and of material (by L. Kahn) Kahn on Light

More information

Handbook of LED and SSL Metrology

Handbook of LED and SSL Metrology Handbook of LED and SSL Metrology Günther Leschhorn Richard Young Günther Leschhorn, Richard Young Handbook of LED and SSL Metrology With contributions from Richard Distl Prof. Dr. Thomas Nägele Dr. Thomas

More information

Lighting fundamentals

Lighting fundamentals Lighting fundamentals About light and photometrics Generation of light Human vision Black body Colour Basic principles of lighting Light sources Light Vision Colour What is light? Light is electromagnetic

More information

Infrared Temperature Calibration 101 Using the right tool means better work and more productivity

Infrared Temperature Calibration 101 Using the right tool means better work and more productivity Infrared Temperature Calibration 101 Using the right tool means better work and more productivity Application Note Infrared thermometers let you measure a target s surface temperature from a distance without

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Astronomical Instrumentation G. H. Rieke

Astronomical Instrumentation G. H. Rieke Astronomical Instrumentation G. H. Rieke Contents: 0. Preface 1. Introduction, radiometry, basic optics 2. The telescope 3. Detectors 4. Imagers, astrometry 5. Photometry, polarimetry 6. Spectroscopy 7.

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Spectroscopy Meditsiiniline keemia/medical chemistry LOKT Spectroscopy

Spectroscopy Meditsiiniline keemia/medical chemistry LOKT Spectroscopy Meditsiiniline keemia/medical chemistry LOKT.00.009 Spectroscopy 04.09.12 http://tera.chem.ut.ee/~koit/arstpr/spe_en.pdf 1 ntroduction Spectroscopy is a general term for methods that investigate interactions

More information

Remote Sensing Systems Overview

Remote Sensing Systems Overview Remote Sensing Systems Overview Remote Sensing = Measuring without touching Class objectives: Learn principles for system-level understanding and analysis of electro-magnetic remote sensing instruments

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500089-0 Report Number: Model: PL10023-003B ARE-EDG-2MB-xx-06-E-UL-xx-525-xxxx-40K Date: 02/28/2017 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500089-0 Report Number: Model: RESTL-2013-0008 E-GL4S03C2K Date: 8/30/2013 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

The Candela and Photometric and Radiometric Measurements

The Candela and Photometric and Radiometric Measurements [J. Res. Natl. Inst. Stand. Technol. 106, 151 186 (2000)] The Candela and Photometric and Radiometric Measurements Volume 106 Number 1 January February 2001 Albert C. Parr National Institute of Standards

More information

Light.notebook May 03, 2016

Light.notebook May 03, 2016 Unit 4 Light LIGHT.1 Describe the ray model of light. 16.1 LIGHT.2 Predict the effect of distance on light s illuminance. 16.1 LIGHT.3 Explain polarization and the Doppler effect. 16.2 LIGHT.4 Describe

More information

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500077-0 Report Number: Model: PL08391-001A S-DL8-A-34L-27K-M w_s-dl8t-a-ss-c Date: 05/26/2016 Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

More information

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500077-0 Report Number: Model: PL08381-001A S-DL4-A-42L-35K-M w_s-dl4t-a-ss-c Date: 05/24/2016 Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

More information

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500077-0 Report Number: Model: PL08388-001A S-DL6-A-42L-27K-M w_s-dl6t-a-ss-c Date: 05/19/2016 Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Report Number: Model: PL09300-001A ARE-EHO-3M-xx-12-E-UL-xx-1000-xxxx Date: 09/16/2016 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared For:

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Report Number: Model: PL09294-001A ARE-EDG-3M-xx-06-E-UL-xx-700-xxxx Date: 09/14/2016 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared For:

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Report Number: Model: PL09285-001 ARE-EDG-5M-xx-06-E-UL-xx-700-xxxx-40K Date: 09/13/2016 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared For:

More information

National Voluntary Laboratory Accreditation Program

National Voluntary Laboratory Accreditation Program SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Sapphire Technical Solutions, L.L.C. 10230 Rodney St. Pineville, NC 28134 Mr. Ron Wathan Phone: 704-561-3100 x106 Fax: 866-829-1502 E-mail: rwathan@sapphirests.com

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Experimental confirmation of the negentropic character of the diffraction polarization of diffuse radiation

Experimental confirmation of the negentropic character of the diffraction polarization of diffuse radiation Experimental confirmation of the negentropic character of the diffraction polarization of diffuse radiation V. V. Savukov In the course of analyzing the axiomatic principles on which statistical physics

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Report Number: Model: PL09299-001A ARE-EHO-AF-xx-12-E-UL-xx-1000-xxxx-40K Date: 09/15/2016 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared

More information

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report Report Number: Model: PL04023-001 CXBAxxM40K8 CXBA16N Date: 7/27/2014 Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report Prepared For: Jonathan Vollers Cree,

More information

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500077-0 Report Number: Model: PL08392-001B S-DL8-A-42L-27K-M w_s-dl8t-a-ss-c Date: 06/14/2016 Cree Engineering Services Testing Laboratory (CESTL) Photometric Testing and Evaluation Report

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500089-0 Report Number: Model: Date: RESTL-2014-0031 BXSPWA02MC-US 01/28/2014 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report NVLAP Lab Code 500089-0 Report Number: Model: Date: RESTL-2014-0032 BXSPWA03MG-US 01/28/2014 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared

More information

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report

Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Report Number: Model: PL07611-001A BXSPR-HO-HT-3ME-60W-57K-UL Date: 04/08/2016 Cree Racine Engineering Services Testing Laboratory (RESTL) Photometric Testing and Evaluation Report Prepared For: Christopher

More information