ASSESSMENT OF NON-COHERENT LIGHT SOURCES

Size: px
Start display at page:

Download "ASSESSMENT OF NON-COHERENT LIGHT SOURCES"

Transcription

1 ASSESSMENT OF NON-COHERENT LIGHT SOURCES David Egan Snr Team Leader Laser Science Support Orion Laser Facility AWE, UK Page 1

2 Introduction Laser safety is accepted However there is a certain reticence to accept LEDs and lamps safety. Driven by the use of LEDs and lamps in everyday life. Not perceived as hazardous. However there are inherent hazards Page 2

3 LED lighting Page 3

4 LED lighting Strong economic incentive to overhaul existing street lighting and convert to LED lighting Early LED designs emitted excessive blue light, which contributes to disability glare/visual impairment Outdoor LED lamps (still being installed) have a Correlated Color Temperature (CCT) index of 4000 K o Daylight is ~ 6500 K o Typical sodium lamps has a CCT of 2100 K Newer LEDs are ~ 3000K, which is slightly warmer in tone and has less impact on humans and wildlife Page 4

5 LED lighting Circadian disruption: White LEDs estimated as > 5 times more effective in influencing circadian physiology vs. a HPS lamp Brighter residential night time lighting is associated with reduced sleeping times, lower sleep quality, impaired daytime functioning and obesity High CCT LEDs could impact the long-term health of exposed populations Page 5

6 Blue light hazard Blue light is hazardous to the retina, especially due to reduced pupillary constriction compared to white light (- intrinsically photosensitive retinal ganglion cells) - Circadian Rhythm Disruption Fatigue Peak of hazard 440 nm High luminance or hot spots due to small source size Glare from increased scatter (due to shorter wavelengths) Afterimages Effects on long-term health Uncertainty regarding chronic effects of low doses on eye damage, e.g. Age-related macular degeneration (AMD) Page 6

7 Work environment Page 7

8 COHERENT AND NON-COHERENT SOURCES Laser Differences LED/Lamp Low divergence Highly divergent 1/r 2 Single wavelength (λ) Uniform distribution Point source Broad band (Δλ) Spatial variation Extended source Similarities Photobiological effects are the same Page 8

9 UNIT Radiometric Photometric Parameter Unit Symbol Parameter Unit Symbol Radiant power W P Luminous flux lm Φ Radiant intensity W.sr -1 I Luminous intensity (candela) lm.sr -1 (cd) I Irradiance W.m -2 E Illuminance (lux) Lm/m 2 E Φ Radiance W.m -2.sr -1 L Luminance lm.m -2.sr -1 (cd.m -2 ) L Φ Radiometric properties: radiant energy or power regardless of whether or not the light is invisible or visible. Photometric properties: visible properties of the light source whether or not the light stimulates a visual response. Page 9

10 IEC Hazard bands IEC Hazard Band Wavelength range Exposure Limit Type Actinic UV Skin and Eye 200nm to 400nm Irradiance Eye UV-A 315nm to 400nm Irradiance Blue Light small Source 300nm to 700nm Irradiance Blue light extended Source 300nm to 700nm Radiance Retinal Thermal 380nm to 1400nm Radiance Retinal Thermal (weak stimulus) 780nm to 1400nm Radiance Infrared Hazard to Eye 780nm to 3000nm Irradiance Skin Thermal Hazard 380nm to 3000nm Irradiance Page 10

11 Irradiance Irradiance (radiant power per unit area) Radiant Exposure (radiant energy per unit area) Light source, LED, lamp Radiant emission of light source Measured irradiance here Page 11

12 Summary Exposure Limit Tables (skin and cornea) - IRRADIANCE Hazard name Relevant equation Wavelength range (nm) Exposure duration (sec) Limiting aperture mrads (deg) EL in terms of constant irradiance Wm -2 Actinic UV skin and eye E S = E λ S(λ) Δλ < (80 ) 30/t Eye UV -A E UVA = E λ Δλ > (80 ) 10000/t 10 Blue light small source E B = E λ B(λ) Δλ >100 <11 100/t 1.0 Eye IR E IR = E λ Δλ > (80 ) 18000/t Skin Thermal E H = E λ Δλ <10 2π sr 20000/t 0.75 Page 12

13 SPECTRAL EFFICACY Spectral Weighting function S uv (λ) UV hazard function Suv (λ) Spectral efficacy for causing photokeratitis/erythema WAVELENGTH (nm) Page 13

14 SPECTRAL EFFICACY Spectral Weighting function B BLS (λ) 1 Spectral wieghing function: Retinal blue light B(λ) Spectral efficacy for causing retinal photochemical damage WAVELENGTH (NM) Page 14

15 Irradiance (Wm-2) Irradiance limits - skin and eye 10,000, ,000, , Wieghted irradiance exposure limits vs time constant exposure 10, , Time (sec) Actinic UV Eye UVA Blue light small Eye IR Skin thermal Page 15

16 Radiance (W.m-2.sr-1) - watts per square metre per steradian Light source, LED, lamp Radiance requires solid angle to be clearly defined in the optical system αmin: rads αmax: rads Radiance cares about the (angular) size of the source Page 16

17 Summary Exposure Limit Tables (retina) - RADIANCE Hazard name Relevant equation Wavelength range (nm) Blue light L B = L λ B(λ) Δλ Exposure duration (sec) Limiting aperture mrads (deg) 11* (t/10) 11 11* t 100 EL in terms of constant irradiance Wm /t 10 6 /t 10 6 /t 10 Retinal thermal L R = L λ R(λ) Δλ < * (t/10) 50000/(α*t 0.25 ) 50000/(α*t 0.25 ) Retinal thermal (weak visual stimulus) L B = L λ B(λ) Δλ >100 < /α Page 17

18 SPECTRAL EFFICACY Spectral Weighting function R(λ) Spectral wieghing function: Retinal thermal R(λ) 10 Spectral efficacy for causing retinal thermal damage WAVELENGTH (nm) AWE Orion Laser Facility, AWE, Page 18

19 RADIANCE (W.m -2.sr -1 ) Radiance limits - retina Weighted radiance exposure limits vs time for constant exposure Blue light retinal thermal min retinal thermal max retinal thermal weak max retinal thermal weak min 1E TIME (sec) Page 19

20 Risk band classification 4 Risk Groups (RGs) based on potential acute hazard: RG 0 (or Exempt) no photobiological hazard under foreseeable conditions RG 1 (low risk) no risk under normal conditions of use, limited by normal behavioral limitations on exposure RG 2 (moderate risk) no risk due to aversion response to bright light sources (up to 0.25 s) RG 3 (high risk) potential risk even from momentary exposure Page 20

21 BS EN 62471:2008 Exposure limits summary table Hazard Wavelength range (nm) Risk Group Time limit (s) Emission limit RG W.m -2 Time dependent exposure limit Actinic UV skin and eye 200 to 400 RG W.m -2 RG W.m -2 ELV = 30/t W.m -2 ELV = 30 J.m -2 RG-3 if RG-2 is exceeded RG W.m -2 ELV = 10 W.m -2 (t 1000s) Eye UV-A 315 to 400 RG W.m -2 ELV = 10,000 J.m -2 RG W.m -2 (t < 1000s) RG-3 if RG-2 is exceeded Page 21

22 BS EN 62471:2008 Exposure limits summary table 2 Hazard Blue light Small source C Wavelength range (nm) 300 to 700 Risk Group Time limit (s) Emission limit Time dependent exposure limit RG W.m -2 ELV=1 W.m -2 (t > 100s) RG W.m -2 ELV = 100 J.m -2 RG W.m -2 RG-3 if RG-2 is exceeded (t 100s) Blue light Extended source R 300 to 700 RG ELV=100 W.m -2 sr -1 ELV = 100 W.m -2 sr -1 (t >10000s) RG ELV=10000 W.m -2 sr -1 ELV = 10 6 J.m -2 sr -1 RG ELV= W.m -2 sr -1 RG-3 if RG-2 is exceeded (t 10000s) Page 22

23 BS EN 62471:2008 Exposure limits summary table 3 Hazard Wavelength range (nm) Risk Group Time limit (s) Emission limit Time dependent exposure limit Retinal thermal source 380 to 1400 RG-1 10 ELV=28000/α W.m -2 sr -1 ELV=50000/α.t 0.25 W.m -2 sr -1 RG-0 10 ELV=28000/α W.m -2 sr -1 RG ELV=71000/α W.m -2 sr -1 (10μs t, 100s) RG-3 if RG-2 is exceeded Retinal thermal (Weal visual stimulus) 780 to 1400 RG ELV=6000/α W.m -2 sr -1 RG ELV=6000/α W.m -2 sr -1 ELV =6000/α W.m -2 sr -1 RG ELV=6000/α W.m -2 sr -1 RG-3 if RG-2 is exceeded (t > 10s) Page 23

24 BS EN 62471:2008 Exposure limits summary table 4 Hazard Infrared Hazard Front of eye Wavelength range (nm) 780 to 3000 Risk Group Time limit (s) Emission limit Time dependent exposure limit RG W.m -2 ELV=100 W.m -2 (t>1000s) RG W.m -2 ELV = t W.m RG W.m -2-2 (t 1000s) RG-3 if RG-2 is exceeded Skin thermal 380 to 3000 NA W.m -2 ELV = t 0.25 J.m -2 (t 10s) Page 24

25 Controls Unlike IEC there are no environmental controls stipulated. no labelling (covered under IEC ) no safety appointment no training requirements Risk based assessment E R I C P D Page 25

26 Summary Incoherent light sources are making more of an impact within scientific environments There are differences between coherent and incoherent light sources but photobiological effects the same. Requirement to assess the light source for the hazard it represents. Who is unaware that this is a problem? Page 26

27 Thank you for listening Any questions? Page 27

Report No.: EASZF Page 2 of 14

Report No.: EASZF Page 2 of 14 Report No.: EASZF01050007 age 2 of 14 Test item particulars... : Tested lamp... : continuous wave lamps pulsed lamps Tested lamp system... : Lamp classification group... : exempt risk 1 risk 2 risk 3 Lamp

More information

Photobiological Safety of Luminaires: Refining the New Approach

Photobiological Safety of Luminaires: Refining the New Approach Photobiological Safety of Luminaires: Refining the New Approach Leslie Lyons Bentham Instruments Limited Reading, UK llyons@bentham.co.uk We are all familiar with the visual characteristics of lighting

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : 4326246.51 Date of issue... : 2016-02-23 Total number of pages... :

More information

Test Report. Project No: Report No: aR01 Report Issued Date: Customer Company & Address:

Test Report. Project No: Report No: aR01 Report Issued Date: Customer Company & Address: Customer Company & Address: Edison Opto Corporation ADD: 4F, No.800, Chung-Cheng Rd., Chung-Ho Dist, New Taipei City Contact erson: Telephone: Zhen Chuang 886-2-8227-6996 Fax: zhenchuang@edisonopto.com.tw

More information

Compliance with the National requirements of EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES for EN 62471:2008.

Compliance with the National requirements of EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES for EN 62471:2008. age 2 of 14 Report o.: GLESO10020059801 Summary of testing: Tests performed (name of test and test clause): These tests fulfil the requirements of standard ISO/IEC 17025. When determining the test conclusion,

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : 17-12-07 Date of issue... : 2017-12-18 Total number of pages... : 19

More information

Photobiological safety of lamps and lamp systems

Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : Dialight Optics Lab Request #16119 Date of issue... : 9/22/2016 Total

More information

CENTRE OF TESTING SERVICE INTERNATIONAL OPERATE ACCORDING TO ISO/IEC LVD TEST REPORT

CENTRE OF TESTING SERVICE INTERNATIONAL OPERATE ACCORDING TO ISO/IEC LVD TEST REPORT CETRE OF TESTIG SERVICE ITERATIOAL OERATE ACCORDIG TO ISO/IEC 17025 LVD TEST REORT TEST REORT UMBER : CB3160607-00480-L Report o.: CB3160607-00480-L age 1 of 17 Date: 13 June 2016 Table of contents 1.

More information

TEST REPORT EN 62471:2008 Photobiological safety of lamps and lamp systems

TEST REPORT EN 62471:2008 Photobiological safety of lamps and lamp systems Shenzhen BST Technology Co., Ltd. BST16098151A0001YUR-2 TEST REORT hotobiological safety of lamps and lamp systems Report reference o....: BST16098151A0001YUR-2 Date of issue...: 2016-9-30 Testing laboratory...:

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : Date of issue... : Total number of pages... : Testing Laboratory... : Address... : Applicant s name... : Address...

More information

Photobiological safety of lamps and lamp systems

Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: age 1 of 14 TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : GZES111000681631 Tested by (name + signature)... : Bica

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems age 1 of 20 Test Report issued under the responsibility of: Intertek Testing Services Shenzhen Ltd. TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : 140729054GZU-002

More information

Photobiological safety of lamps and lamp systems

Photobiological safety of lamps and lamp systems age 1 of 27 Test Report issued under the responsibility of: Intertek Testing Services Shenzhen Ltd. Guangzhou Branch TEST REORT IEC 62471 hotobiological safety of lamps and lamp systems Report Reference

More information

Radiometry. Energy & Power

Radiometry. Energy & Power Radiometry Radiometry is the measurement of optical radiation, corresponding to wavelengths between 0.01 and 1000 μm, and includes the regions commonly called the ultraviolet, the visible and the infrared.

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : 3182062.55A Date of issue... : 2016-02-23 Total number of pages... :

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : 50039441 001 Date of issue... : 2016-05-02 Total number of pages...

More information

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT and/or EN 62471 hotobiological safety of lamps and lamp systems Report Reference No.... : GZES160200176431 Tested by (name + signature)... : Jack

More information

Photobiological safety of lamps and lamp systems

Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT hotobiological safety of lamps and lamp systems Report Reference No.... : GZES130300220831 Date of issue... : 2013-04-07 Total number of pages...

More information

TEST REPORT. EN 62471:2008 Photobiological safety of lamps and lamp systems

TEST REPORT. EN 62471:2008 Photobiological safety of lamps and lamp systems TEST REORT E 62471:2008 hotobiological safety of lamps and lamp systems Report reference o.... : Compiled by (+ signature)... : Approved by (+ signature)... : ark Zeng Rick Xiao Date of issue... : 2016-06-14

More information

TEST REPORT IEC / EN Photobiological safety of lamps and lamp systems

TEST REPORT IEC / EN Photobiological safety of lamps and lamp systems age 1 of 22 TEST REORT hotobiological safety of lamps and lamp systems Report Reference No...: 3006889.51-QUA/LI Date of issue...: 2011-03-08 Total number of pages...: Testing Laboratory...: Address...:

More information

TEST REPORT. IEC 62471:2006 Photobiological safety of lamps and lamp systems

TEST REPORT. IEC 62471:2006 Photobiological safety of lamps and lamp systems TEST REORT IEC 62471:2006 hotobiological safety of lamps and lamp systems Report reference o.... : Compiled by (+ signature)...: Colin Zhang Approved by (+ signature)...: Alice Liu Date of issue...: 2015-08-15

More information

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems

TEST REPORT IEC and/or EN Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT IEC 62471 and/or EN 62471 hotobiological safety of lamps and lamp systems Report Reference No.... : GZES130300236831 Tested by (name + signature)...

More information

TEST REPORT ...: RSZ China. as above EN 62471:2008. China. Procedure deviation ...: N.A. No.1, China. Copy of. marking plate: None

TEST REPORT ...: RSZ China. as above EN 62471:2008. China. Procedure deviation ...: N.A. No.1, China. Copy of. marking plate: None TEST REORT E 62471:2008 hotobiological safety of lamps and lamp systems Report reference o...: Compiled by (+ signature)...: Zero Gao Approved by (+ signature)...: Harrison Huang Date of issue...: 2016-12-07

More information

RSZ Byron Huang 62471:2008. used in under the Adobe. (all other name

RSZ Byron Huang 62471:2008. used in under the Adobe. (all other name Model/ /type reference...: 2T03X5CW11000002 2T03X5WW23000001 (all other name see General product information ) Manufacturer.........: Edison Opto Corporation 4F o. 800, Chung-Cheng Rd., Chung-Ho City,

More information

Jeanne Han EN 62471:2008

Jeanne Han EN 62471:2008 SZ140418001-3-2R TEST REORT E 62471:2008 hotobiological safety of lamps and lamp systems Report reference o...: SZ140418001-3-2R Compiled by (+ signature)...: Jimmy Hong Approved by (+ signature)...: Jeanne

More information

OSHNET SCHOOL OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH

OSHNET SCHOOL OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH OSHNET SCHOOL FOR HIGH CERTIFIED EDUCATION IN THE FIELD OF OCCUPATIONAL AND ENVIRONMENTAL SAFETY AND HEALTH Module 1.2 Optical Radiation RICCARDO DI LIBERTO 1 Occupational Health & Safety NETworking in

More information

TECHNICAL NOTE. Relating Photochemical and Photobiological Quantities to Photometric Quantities

TECHNICAL NOTE. Relating Photochemical and Photobiological Quantities to Photometric Quantities TECHNICAL NOTE Relating Photochemical and Photobiological Quantities to Photometric Quantities CIE TN 002:2014 CIE Technical Notes (TN) are short technical papers summarizing information of fundamental

More information

Photobiological safety of lamps and lamp systems

Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: UL International Italia srl TEST REPORT IEC 62471 Photobiological safety of lamps and lamp systems Report Reference No.... : 10CA36788M2 Date of issue...

More information

Kamelia Nikolova, Iva Petrinska, Dimitar Pavlov, Petya Djanovska Technical University of Sofia

Kamelia Nikolova, Iva Petrinska, Dimitar Pavlov, Petya Djanovska Technical University of Sofia Kamelia Nikolova, Iva Petrinska, Dimitar Pavlov, Petya Djanovska Technical University of Sofia Slide 1 Introduction Fig. 1 Electromagnetic spectrum and optical radiation The human eye is adapted to function

More information

TEST REPORT IEC Photobiological safety of lamps and lamp systems

TEST REPORT IEC Photobiological safety of lamps and lamp systems Test Report issued under the responsibility of: TEST REORT IEC 62471 hotobiological safety of lamps and lamp systems Report Reference No.... : 4786154391.3 Date of issue... : 2014-06-10 Total number of

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 3 Introductory Photometry Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 017 Sayfa 1 Introduction

More information

Key objectives in Lighting design

Key objectives in Lighting design Key objectives in Lighting design Visual performance Physiological conditions Visual quality no strong "contrasts" good "color rendering" adequate "light levels" no "disturbing reflections" no direct "glare"

More information

Eye Safety With LED Components

Eye Safety With LED Components technical article CLD-AP34 rev 20 Eye Safety With LED Components www.cree.com/xlamp Table of Contents Introduction...2 Photobiological Standards and Regulations for LED Components...3 Summary Test Results...4...5

More information

Eye Safety of IREDs used in Lamp Applications Application Note

Eye Safety of IREDs used in Lamp Applications Application Note Eye Safety of IREDs used in Lamp Applications Application Note Introduction As the radiated optical power of light emitting diodes (LEDs) has increased in recent years, the issue of eye safety has received

More information

Radiometry and Photometry

Radiometry and Photometry Radiometry and Photometry Measuring spatial properties of light Radiant power Radiant intensity Irradiance Inverse square law and cosine law Radiance Radiant exitance (radiosity) From London and Upton

More information

Section 22. Radiative Transfer

Section 22. Radiative Transfer OPTI-01/0 Geometrical and Instrumental Optics Copyright 018 John E. Greivenkamp -1 Section Radiative Transfer Radiometry Radiometry characterizes the propagation of radiant energy through an optical system.

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Section 10. Radiative Transfer

Section 10. Radiative Transfer Section 10 Radiative Transfer 10-1 OPTI-50 Optical Design and Instrumentation I Copyright 017 John E. Greivenkamp Radiometry Radiometry characterizes the propagation of radiant energy through an optical

More information

VI. Terminology for Display

VI. Terminology for Display Special Topics in Display Technology 1 st semester, 2015 VI. Terminology for Display * Reference books: [Light Measurement Handbook] (http://www.intl-light.com) [ 응용광학 ] ( 두양사 ) 21 장 Radiometry and Photometry

More information

Radiometry and Photometry

Radiometry and Photometry Light Visible electromagnetic radiation Power spectrum Polarization Photon (quantum effects) Wave (interference, diffraction) From London and Upton Radiometry and Photometry Measuring spatial properties

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry CMPT 461/761 Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically Based Rendering

More information

Radiometry, photometry, measuring color

Radiometry, photometry, measuring color Radiometry, photometry, measuring color Lecture notes are done by Géza Várady, based on the lecture notes of Prof. János Schanda varady.geza@mik.pte.hu University of Pécs, Faculty of Engineering and Information

More information

This watermark does not appear in the registered version - Laser- Tissue Interaction

This watermark does not appear in the registered version -  Laser- Tissue Interaction S S d Laser- Tissue Interaction Types of radiation ionizing radiation Non - ionizing radiation You may click on any of the types of radiation for more detail about its particular type of interaction

More information

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS BOGDAN GABRIEL LUCIAN, ENG. S. C. UZINA MECANICA SADU S. A. e-mail: lucianbog@yahoo.com ABSTRACT: The study of the evolution of the luminous

More information

Mathieu Hébert, Thierry Lépine

Mathieu Hébert, Thierry Lépine 1 Introduction to Radiometry Mathieu Hébert, Thierry Lépine Program 2 Radiometry and Color science IOGS CIMET MINASP 3DMT Introduction to radiometry Advanced radiometry (2 nd semester) x x x x x o o Color

More information

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre A*STAR Seminar on LED and Solid State Lighting Standards and Technologies available at NMC for LED Measurements 05 August 2011 LIU Yuanjie National Metrology Centre Outline NMC overview Basic optical quantities

More information

LUMINOUS MEASUREMENTS

LUMINOUS MEASUREMENTS Chapter 5. LUMINOUS MEASUREMENTS 5.. Luminous flux (luminous output)............................ 47 5.2. Amount of light (luminous energy)........................... 48 5.3. Luminous intensity.......................................

More information

L ight color influence on obstacle recognition in road lighting. 1. Introduction

L ight color influence on obstacle recognition in road lighting. 1. Introduction Computer Applications in Electrical Engineering L ight color influence on obstacle recognition in road lighting Małgorzata Górczewska, Sandra Mroczkowska, Przemysław Skrzypczak Poznań University of Technology

More information

The official directions are written in Chinese, this English edition is for your reference only -1-

The official directions are written in Chinese, this English edition is for your reference only -1- Refer to: R128 00-S2 74.1 Effective Date and Scope: 74.1.1 Effective date from 2017/1/1, the new types of LED replaceable light sources and from 2019/1/1 the all types of LED replaceable light sources

More information

Mesopic Photometry for SSL. Teresa Goodman Metrology for SSL Meeting 24 th April 2013

Mesopic Photometry for SSL. Teresa Goodman Metrology for SSL Meeting 24 th April 2013 Mesopic Photometry for SSL Teresa Goodman Metrology for SSL Meeting 24 th April 2013 Outline Brief overview of CIE system for mesopic photometry Relevance of mesopic photometry for SSL Is mesopic photometry

More information

REPORT NO. Projection Lighting Date of Issue: 12/10/11 (Life) Issue G. Description: LED Luminaire Status at: 11/10/11

REPORT NO. Projection Lighting Date of Issue: 12/10/11 (Life) Issue G. Description: LED Luminaire Status at: 11/10/11 T e s t R e p o r t REPORT NO. Projection Lighting Date of Issue: 12/10/11 (Life) Issue G Description: LED Luminaire Status at: 11/10/11 Type/Model: Alpha LED Date Received: 24/06/09 (35,000 hrs) Condition

More information

Introduction to Colorimetry

Introduction to Colorimetry IES NY Issues in Color Seminar February 26, 2011 Introduction to Colorimetry Jean Paul Freyssinier Lighting Research Center, Rensselaer Polytechnic Institute Troy, New York, U.S.A. sponsored by www.lrc.rpi.edu/programs/solidstate/assist

More information

Photobiological Safety for DOMINANT LEDs. Background. Hazard exposure limits (EL)

Photobiological Safety for DOMINANT LEDs. Background. Hazard exposure limits (EL) Phoobiological Safey for DOMINANT LEDs Background The poenial phoobiological hazard of LEDs was iniially being assessed o be similar o laser in he laser safey sandard by European Sandard Organizaion. However,

More information

Lamp measurement report - 18 Jan 2013 Led tube light 150 cm 5500K by Demeterled BV

Lamp measurement report - 18 Jan 2013 Led tube light 150 cm 5500K by Demeterled BV Led tube light 150 cm 5500K by Demeterled BV Page 1 of 25 Summary measurement data parameter meas result remark Color temperature 5630 K cold white Luminous intensity I_v 8045 Cd Measured straight underneath

More information

SAM SYSTEM DESIGN NOTE SAM-AD Laser safety of SAM

SAM SYSTEM DESIGN NOTE SAM-AD Laser safety of SAM Prepared by: A. Tokovinin Revised by: B. Gregory Version: 2.2 Date: August 7, 2007 File: laser/doc/safety.tex SAM SYSTEM DESIGN NOTE SAM-AD-02-0004 Laser safety of SAM 1 Introduction The SAM LGS system

More information

Lamp measurement report - 29 Feb 2012 Highbay led lamp by Ledverlichting Soest

Lamp measurement report - 29 Feb 2012 Highbay led lamp by Ledverlichting Soest Highbay led lamp by Ledverlichting Soest Page 1 of 25 Summary measurement data parameter meas result remark Color temperature 2786 K warm white Luminous intensity I_v 41854 Cd Measured straight underneath

More information

Measuring non-coherent optical radiation at work places

Measuring non-coherent optical radiation at work places Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 2012, 32(104) z. 1 pp. 60 66 2012, 32(104) z. 1 s. 60 66 Measuring non-coherent optical radiation at work

More information

Lamp measurement report - 21 Jan 2014 AR111 led spot light G53 WW 40 degrees by TopLEDshop

Lamp measurement report - 21 Jan 2014 AR111 led spot light G53 WW 40 degrees by TopLEDshop AR111 led spot light G53 WW 40 degrees by TopLEDshop Page 1 of 25 Summary measurement data parameter meas result remark Color temperature 2876 K warm white Luminous intensity I_v 17512 Cd Measured straight

More information

Lamp measurement report - 16 Sep 2015 Soluxima-Led streetlight-stog60 by Soluxima

Lamp measurement report - 16 Sep 2015 Soluxima-Led streetlight-stog60 by Soluxima Soluxima-Led streetlight-stog60 by Soluxima Page 1 of 29 Summary measurement data parameter meas result remark Color temperature 5196 K neutral white Luminous intensity I_v 18963 Cd Measured straight underneath

More information

Lamp measurement report - 3 Oct V led strip 2500K 10.5W.m-1 by TopLEDshop

Lamp measurement report - 3 Oct V led strip 2500K 10.5W.m-1 by TopLEDshop 12V led strip 2500K 105Wm-1 by TopLEDshop Page 1 of 23 Summary measurement data parameter meas result remark Color temperature 2292 K deep warm white Luminous intensity I_v 2244 Cd Measured straight underneath

More information

Uncertainty determination of correlated color temperature for high intensity discharge lamps.

Uncertainty determination of correlated color temperature for high intensity discharge lamps. Uncertainty determination of correlated color temperature for high intensity discharge lamps A.B. El-Bialy 1, M.M. El-Ganainy 2 and E.M. El-Moghazy 3 1 University College for Woman for Art, science and

More information

2. Lighting Terms. Contents

2. Lighting Terms. Contents Contents 2. Lighting Terms 2.1 Vision 2.2 Spectral sensitivity of the eye 2.3 Radiometric quantities 2.4 Photometric quantities 2.5 Energy and light efficiency 2.6 Colour coordinates 2.7 Colour temperature

More information

Uncertainty determination of correlated color temperature for high intensity discharge lamps

Uncertainty determination of correlated color temperature for high intensity discharge lamps Uncertainty determination of correlated color temperature for high intensity discharge lamps A.B. El-Bialy 1, M.M. El-Ganainy 2 and E.M. El-Moghazy 3 1 University College for Woman for Art, science and

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Lamp measurement report - 11 May 2015 liniled PCB Green Power by Triolight B.V.

Lamp measurement report - 11 May 2015 liniled PCB Green Power by Triolight B.V. liniled PCB Green Power by Triolight BV Page 1 of 22 Summary measurement data parameter meas result remark Luminous intensity I_v 671 Cd Measured straight underneath the lamp Illuminance modulation index

More information

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL SYSTEMS LIGHT http://map.gsfc.nasa.gov/media/ Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 study carrel in Phillips Exeter Library; a celebration of light and of material (by L. Kahn) Kahn on Light

More information

Lamp measurement report - 5 Aug 2013 LED light 12V 10W warm white AR111 by TopLEDshop

Lamp measurement report - 5 Aug 2013 LED light 12V 10W warm white AR111 by TopLEDshop LED light 12V 10W warm white AR111 by TopLEDshop Page 1 of 26 Summary measurement data parameter meas result remark Color temperature 3009 K warm white Luminous intensity I_v 58115 Cd Measured straight

More information

Lamp measurement report - 26 June 2012 Led street light 120W by Lemnis Lighting Asia

Lamp measurement report - 26 June 2012 Led street light 120W by Lemnis Lighting Asia Led street light 120W by Lemnis Lighting Asia Page 1 of 25 Summary measurement data parameter meas result remark Color temperature 8591 K very cold white Color temperature 6768 K Computed according to

More information

Islamic University of Gaza - Palestine. Department of Industrial Engineering

Islamic University of Gaza - Palestine. Department of Industrial Engineering Department of Industrial Engineering Ergonomics Human Machine Work Environment Greatest Goal: Humanization of Work Design with E & E : Ease and Efficiency The Basics of Ergonomics Core courses (The Three

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Lamp measurement report - 11 May 2015 liniled PCB Warm White 3000K Power by Triolight B.V.

Lamp measurement report - 11 May 2015 liniled PCB Warm White 3000K Power by Triolight B.V. liniled PCB Warm White 3000K Power by Triolight BV Page 1 of 24 Summary measurement data parameter meas result remark Color temperature 3148 K warm white Luminous intensity I_v 1349 Cd Measured straight

More information

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis Radiometry Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput Radiometry Terms Note: Power is sometimes in units of Lumens. This is the same as power in watts (J/s) except

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Photobiological Safety for DOMINANT LEDs. Background. Hazard exposure limits (EL)

Photobiological Safety for DOMINANT LEDs. Background. Hazard exposure limits (EL) Phoobiological Safey for DOMINANT LEDs Background The poenial phoobiological hazard of LEDs was iniially being assessed o be similar o laser in he laser safey sandard by European Sandard Organizaion. However,

More information

Lamp measurement report - 14 Sep 2014 QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron

Lamp measurement report - 14 Sep 2014 QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron Page 1 of 28 Summary measurement data parameter meas result remark Color temperature 2702 K warm white Luminous intensity I_v

More information

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision After the mid-17th century, scientists were divided into two sides. One side, including Isaac Newton, believed in the

More information

A UNIFIED FRAMEWORK FOR EVALUATING NON-VISUAL SPECTRAL EFFECTIVENESS OF OCULAR LIGHT EXPOSURE: KEY CONCEPTS

A UNIFIED FRAMEWORK FOR EVALUATING NON-VISUAL SPECTRAL EFFECTIVENESS OF OCULAR LIGHT EXPOSURE: KEY CONCEPTS A UNIFIED FRAMEWORK FOR EVALUATING NON-VISUAL SPECTRAL EFFECTIVENESS OF OCULAR LIGHT EXPOSURE: KEY CONCEPTS Amundadottir, M.L. 1, Lockley, S.W. 2, Andersen, M. 1 1 Interdisciplinary Laboratory of Performance-Integrated

More information

Lamp measurement report - 2 Nov 2013 AR111 led light spot GU10 WW 40deg not dimmable by TopLEDshop

Lamp measurement report - 2 Nov 2013 AR111 led light spot GU10 WW 40deg not dimmable by TopLEDshop AR111 led light spot GU10 WW 40deg not dimmable by TopLEDshop Page 1 of 29 Summary measurement data parameter meas result remark Color temperature 2802 K warm white Luminous intensity I_v 11867 Cd Measured

More information

Lamp measurement report - 24 Aug 2013 Led Tube T8-CB3014H W 4000K by DMLUX Verlichtingsarmaturen

Lamp measurement report - 24 Aug 2013 Led Tube T8-CB3014H W 4000K by DMLUX Verlichtingsarmaturen Led Tube T8-CB3014H-120-20W 4000K by DMLUX Verlichtingsarmaturen Page 1 of 27 Summary measurement data parameter meas result remark Color temperature 4007 K neutral white Luminous intensity I_v 6481 Cd

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 2 Light Sources Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 2017 Sayfa 1 Light Sources: maybe

More information

Lamp measurement report - 11 April 2013 OX-sign by Ledhuys BV

Lamp measurement report - 11 April 2013 OX-sign by Ledhuys BV OX-sign by Ledhuys BV Page 1 of 26 Summary measurement data parameter meas result remark Color temperature 4043 K neutral white Luminous intensity I_v 5389 Cd Measured straight underneath the lamp Illuminance

More information

Lamp measurement report - 19 April 2014 led tube 24 Watt High Lumen 150cm frosted CW by Esttech

Lamp measurement report - 19 April 2014 led tube 24 Watt High Lumen 150cm frosted CW by Esttech led tube 24 Watt High Lumen 150cm frosted CW by Esttech Page 1 of 29 Summary measurement data parameter meas result remark Color temperature 5574 K cold white Luminous intensity I_v 7636 Cd Measured straight

More information

Lamp measurement report - 11 June 2016 LED Lamp 230V bulb 6W Filament warm white E27 clear by TopLEDshop

Lamp measurement report - 11 June 2016 LED Lamp 230V bulb 6W Filament warm white E27 clear by TopLEDshop LED Lamp 230V bulb 6W Filament warm white E27 clear by TopLEDshop Page 1 of 28 Summary measurement data dated 2016-05-24 parameter meas result remark Color temperature 2744 K warm white Luminous intensity

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2013)

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2013) DEA 3500 Spring 2013 Homework 2 DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2013) NAME: HOMEWORK II Due Date: 18th April in class (NOTE: You will need to consult the readings as well as your

More information

Lighting fundamentals

Lighting fundamentals Lighting fundamentals About light and photometrics Generation of light Human vision Black body Colour Basic principles of lighting Light sources Light Vision Colour What is light? Light is electromagnetic

More information

Lamp measurement report - 18 Sep 2017 Led Tube 6A by Lighthero GmbH

Lamp measurement report - 18 Sep 2017 Led Tube 6A by Lighthero GmbH Led Tube 6A by Lighthero GmbH Page 1 of 29 Summary measurement data dated 2017-09-16 parameter meas result remark Color temperature 3422 K warm white (close to neutral white) Luminous intensity I_v 7578

More information

Lamp measurement report - 18 Feb 2016 OX-profile 1500mm 4000K by Overhuys Verlichting BV

Lamp measurement report - 18 Feb 2016 OX-profile 1500mm 4000K by Overhuys Verlichting BV OX-profile 1500mm 4000K by Overhuys Verlichting BV Page 1 of 30 Summary measurement data parameter meas result remark Color temperature 4079 K neutral white Luminous intensity I_v 15695 Cd Measured straight

More information

Lamp measurement report - 23 Jan 2017 LED Lamp 230V 6W warm white GU10 dimmable ceramic by TopLEDshop

Lamp measurement report - 23 Jan 2017 LED Lamp 230V 6W warm white GU10 dimmable ceramic by TopLEDshop LED Lamp 230V 6W warm white GU10 dimmable ceramic by TopLEDshop Page 1 of 30 Summary measurement data dated 2017-01-14 parameter meas result remark Color temperature 2821 K warm white Luminous intensity

More information

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017)

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) NAME: HOMEWORK 3 Due Date: November 21st in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework)

More information

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008)

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) NAME: HOMEWORK II Due Date: 24 th April in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework.

More information

White Paper Luminance & Illuminance. Brief explanation of photometry for the application of tunnel lighting control

White Paper Luminance & Illuminance. Brief explanation of photometry for the application of tunnel lighting control White Paper Luminance & Illuminance Brief explanation of photometry for the application of tunnel lighting control 1 General This document gives a brief explanation of photometry, the basics of tunnel

More information

Ocular UV Protection: Revisiting Safe Limits for Sunglasses Standards

Ocular UV Protection: Revisiting Safe Limits for Sunglasses Standards Ocular UV Protection: Revisiting Safe Limits for Sunglasses Standards Liliane Ventura, Mauro Masili, Homero Schiabel Dept. of Electrical Engineering EESC University of São Paulo Av. Trabalhador Saocarlense,

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION ELECTROMAGNETIC RADIATION 1. Types of electromagnetic radiation Use different resources to sort the types of electromagnetic radiation according to rising wavelength, find sources, uses and mention if

More information