!! #!!! # % &!! ( )!

Size: px
Start display at page:

Download "!! #!!! # % &!! ( )!"

Transcription

1 Roscoe, Andrew (2004) Demand response and embedded storage to facilitate diverse and renewable power generation portfolios in the UK. Masters thesis, UNSPECIFIED., This version is available at Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url ( and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge. Any correspondence concerning this service should be sent to the Strathprints administrator: The Strathprints institutional repository ( is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.

2 # # %& ( )

3 + # ), # ) ) % + ) + & +., +

4 % /0%. 1) 2 23 % % )5 / % % ) ) & % ( % ) 7 % % ) # ) % % ) )5% 8 )

5 & & & & ( ) + ) &, + ) ),. ) / % &0 2. ) # ) ( # / + 6 ) ( )1 2 / : 13 ; ( ) + /& ) 1 2 /) / /( / & /( / ) 34 4 /5 / / 6 4 /5 / ( 7 /8 2 % & < =< > 2 2. ) 2 ) =+ > < ) 6 / 4 ( : :2 ) 6 ; / 4 ( (5 ( & 9 (5 ( ) ## (8 ( / %54 (8 ( ( +& 2? 6 7 ) ( + % +8 ( 1 :;6##<;= 10 ( 5 ; 1) ( 8 7 1( (. % 18 2 ) :2 ( ) : : ( &0 5( 22 % :4 2 Α :4 2 / : ( && 5. ( &) 8) 22 1 ; 2 ( ; ( &/ 8+ ( &( 8+ ( & ( &1 % 81 ( & & 8. + ) &>.&

6 ; + / )?/ Β ( &&) 1 &&/ 1 & 7 % &&1 5 &&5 5 & Α &&5 5 ) ; &&. :2 1 # 22 : 1 #1Χ 22 : 1 # 22 : 1 # 2 :6 1 # 2 :4 1 # 2 :: 1 # 2 :; 1 # 22 : 1 # 22 5 / &)) :2 02 : 3 2 : 3 26 : D 24 :6 2: :4 2 5 ( 4 &/0 5 +? &/+ 8 &()

7 7 D 2 # /%7 : D # : D? 972Ε6Φ24 D D 8% 24 D 6 ( 6 972: D : D : ( 6 972; D ; 97 Γ 2 D 97 Γ D 2 97 Γ 2 D 22 Γ D 2 Γ D 2 Γ ) D 2 97 D 2 D # 4 : 7Ε6Φ 6 D 2 ( : D? D 0 ): 6 D =Γ 2 Γ 2>66 D 6 9 ) Γ = >64 D 4 ( ) Γ = >64 D : # ) Γ = > 6: D ; # ) Γ = > 6; D + 4 D 2 #( 31 9 ) Γ = >42 D 22 # 31 ) Γ = >42 D 2 # 31 ) Γ = > 4 D D D 26 D 46 D D 2: ( ) : D 2; ( ) :2 D 2 : D +& :: D 2 +& ) :; D +& ) 2 :; D + ) ;: D D6 = > D6 2 D6 2 ) D D =257)> 6 D6 : 21Χ =657)2657) > 6 D6 ; 2 6 D6 2 =Η > 4 D D6 22.( 2 D6 2.( 2 D6 2 2 D6 2 =6;>2 D6 26 1Χ =57)2;57) >2 D6 24 ) =6;> 24 D6 2: ) =6;> 2: D6 2; =6;>2; D6 2 2 D6 22 D6 2 =6;>222 D: 2 Γ)Χ%=; > 2

8 2 # /%7 4 /%7 # ; # + ; # / ) 6 2 % # ; 6 ( 2 : 6 D 2 : 6 D ( 24

9 + # ), #) ) / < ) # 7 ), + + D ), / < )) # % ) %) +). + # ) ) ) # 2

10 2> % #?D 2 1Χ #Ι Ι 1Χ, +) 6+)1Χ ) 7 & ϑ &. Η 1 > < ( ) Η & # ) ). & # > < ). &2 # Η ) Χ 2 ) 3 #) &. ) #, +< 2 +:2

11 & + > < Κ Λ ) ) 7 + ) 7. ) ) < +. ). < ) 7. ) ) % + ) ( &&. + ),,

12 %8 =8(/.ΕΦ> = > 8 ϑ ) # %& #% # D ) & Μ7 )Μ + 6 #+ 4, 4 +, +

13 D ) & 1 ( ) D &) ) < ) #, ϑ < Κ, Λ 7 7 ) ) Χ. 8< + % Β # ) 6 2 Β 6 # 8 # Κ% D Λ # # 1 ( # + 6

14 8 6 Κ Λ ; = Ι > 1. ) & 6 ) =8.%Ε;Φ>% # 8 0 Κ Λ # / & ) # & # +=(. Ε22Φ> TWh of raw fuel Percentage of UK fuel use Petrol, DERV % Aviation Fuel % Electricity, domestic % Gas, domestic % Electricity, industrial % Gas, industrial % % )4& #, 4

15 UK raw fuel usage (before conversion) TWh/a Petrol, DERV Aviation Fuel Electricity, domestic Gas, domestic Electricity, industrial Gas, industrial )4& #, (. #.Ε Φ 7 )4) :

16 < Ε22Φ Raw Fuel Use TWh / a Percentage of UK raw fuel use Coal % Oil % Gas % Nuclear % Hydro % Other renewables % Other fuels % Imports % % )4), :7 2Ι + # Ε22Φ Α; Β: =Α, =57> =7> 7? 6 2 4: 22;6 4Ι < : : 2;Ι + 2 ;:4 64 Ι ;: ::Ι ;2 : Ι 5< 26 2; Ι 3= > 26 2; ;4 Ι 3=> ; Ι < Ι. 2:6 ; 2 ;Ι ( /5( 5 +(Χ )4/ < ) # : Ι ). % <). ) Ι 6Ι2Ι 7 +: : :2 2ΝΟ4Ι ;

17 + : + # #)? Μ % =1)Π;:4 Ε757ΦΠ?D> Ι Θ 7 (1Χ 57 ΡΙ 8 67 =457 > ΡΙ 8 =267>? 57 Ι < 57 Ι Ι 8 :7 27 6Ι 1 67 ( 7 3 Θ Θ 7 0=2Ι # Σ> :Ι Θ Ν2 57 Ι 1 Ν 47 =Ν57 8 =Ν6:7 > > )4( : ) < 1Χ). & % = > + & #

18 :7 :7 &, #. & 0 =:Ι> & = >2Ι # % & 7 # & ) & = >. # ) Κ Λ3 50 ΚΛ 8 ) 5 7 )& :6)Χ )Χ=3Χ> ) / =/ > ) 8 = 8 ) > 0 =0 > ) 51 =51>Ε2 Φ 0)1 =01>5 ) 5 = > ) ) ) ) 2

19 # ) 2)Χ =3ΧΧ?Χ> ) (8< =( 8 ) <> Χ?Χ ) 3 ) ) ) ) ) ) ( =( > / (8< ( / =(/> & 67 #Χ% #7D ) ( ) ++ / & ) (. ( (8<ΚΛ / / ) +. =/ > )/ 8% (8< ( 8< + Κ Λ < 1 0% 8% 22

20 % +. < /1. Τ / Ε2 Φ/1. Τ +=/1.> ΤΙ <+ ) < + / +=> = > ) (8</ Β& ) % /. <. ) Χ&) ) # % )+.Τ& Α Τ2 1 Τ2 & Α Τ 1 Τ + ΟΙ ΤΙ Τ E = Q Q X P P X X X Q 1 = 2 P 1 2 X 2 Q ( Q + Q ) X1 P X 2 X 1 ( ) P + P X1 X 1 X 2 X 2 D & ; 22 E = =

21 & 2 ( 1+ a) ( 1 a) 2a PX 2 PX 1 QX 2 = QX 1 QX 2 QX 1 = QX 1 a = E 1 a P + P ( ) ( ) ( ) X 2 X 1 D ) 4 5 =Ρ 2> & / 7) = 2ΡΡ> ++ / 1, ) + # %& ( ) +,. %&, #,,, #,,, #,,, # /,, / /, /#,, )4+ 2 A classic example is the Parker 25 fountain pen, whose sales were poor as it was perceived as too cheap and tacky, until the price was increased and sales rocketed. Also, the beer Stella will always be reassuringly expensive. 2

22 2. % ) + + ) Τ Θ D + ) ) + ΟΙ ΤΙ Θ ( ) ( ) + + = = Y Y Y Y X X X X Y Y X X P P P P Q Q Q Q P P Q Q E D / 4 % Τ Θ => = = Y X Y X Y X Y X Y X Y X P P P P Q Q Q Q P P Q Q E Ο Ι Τ ΘΙ Τ Θ D ( # # < #)Κ :Λ Κ Λ ) & + )

23 0 0 ). 7 8% 0% 8%) / ) Κ0 ΛΕ:Φ) ). Β < + +, = ) > Υ26 7. ) +. ) + )( )Μ 5 + +)?ΕΦ ΚΛ %= % > /.=/. +>/. + Τ./. Τ 2 => Τ )% ). ) ) ) ) 26

24 1 D Κ Λ ). 2Ι) 6Ι 7 )4/ 34?, #)00&Ε)+Φ 70 = (8<> ) 7 )4( 7 Γ 24

25 ) & ϑ )) Χ, % 1 /. % + 7 ) ; 6 )2 6 Peak demand forecast , England and Wales Peak demand (GW) Week number ( ) 7 )4+ )00(4)00+#?, ( ) ) )2 % Margin forecast , England and Wales Margin (GW) Week number ( ) 7 )41 )00(4)00+#?, 2:

26 + ) + ( ) D 571 ) )6 Σ, + Β ) Peak demand and capacity forecast , England and Wales Margin (GW) Week number ( ) Demand Capacity 7 )45 )00(4)00+#?, ),. #? / & Ι= )> # 2ΙΙ. Ι # Ι 2;

27 0 23)43,,,,/ 1 + # )) + Ε2 Φ 8%Ε:Φ & #Β+ ) ) )2Ι + ) ΕΦ 97 : ; Γ 4 ; Γ 7 +0 Ε:Φ % + Γ England and Wales electricity price volatility, January 2003 Demand (GW) Buy and sell price ( /MWh) Jan 14 00:00 Jan 13 12:00 Jan 13 00:00 Jan 12 12:00 Jan 12 00:00 Jan 11 12:00 Jan 11 00:00 Jan 10 12:00 Jan 10 00:00 Jan 09 12:00 Jan 09 00:00 Jan 08 12:00 Jan 08 00:00 Jan 07 12:00 Jan 07 00:00 Jan 06 12:00 Jan 06 00:00 Jan 05 12:00 Jan 05 00:00 Date and time England and Wales demand Sell price Buy price 7 )48?, # )00/. Γ % Ι ) D 57 + #+ # ) ) % ) )

28 Γ Υ67 Υ26 7Υ67 % ) ) England and Wales electricity price volatility, January 2004 Demand (GW) Buy and sell price ( /MWh) Jan 26 00:00 Jan 25 12:00 Jan 25 00:00 Jan 27 12:00 Jan 27 00:00 Jan 26 12:00 Jan 28 12:00 Jan 28 00:00 Jan 31 00:00 Jan 30 12:00 Jan 30 00:00 Jan 29 12:00 Jan 29 00:00 Date and time England and Wales demand Sell price Buy price 7 )4.?, # )00(. Γ ) Γ 6657 )Υ267 7 ; 1& ). 0 1 Γ ΚΛ +Β < &

29 England and Wales electricity price volatility, June 2004 Demand (GW) Buy and sell price ( /MWh) Jun 09 00:00 Jun 08 12:00 Jun 08 00:00 Jun 07 12:00 Jun 07 00:00 Jun 10 00:00 Jun 09 12:00 Jun 11 00:00 Jun 10 12:00 Jun 12 00:00 Jun 11 12:00 Jun 14 00:00 Jun 13 12:00 Jun 13 00:00 Jun 12 12:00 Date and time England and Wales demand Sell price Buy price 7 )4&0?, # )00( + ) ) 7 Γ 8) 57) % DΓ 22 Γ 2 Γ 2 % Γ ; )Υ67Β Γ 1) Γ : 657 ;, 5722 %1 ; ;% +. ) )ΚΛ 57( & 57 ) 57, & ) 1 ) Κ Λ + System buy price, Jan 2003 w eather event System buy price, Jan 2004 w eather event Systen buy price ( /MWh) Demand (GW) Systen buy price ( /MWh) Dem and (GW) 2

30 7 )4&& Η )00/)00( D 22 Γ % )+ +7 D ) ;57Υ27 System buy price, Jan 2003 and Jan 2004 weather events Systen buy price ( /MWh) Demand (GW) 7 )4&) Η )00/)00( % & ) System buy price, June 2004 fine weather week Systen buy price ( /MWh) Demand (GW) 7 )4&/ Η )00(% % & D 2 )Υ67

31 =D 2> ) ) ) Κ Λ & )+. Χ +) ϑ ϑ % + + ) D Κ Λ + 1 ) ( ) )% ) = > D 2 D 2. ) Ι2Ι & Υ27=2)7> + Κ Λ Υ67 =6)7> Ι2Ι Ι ;Π6Ο 57. &

32 System buy price vs demand, simple winter model Systen buy price ( /MWh) Demand (GW) 7 )4&( #?, # Κ Λ & + = : > # )+ ) + = > ( + =D > 7 + D 2 ) ( )

33 ( 7 D ;D 2 ) ) =+> = > ) 0 D ;D 2 ) / 32 / =/ > 3 # + Κ :Λ Κ Λ ) / + )7 3 / 0 / )7) / 0. / + ) Υ26 7=26 )7> ( +:6)7 =Υ:67> ( + : ;)7 =Υ: ;7> 2 24)7 =2 24Υ7> : Ε2 Φ ( ) 6Ι ) % Κ)Λ ( / % + /. / ) % + / 6

34 < )7 / ϑ Υ 47= 4)7>( Γ Υ;7+ (8< Υ:67 / Β+ )7< / / ))= >) Σ 3 / / + / ) / 5.. ) & Χ # ) )+ +,) ) 3 + ) ) ) Υ6Υ2Υ 7 Υ267 ) ) 4

35 8%ΕΦ D+ 7 Υ267 Υ4 + :Ι );74 7) Υ27 Υ;8 + Υ<Υ; <6Υ ), ) )%, / / )& + ) / 5 & ) 5 Η, 2 & 2 3 & / 3 In 2003, the NETA buy/sell differential was large enough to dissuade pumped hydro operators from trading. Instead, they sometimes chose to leave the network be and let NETA balance the system with CCGT generation. This adds to market volatility. :

36 / + =) Κ) Λ > + ) Κ Λ/ & 2Ι < 2Ι / 06 1 #+):;;7Ε2Φ,)Ε2Φ ( 2:;7 27: :;Ι Ε2Φ D 472 7:Ι Ε2Φ D :Ι = > # =:7 > & # )).+ ) # ) ))( ) &+6 4 D ) ) + ΟΧς Ο ;2+Ο ΓΝΟ;)7 ςο2) Ο ;2 ;

37 % ) + ;; Ο ; )7 ;+; Ο 4 )7 + ; Ι :Ι = > )7 # # Ε;Φ ϑ 2 ) / 1. ) ΚΛ% ( 2 ) 27ϑΚΛ 2Ι2Ι. ΚΛ W2Ι D+ ) ΚΛ & )

38 // 5 % +: + Pumped Hydro Bulk storage capacity (proven) 14GWh (UK) 1.1 million household-days Storage capacity density, per 10m x 10m x 10m cube Domestic storage feasibility and capacity Lead-acid Small scale for a 5-10 day reserve Heated water Small scale 98 (heat) 7800 Very cheap. Potential 50% loss per day in summer per day, for a small system. Round-trip efficiency Cost Plant life MWh House holddays % NO years 85% /kwh 100% (to heat). 10 years 25 years Feasibility Extremely limited by suitable locations Widespread uptake limited by global lead availability unless electrolyte stores used? May become marginally financially viable. Cheap, simple. BUT, energy must be used as low-grade heat for washing, heating, bathing etc. Hydrogen Not yet proven, but potential on a large scale (heat) Possible 20% (to electricity). 20% (to heat). Flywheels Unproven ? ~60-80% Less for storage times of days (bearing losses?) Compressed air None 2.3 Efficiency drops to ~17% after one day 180 NO ~64% Less for storage over hours or days.? In development 3500 /kwh 25 years? Problems with bearing losses, mechanical stresses, risk of catastrophic failure. Large pressure vessel required. Temperature losses rapidly reduce efficiency.over time. Superconductivity None ??? Long lengths of wire immersed in liquid helium. Tolerable magnetic field strengths? Demand response???? 100% to infinity?? To be discussed )41 1 ) # %

39 & # 1 D ) D +? ) ) & 2 ) & 2 3 & = > Ι 3. ) =2>7 &+ Β.=> Η &) Η ) 5 ) # ) ) + 2

40 / ) ΚΛ ) ) ) / (8< ) & % ) : D 8 8 =D > < 7 7 ) & & ( # ) 7 )=) > ) )= > ) ) = > D %

41 . ) # # = > = > # ) # & ) 6

42 1 ( / % Ε:Φ& ) ) ) Ξ4)7 Ξ2)7, # ) Κ1 Λ Κ :Λ Κ7 Λ (8<= ϑ+ )> + = )> % %. )7 + )? 0 + & (8</ 1 = 1> D & Κ )Λ + > )

43 > +. 1 ΚΛ?) &ΚΛ, / D 2 7? & % ) 7 /4& 7 #)0014)005#,Ε)+Φ 8(/. Ε4Φ < 6

44 )Ξ67 Ξ67 % Ξ6 & 27Η 8(/. Ξ6 Η 2)7 8(/.Ε4Φ 1)Ι = 0 #> ) :Ι ) :Ι 1 D % 8(/. + Η 27 &. Β D ) & ) ) & ) ). ) &). 3 ) ) ). = 1%> ) 1(8< 4

45 :. 3Χ (8< / < (8</ Χ ), ) ) 8 ( ) ) ) ΚΛ/ ) ) ). ) ). & + => ( + ) = > ) / ) + ) ) =. )/ > % ) & + ; % &. Κ Λ ). ) => % + 7 ) :

46 ) 3 ) & % ) ΚΛ Κ Λ ) ) Χ ) / < 1 5 2)7 % ) & ) ( Η & & Κ Λ 8 ( /. =8(/.>Ε4Φ + ;

47 Η =%>& / ( = % % =%> ϑ 3 ( >. => >. =?%8.(8 > > 1 = > >. =?Χ > > ) & ) > > & + + ϑ =>, ϑ % %++Ε26Φ. Κ Λ % 3Η + )2 ) &, ). )

48 . # Γ/ =Γ / >Ε2Φ. # 2;6 2; 63Η & 8 & (./ & ) = > & + & 3, ) (/% Ε:Φ =%> Ξ6 Ξ6,Ξ2 %) D & = > + 3 % & % =)> %< %) % 7 % ) 1 Χ < 7 Η % 9

49 / > >. < =< > = >Κ+Λ ) + : 97 + < ) =; 2> :6)7 6)7=2;>Κ7Λ ( Κ7 Λ ), & < 2Ι, ) <. & )< / 8 % < & ϑ. ) ) Κ ) Λ =%Η. 7 > ) % ). Κ )Λ(8< / )7 2

50 ) & / ϑ) ) # ), ) + ) ) /? 2. ) ) (8</ 1 1& 7 ) % 1 ) ) < )) )+). # ) % ) Κ Λ 8 ) ) ) Β ) ) Κ Λ ) // > 8 < ) +) ) < / )). ) ) )

51 + ), ) => => + /7 1 7 ) D+ & &. + <+ D Η = >) Η = >. 3, ) %. 0 % ) & Κ& ΤΛ Κ ΤΛ Κ Λ

52 Κ Λ Κ Λ /# 5 ) ϑ, 1. # ΚΛ + 0(/% = Ε:Φ> 0Ε Φ+ + %+ < < + Χ & < < ) < Χ < 0 < + < % # +

53 /#? ) 1 = > =7> =3> =)7> Ψ:) )) 66 ; 2 ) ΧΧ ; 4 ΧΧ 2 2 ; ΧΧ Ζ ΖΧ( ( : : 6 : ; 4 # : ? Π 2 Π 2 2 ) Π 2; Π 7 Π 2 2 Π Π 2 26 : 26 Π #2 (.& 2 /4& % < Η 3 )7 7 6

54 +6+ )7 ) 1 ) ). +. ) 22 / ( / / / ) + )) )/ / / ) 1 ) ) /. < / <. Κ Λ/ = + > )/ < ) + / 4

55 / 1. ) ) / > % 1 7 (4& Ι :

56 +. ) Κ Λ ΚΧΛ % % + % + D.,) = [ > ΚΛ % Κ Λ /? 33. 8< % Η 8 ) Η. Η8 & ) )?) ) ) )+ = > = > / # ) ) D ; D 2 ) &. ;

57 ( =Χ> ( ( =D> ( =7 > () ( ( = >. = > 8 ) D + & ) ) Χ ) 7) ) : 7 :, 2 //D2 72 D/D W /D2 /D 7 (4) 3

58 + 7 & % D % % + =Χϑ >. = Ο22 2 Ο2 2>& D 7 (4/ %54 # % + 6

59 // ((.Ε;2Φ ) # ) 2 (. (. # # % 31 ) Lighting Cold Cooking Brown Wet Space Heat Water Total Commercial Industrial Elec Stats % Houses 100.0% 100.0% 60.0% 100.0% 100.0% 15.0% 15.0% TWh/annum (UK total) TWh/a kwh/house/day (ALL) avg kwh/house/day kwh/house/day (installed) avg kwh/house/day Gas stats % Houses 40.0% 70.0% 70.0% TWh/annum (UK total) TWh/a kwh/house/day (ALL) avg kwh/house/day kwh/house/day (installed) avg kwh/house/day UKHouses 25,017,000 TWh/annum to kwh/house/day toe to MWh (4& 62

60 ) = 7 > & 2 2=% & 7. 2 ) 8 Θ>.., ) ), D =0 77 ). > D? 3 + => // : ) ( 2 ;1 /) =% 2 8 Θ & >?, (D?=(D?> = 7 > + 0 2Ι 8 (D?27?D =?D> (D?8 = >. 1? + L I ( ) = + t Pt MLF 1 MLF DFML t 1. +(D?=(D?> 6

61 ) => ). = > % 2Ι = > & & ? = > + % ) 8 2 Κ Λ Κ Λ ) &Κ. Λ ? 8+ + % 26 3? 7 = > & 2 & Κ Λ + i ( k DDi SI i ) T P E = f. =+>Ο++W 3 = 7 >(( Κ Λ = >. 7= > 1 ) = 7 > & & (. ( =+>= 6

62 Σ>& ) )8 / + =)((. > + & // 5 3?Α ) ) D Ι26Ι ) 5 Ι 4Ι (.. = 2> ) ) & ) 7 % = >. )) 31 = 4> ) ΕΦ W Ο46 31 W Ο4 31 W Ο = > 31Ι. Κ)Λ = ) > = > ) &) = > 6

63 ) 2 =24 Ζ22Ο :)7 :Ζ26 Ο6;)7 > // )28 & (.+ Γ 2 Γ 2 Γ (4( )( :&4&=. = 7> 26Ι ) 7, +726Ο2)7 66

64 )= > Γ 4 Ο6 ) Ο? : 7 (4+? % :4 = # + 6 # ) ) Γ % 6 # 7 (41 % :4 = ) = )> 26Ι # % # + 64

65 & Κ+Λ 8+ ) Γ ) = 7> D ; D 7 (45 % :4 = 0 # ) = > # ) ) D 2 97 D 2= > #=6 > 6:

66 7 (48 % :4 = 7 ) 2Ι= > ) (. D 2Ι D. Σ / ) 0) 7 1Χ 7 6;

67 ) ) = > % ) 7 ) D ) ) = 1)7> % 7 = 2> % Β3 Ζ /7. 7 <7 1Χ 1Χ) % Β3 Ζ3 3 1Χ /7= 2> = 26> 1Χ 8 ) Β)1Χ ) ) 6

68 ) ). /7 1 0;33?60. (1Χ ( ( 31 1Χ ) = 6> 1Χ+ ) +:6. 3 ) 7 (4. # 31 ) (. + %+ D 6 D : 31= > 6Ι 26Ι :Ι= 2> 6Ι =:Π6Ο6Ι> 31D ) Γ 31 # )2578 ) 31 # ) 4

69 26Ι 7 (4&0 <;?% :4 = 31 # D : ) =6 Ο257>= 4Ο2457>) (4&& <;% :4 = ) ) 42

70 7 (4&) <;% :4 = 31)D ; 31 +:Ι 6Ι 31 # Σ7 ) 57 + ) % 31 6Ι:6Ι #) 257 ) :57 / 31 :Ι. 31 Κ Λ # 31 Ι6Ι=6Ι :Ι>0 31 ) #= > ) % ) 26Ι= >. # = > 31 /# 0 ) 4

71 System buy price, Jan 2003 and Jan 2004 weather events Systen buy price ( /MWh) Demand (GW) System buy price Model (High) Model (Low) Model (Mid) 7 (4&/, Pr ice = Ae Bx + C Υ7 + Demand x = Capacity L arg estgeneratorcapacity %0. ) +, ( = ;Υ7Ε2 Φ> & & % Υ67 =6)7>% +( % :6)7= ( ;)7 + :6 +; Ο 6 )7 1 + & + + )7 8 < + 4

72 7 (4&( ; ) ) 3 & ) & 3 ϑ =+ > += > / < 8 % ). & [ = > ). & < & 4

73 8% # 2. ) 3 Χ ) / &,., ) ) +))8 + ) )) = 26> ) = > ) = > & )Β. ) ) 7 (4&+ 7 46

74 ?# 7?)D (D]?# ) ) 7 = > +?# 7 +?)D (D]?# 7 Η. 7 (4&1 + Ο26 + = > 2 2 +=/1.>) /1. Ρ6W26 )./1. 44

75 ;2 ) = 22> + 2Ι 67 ;:57 6 # ) 4Ι =D 2> < ). =D 24> =>, + 2 (/?# 7 (/?)D (D]?# 7. = > & = > % +: ) = > ) = > 7+ ) = > = > 4:

76 8Τ ). + =>+ /Β 1 < & ) ) & & % < ) )? + ) 3(/ 2. #Χ7# 7# + &ΕΦ. ) 2 )6 2? ( 8 6 ( +( + ) ( +( ). +?? )? ) ;

77 ) ) ) Η2 Η ) ) ) Κ Λ ) ) Κ Λ ) 1 & ). 1Ο =7> ΑΟ ) Ο= >3 % ). 23 ) 7# dt dt W P Q = mc V 7 T W b c c( t t 0 ) = + Ae b P + HT A = mc V H c = mc V % 7 + ) t = t b TW ln c A + c 0 + ) ) =2 > ;)7 = 4 >? ( = 6 > ) 2; )78 ) )? ) ) & ) ) &. ) = ) Σ> 1 ) ΚΛ 4

78 7 (4&5 % :

79 7 (4&8 % ) = > /Β 5 ) & =8< > 3 = > ) 7 ) ;6 ΚΛ + )1 22)7 = 2> 22+;6Ο;4)7 26)7 ) )?? D )??&? ) :2

80 = > = 4 >. ) )= > ) (, 7 ) & ) 7 =2> )66 7 )66 =6 > ) ) 7 ) & ) ( /Β 1 =(/> ) Κ Λ (/ ) & 1? 3 = > ) & ) 3 (/ )& & )= Σ> ) (/ ) )?? = > = 4 > (/ ) (. D (/ ) ) ( = :>7 )?? ) :

81 ) ) ( (/ ) > > + ) /Β 5 < % 7 (4&. %= > % ) ΕΦ Χ ;7 #Η 4ΕΦ 1/?1 D 1/?1 D ). ( 2 27 ; 2. ) (/ ) ). ( :

82 . ) ) ) D Η. +D & Q S = GAτ α C P [ UA( T T )] C A Α 5 = > +:6 C is the transmissivity P is the absorptivity T C is the plate temperature T A is the ambient temperature (taken from the climate data). 3 D7 = ) > & 7 T C T S ( T + T ) FW S = 2 P = TFW + mc V Χ m & & T S = T FW A + mc V T Gτ Cα P U 2 AU 1+ 2mc V FW T A /, :

83 0) = >, = 1Χ> 3 # 31 1Χ 3 ) = 2>, % & 8< ( = ) > % =(/> ) 8 3 = 6 #>6 Η Κ Λ8. & ϑ2ϑ % 26Ι &Κ,Λ 8 3 :6

84 /, (8 % 8 3 () =Θ8>Μ ( =Θ8>Μ (, =Θ8>Μ ( =Θ8>Μ 8< ( 31=Θ8>Μ ( =Θ8>Μ (1Χ =Θ8>Μ Κ Λ = [ > Β3 Ζ3 1Χ & 0<3 1Χ Κ Λ & 1Χ => Η 1Χ /, Χ 8 7 +, = :2> 0? ) ) :4

85 7& ) & & 1 P ( k) ( np) k np e = 1=)>) k + D D+ΚΛ # 2 )7 +6 &[ D )7 2 # 2 )7 + 2 ) < 0 + Γ & = > =)7> + ) ) )= 2> / 7 (4)0 D ::

86 ) ) ) 7 ) & ) ) 2 ) 7 (4)& D % )8 Ο2 ) 7 (4)) D % #&00 3 ) =Ο6 :6> =Ο26 2:6> 8 Ο2 26Ι 26 )& % Ο26 7( Η Η ). ) &) + :;

87 )Η 7( ) + /, 8 < & % 6 / 1 ) & + ΚΛ ) ) = ) > Β?Β 3Β )3 Β (?Β =0 Ζ7Ζ ) Ζ Ζ?Ζ3Ζ )3 > # ( Β 3 </ =(/> ) )373Ο3Ζ37 # ( ) =(/> ) ) ) 7Β ) ) ) Β ) 7 )( Ο7Ζ37 ( Β => ) #( Β ) Β 7 )( ) ) :

88 31535 Β & 31=5 > Β & 31=5 > (7 5 Β =5 > (1Χ5 Β1Χ =5 > (5 Β =5 > (5 Ο Ζ Ζ(7 5 Ζ(1Χ5 0Β D Β (Β (Ο0ΖD (( Β (( Ο(?Ζ(5 Ζ( Β. Β ( Β ( Ο(( Ζ Ζ. 0)5 Β) 0)7 5 Β) 0)1Χ5 Β)1Χ 0)5 Β) 0)5 Ο0)5 Ζ0)7 5 Ζ0)1Χ5 Α Β 5 Ο==( 0)5 > > D0)5 Β) D( Β (Β? Β ) = )( )3? )3 7( > = 7( 5 > 7 Η ;

89 7Κ Λ + 1Β=Υ7>= (< > ) D1Β=Υ7>= (< > D1%Β=Υ7> D/1. +Β + D/1. +ΟD1D1% D 1) Β 2 D/1. + = > 08 Β 2=>D/1. +WW2= > D/1. +22=>D/1. +ΡΡ2= 22> 7 ( 7 ( Β = > = 4 > 7 )Β = > ) )??Β )=> )( Β )= > ) Β )=7> ) = 6 > 0 Β =7> D Β =7> Β=7> Ο0 ΖD Β =7> Ο Ζ ) D = :6)7 Υ:67> D ;2

90 = ;>?DΟ= 1 1)1 > Η = > = > ΚΛ = > = 1 1)1 >3 2. = > / 1 ( = ) > % =(/> )= > / 0 8 : ;. Κ/1. +01? Λ Κ08 Λ Ζ2 D/1. + Ρ /1. +01? + + ) ) 2 D/1. + W 2/1. +01? + + ) + ) = > )) 22. D/1. + ;

91 D1% =Υ7>. /1. +01?. ) + = > ϑκ08 Λ D 1) + + ) / ) :2 & # D += ) Χ + Χ >0 D + %& = 2>) 7 ) D) += Σ> D + 8 => 27 + (<+ = >). = > D + = ϑ>7+ ;

92 . # /? + 2 D ) 3 ) ) Η D 7). / /1. +01? = 6 6> ( =Θ8>Μ ( =(/> ) ) =Θ8>Μ. =Θ8>Μ. ) =Θ8>Μ. ) =Θ8>Μ 8. =Θ8>Μ. ) =Θ8>Μ. =Θ8>Μ. ) =Θ8>Μ (=Θ8>Μ ( =Θ8>Μ ;

93 / 1 D % ) 08 2 = 22> D Κ Λ // ) & 2 = :6)7> & + / D = + 2> D +) &., = 1 1 > & / : + & 2D=7 3 7>. + = 22> = 2> = > + D+ 2 ;6

94 . < & = > + & ) /7? ) 08 +/1. + = 22> = /1. + 1) >7 ) (8</. ) ;4

95 % +) 7 (4)/ %. +) Ο4 ;% = 57 # > = > ) + % 57 = +> 3 ) = Σ> ) Κ) Λ Κ Λ ) Σ 8 ) Ο4666 ) ) /# ; + + ) + % 46 ) 2 ;:

96 Η ;;

97 (. = > # D ) # # 31 D 8 & % D Ε2:2;Φ & 4 ; =) > 6: = ) > D ϑ ) + 2 (/% = Ε:Φ> 64 +4& +1 ;

98 7 +4& +1 ΕΦ :6 2; ) # ) + ) % < => &. ) ) 7 3 ) 22 + ) 2 + D +&+ 6 D + = 2> D) + = 2> D

99 D +& 6 D + = 2> ) D %, D + + < 26Ι=> 5 :Ι=>6Ι 31 </ 31 =Σ> ) 4 ) 4Ι ) Ι=> %Ι)1Χ=47) > %Ι) 26Ι = 6)7)> 2Ι ) :6Ι =6Π26ΙΟ:6> < 657=)> ) 57=)> = > < 2

100 7 +4) 4:=. 1Χ 5 % 2 = :6)7> 7 +4/ & ) # 57 =>) )= D6 4 D6 :>.

101 =) > ). ) % + ). ) + =/ +:6)7> 7 +4( &% % 6 :2.) = > % = 6 6;+> :6)7 )

102 7 +4+ # #4 & =Ο 6 Υ:67> ) + D6 ; D6

103 7 +41 &<;:&)Α,%= :Ι 6Ι=6Ι> < 31 Υ226 ) &;6:) +Α,%# & +Α,% = Ι 1Χ 6Ι=Ι26Ι>, ) ) 31Χ <Ι1Χ 4Ι 1Χ Υ & 6Ι Υ66&= 6Ι > 1Χ ) 1Χ & 6

104 3 (= > 657 ) :6)7 3 ( 657 )? ) 7? Η?? Η ) & :ϑ= D6 ; +=/1.> ϑ = >7 /1.). ) 6:3 = + Ο6;2 Ο42> + ) ΚΛ Κ Λ =>= /1.> Σ < 0 :6)7 ) 2 4

105 %,ΚΚ %,ΚΚ Χ ; ΖΙ, 2 26 Ζ:Ι %: 2; 2; #10Χ= ΖΙ : ;; Ζ6Ι #&+Χ=,: 2 4 Ζ6Ι #&+Χ= : = 26: 2:; Ζ2Ι +4) & Υ2 4Υ2; )7 :6)7 4 )7 + )7 6 )7 :2 )7 4)7 % :5 +Κ%,= : = 7 :Κ%,= ;: :2 :Κ%,= : 6: +4/ 7 & 3, = > / :6)7 / ϑ :

106 : )7 :6)7< / ϑ ) 31 &. = >:2)7=46)7 > 6:)7 / ). < % + ) (/%Ε:Φ +Ξ4)7 = 2> Ξ2% ) )+ % 4572ΠΞ4ΟΞ4. (/ 6 +Ξ2ΟΞ6 (/%Ε:Φ Ξ2)7=) > Ξ2 ) 2)745764Ο 7< ) 3 &? 6Ι= > 31 ) ) ) 31 1Χ < ;

107 + )? ) # 57 0 Κ Λ ) ) = Ζ257> ΚΛ + / ),. ) => / ). +Υ Υ #. :6 )7 2. ;6Ι& 26Ι = > 2 2Ι ) 2 < 31 2: 2 )7 2; 26)7 = 2> ( )4Ι ; =6)7 )>

108 (1Χ)4Ι 24 = )7)> 4Ι & )7 + = >) &. ) + 2Ι ) %8( & ) ) = ) 2> 2 ) ) ) + 3 & ;57 = > 25757= >Ζ257= >Ζ2657 =>Ζ257=>Ζ57= >ΖΤ ΤΟ4;577 Σ. # +4;57Σ 2 2 & 2 =D 6 > ) = ; > % )7 & 3 4)7 +6 )7 :657 4) Σ1 )7 &) ) 2

109 )D 3.53 =D 2 > ) 6; & < ) =.(> 7 +4&0 ; ) D )7 7 =4Ι+6 +7Ο57> 2= > = ) > ) 5..( Σ 22

110 7 +4&& )# 0 Η &) )# ) =D6 > 24571) 2;57=257;57 > 2

111 7 +4&/ ) ) ) =ΖΖ > Α ) 2Ι=)7 )7 >. 4Ι 6; 2 2

112 7 +4&( ):+080= 0 1Χ )57 ) 2;57 6; : 1Χ ) 657) 2 657)<) 7 +4&+ );6:)/Α,%# &8Α,% = D :5 +Κ%,= : = 7 :Κ%,= 2;: ; :Κ%,= 2;2 26 2

113 +4( 7 ) % 2. ). D 2. 3 :6)7 ) D 2 :6)7 =/ > )= 2 )7> ),. + =Ξ4)7> ):6)7 )7 2 )7 6)7 0 :6)7 Σ %,ΚΚ %,ΚΚ Χ Ι, 2 2 2Ι %:&00Χ = 2; 2Ι : Ι :&00Χ 4 2Ι 26

114 =,:&00Χ = : = ;; 2Ι ) Υ;; )2 )7 Υ :2 ) = 2 )7> = 31> % = > ) 4Ι =)7> 0 = + > 0 ) ) ) )= >. ) 7 +4&1 )#% :+080= ϑ +=/1.>7 Κ 7( Λ ) 24

115 = &>Η Η& ) Β ) ). Κ 7( Λ)7 )7. 4) &5 )#% :+080= )= > + = +/1.Ρ2>( ) +7 =/1.W2> ) )7 ) ) = > 2 6; : % + ) ) 8 )D Υ;22 =Υ:4ΖΥ2 ΟΥ:;2> Υ2 Υ;22 Υ:;2Υ <Υ2 <6Υ4 ) 2:

116 7 +4&8 )# :+080= 7 + =4Ι )7 + 7> 7 )7 7 =)77Ο > =/1.> < 6: /1. ) 0 4: :2/1. 4: :2 ) ) + <4Ι ;67 & ΚΛ Ι% Υ&Υ; 7 ΝΟΥ4 Υ2)7= +:2> :6) Σ % % =/1.> 6 6% 6 %6.+ 2;

117 Electrical storage revenue vs RPI buy price threshold Revenue per day Buy threshold (RPI) 7 +4&. )#. ΚΛ + ; 6 ) ) % ) ) & % = )Τ Τ> ) ;% + % + 7 ) D & &) D Ξ6 =6 +Ξ2 62>D & +) 657%Ξ4)7 2

118 ) Ξ2 + + ) 57=: ) >. 57= > ΚΛ ) ) 5D % ) 2 = > Χ D6 2 D ) Ι 7 +4)0 /# 22

119 7 +4)& /# :+080=? % &. ) # ) 2Ι 2457 (/Χ 7 =;57> Χ ) ) % ) ( ) 3 ) ( ) + D & + ) ) =ΝΟ > ) 222

120 / )2 # # ) ) + ) + < ) D ) 01=0) > 01 )& ) ) ) ) ) =+> ) ) & + / (8< ) 8%. ) 22

121 7? ) +). # Υ Υ2 ) ) = > #. + ΚΛ. 3 = > ) D Κ Λ + # ) ( = + > 22

122 . + & < ) (=> & Η & < ) ) & + +? ). % ) ) ) ) % ), &) ) < + ) / Χ ) + 22

123 ) 0 ) &Β %+ ). # ) ) & 226

124 7 < ( ) D ( & & ) + & & 0& & ΚΛ ) ϑ Β Η.. ( ) ) + +(. + + ) +& & ) 224

125 # (2 # Ε % % % (/ ( / Χϑ ) 1 8 ) ) 0 0 Η (8< ( 8 )< (/ ( / (/ ( / (. (. ( ( 3Χ + 3Χ5 )Χ8 #:6)Χ ) % % 3Χ 3Χ44)Χ2)Χ:6)Χ )Χ # Γ/ Γ /?D % + ). )27 7 ϑ2οι?d?d 2Ι?? D )) %?D?Χ? Χ. # Χ= > 26Χ=> Χ Χ. # 44)Χ22)Χ )Χ # < < ) 1Χ 1 22:

126 / /1. /1. Τ /. 1% % < 8 7 / (8< ) (8< ) (8< / 1. + = > 1 < / + =/1.> + ) =Τ> / % % /. ) < = > 8 ) 7 22;

127 # # # Ν27 46Ε4Φ. Ν24Ι =0 Ν2 Ι> 32Ι # 0=2Ι ;: Ο ;2 Ε4Φ> % Ο46Π Π ;2Π2Π=242 > ΟΝ7Ψ24Ι =+> ΟΝ257Ψ24ΙΠΙ ΟΝ;7Ψ2 Ι => # ΝΟ 7Ε22Φ ; Ο:Ι Ι & # 0 0; #=(.Ε;Φ> % + # Ν27 46Ε4Φ 1) # = ) & ΝΟ2)7 > 27 1Χ 26Ι Π2Π26Ο47) % # ΝΟ64Π Π2Π Π46Π26ΝΟ27 1) # # +64Π Π6Π26Ο: =47> ; =;7)> 57=67>24 = )7)> 1Χ # ΟΙ # #=(.Ε;Φ> % + # Ν27 46Ε4Φ 22

128 1) # = ) & ΝΟ2)7 > 1) 27 6)7 +4Ι % # ΝΟ64Π Π2Π Π46Π4ΝΟ67 1) # # 64Π Π6Π4Ο57 457; =6)7)> #/ 0 8 7) 27 8 # + 2 2) ) Π2Π22Π27Ο Π27Ο 577 ) Ι # 0 < 57 Ι % ) # # % ) :6)7 )27 1 ) =) 2) 4> ) 2)2Π Π27Ο2 57 Ι= 1>% ) ## # ) 27? 6Ι 2

129 # % Κ0ΛΕ6Φ ) #Β 0 % Ε6Φ# +, )./0 12/. 34/ (. 22; & 47Π22; Ο2;57 47Π22;26Ο457 7 # :2 2Ι # = ;:> 257 % ) # 257 ) 22

130 # # 5 ( & ) ) % ;+2;+2 )Ε2Φ 2%Ψ2ΧΥ;:ΖΧ% :Ι+2+2Ο; )7 Υ6 )&. & % ( ( % : ;Ι Ι & ; : Ο 4)7 ; + :Ο;2)7 24)7 2 ϑ +24;2ΝΟ24Υ; 62 ;24 ) & & Υ Υ;. ) + & % :)7 24)7 = 4)7 > Υ Υ ; ) 2 D ) Κ Λ 4 The incentive for these people to install domestic storage is that current grid connection of domestic renewables provides vastly different (but fixed) rates for import and export. The export rate paid to the user is very low (below the lowest wholesale price). Therefore, these people currently justify their investment in battery storage because it makes them almost self-sufficient from the grid, so that they do not get punished by the imbalanced import and export rates. 2

131 3 ),. 24 Υ; = > < 24+ 4Ο264)7Υ67= )> Υ; ( 24+;2Ο2 4)7)Υ67 = )> Υ4 ; + Υ4 < Υ 4<2 26 Υ;= > & = >, 3 ) ) & # # & & Η & & ) 1 Σ% & % =2 & > 8Ο2+2+2Π=;+2;+2 >Ο6 Ο6+;2)7Ο;7 # W W &? & 2

132 2Ι ) ) 6 ΟΧ+ς+ + ςο2) Ο 2:)Γ)# Ο = 6>+ 2:ΓΟ6 65ΓΝΟ ;7 & ;24Ο:; % ) 2=2> ) =)Ο 7#> 6 = > ΑΟ%+ ) +) ΑΟ4+2+2+= 6>2+ Ο )7 3 + = :>+4Ο2; )= ) = 6>Ο6Ι > ) & < 2 )2 ; 46 Ο2+2+=46 ;>+ 2:Ο;6Γ ΝΟ: )7 3 )7 )4 )=(Ο 2 3Ο > ) =)Ο 7#> ΑΟ%+ ) +) ΑΟ=_=(> Ζ_(3>+=;6 >+ Ο2;

133 2;4=2+2+ 2:>+4Ο2 Ο =ΝΟ6Ι > Η + 3 ) & =) Σ> : )7= ) > +24)7 # #Ε;Φ% + & = ) > # 6 3 => 5 + Η = > & =+ Σ> W3 W ΙΕΦ ) 5 4 ) 6 3/// 4// &) 3 ) 3 ) 1/0 3 =3 > 67 2 Π2Ο; )3 2 =6 2>; ) ; +=Ζ24>Ο;4) =3 <Ζ24Ο2;> ;4) ;42;+2 Ο D ;6;)Γ 3 ;6; Ο2:45ΓΝΟ6 7 +:Ι 26

134 ;Ι Ι Ι 3. = >. = > &. & #. & :2) ) & :2) & 57 ;7 ;7.+ & & ) #/ < 1 E = Jω 2 Γ 2 Γ + D+ J = m r i i 2 i. J R = 2. π. r. ρ. H. r. dr = π. ρ. H. R 0 2 R J = 2. π. r. ρ. H. r. dr = π. ρ. H.( R2 2 R1 4 R1 ) ) + Γ J ρ. V. R 2 Χ / + + T ρ R ω 24

135 = >, 3 1 & 0 ( / Ε Φ & :62 22) + 68 = > ω max 1 R T ρ J ρ. V. R 2 70) ( ) R ( ) ( ) V 2. π E = Jω 45MJ 12kWh 2 % :6) Η 7 Κ Λ4 Κ Λ & / Ε Φ Ξ4)7 #? % ) 2:

136 2+2+26= + Σ> ΟαΟ2 + Work = m. c T T 2 1 p = p 2 1 V γ 1 γ.( T 2 T1 ) pv = RT 2 Ο2 6 8 Ο Ο # Ο; 4# D Ο:2;Γ)# /Ο;:Γ)#. Ο/ Ο62 ) ) ; 4# 2 :2;=; 4 >Ο; 5ΓΝΟ7 2Ι + ) ; / ) : 2 ;)7 ); 4# =4 > 6Ι Ι ) = >. = > Ο Ο 1 Ο/ Ο;:2+ 62 Ο =24> % + Ο2#= 2 2 > 7)Ο Χ = >Ο2 :2;= 2>Ο5ΓΝΟ47 6;+;Ο4 Ι % ;+;+=4>Ο2:Ι 2;

137 #7 5 Η Η Ο[?. 1, Κ, Λ +Κ Λ Κ Λ % & +2ΕΦ = > & ϑ ) =,, > => 4Γ:6)Χ% =ΝΟ 26)7> # Ε Φ Ε2Φ ΕΦ Η ), = 2 > )= )>, 7 54& )#)00%6:8 4= 2

138 #/ 58 = > = > & = > = > +. & + 8? % Baseline demand + - Actual demand G(z) Price H(z). 5=Η>] & 3=Η> ) & = :> Η + ( 1 + ( 1 2

139 Baseline Demand - D Actual Demand - D 0 G(z) (Price - P o )/P 0 H(z) 3 ( 1 DW /1. + = 22 22> ϑ 5=Η> 1 Bx Ae + C + DuOS Pr ice = ( 1 P 0 Demand x = Capacity L arg estgeneratorcapacity 5=Η> P BAe Bx ( Capacity L arg estgeneratorcapacity) 0 3=Η>3=Η> =>] ] = 7> ) Η ;. Η ) Χ ) )

140 +.),)Β )ΣΗ Η 2 8 3=Η> D + H R1Buy P N PS P R2Buy 8 3 P S PR Buy PR 2Buy ) PR 1 Buy 6 PR 2 Buy W2 +Β ( / 1. ) 1. & 5=Η> 3=Η> G( z) 1+ G( z) H ( z) Η Η& 1+ G( z) H ( z). & 1+ Kg( z) # & =Η>. =Η>Η 2 #7 Η& ΗΟ # 2

141 % +Η. # 7 # )) + +, Ο6 Ο657? 5 Ο57ΟW? 5 Ο657 1 Ο26 )7=26Υ7> 150 C DUoS ln A 3 x = B =D 2>%Ο20Ο26 Ο2 (;Υ7 ( +Π657Ο :57 7 & + + K K Storage Elasticity < 1 < 1 & + P P 0 0 BAe ( Capacity Larg estgeneratorcapacity ) BAe Bx Bx P N H P S P R1Buy ( ) [ E ] arg 1 0D0 < Capacity L estgeneratorcapacity R2Buy < 1 2

142 15* e *10 9 ( ) 15* e *10 15* * ( ) 6 25*10 P S < [ E * 46.5*10 ] < * * *10 P S < [ E * 47.0 *10 ] < 1 0 P S Ρ:7 Ρ; 7 7 ΒΒ6 Β; # # ; ::7 0 Η + = > D 2

143 # 14 The following algorithm finds the angles of the sun for a given location on the planet and time, and computes these angles relative to a solar panel orientation. The collectable "power factor" of the solar collector relative to the total direct normal solar irradiance available is calculated. Inputs:- Latitude, Longitude Time (in GMT, relative to midday on 21 June - at time t=0 a point at longitude 0 in the N hemisphere has it's highest sun angle possible) Azimuth (towards East) and declination rotation offsets for the solar panel from nominal flat. Outputs:- Solar declination, in degrees from directly overhead Solar bearing, a compass bearing of the sun position relative to true North The AimFactor power, which is the power available relative to direct normal solar The bearing, declination, and overall angle errors of the panel orientation The earth centre is considered stationary at [0,0,0] with the sun stationary at [infinity,0,0] We begin by considering the point closest to the sun at t=0, on the equator.this is a vector of [1,0,0]. This vector towards the sun points directly overhead in a direction of [1,0,0]. We also know that views East and North from this point at this time are [0,1,0] and [0,0,1] respectively. Know we apply the following rotations in order, to find these three vector directions for the correct location and time:- Rotation of latitude Rotation of longitude Rotation due to rotation of earth about N-S (the z) axis (every 23 hours 56 minutes) Rotation of the N-S axis of earth about the y axis (23.45 degrees off axis) Rotation earth and its N-S axis about the z axis every days The three transformed (overhead, East and West view) vectors for are now compared to the sun-view vector which remains [1,0,0] The three vectors EastVector, NorthVector and OverheadPointer form a right-handed orthogonal set of axes. We use these three vectors to form the actual panel pointer vector, by using a rotation towards East and a declination from overhead. This is an azimuth-declination transform similar to radar antenna pointing. > restart; > RzAnnual:=linalg[matrix](3,3,[[cos(epsilon),- sin(epsilon),0],[sin(epsilon),cos(epsilon),0],[0,0,1]]); cos( ε ) sin( ε ) 0 RzAnnual := sin( ε ) cos( ε ) > RyAxisOffset:=linalg[matrix](3,3,[[cos(phi),0,sin(phi)],[0,1,0 ],[-sin(phi),0,cos(phi)]]); 26

144 RyAxisOffset cos( φ ) 0 sin( φ ) := sin( φ ) 0 cos( φ ) > RzDaily:=linalg[matrix](3,3,[[cos(theta),- sin(theta),0],[sin(theta),cos(theta),0],[0,0,1]]); cos( θ ) sin( θ ) 0 RzDaily := sin( θ ) cos( θ ) > RzLongitude:=linalg[matrix](3,3,[[cos(alpha),- sin(alpha),0],[sin(alpha),cos(alpha),0],[0,0,1]]); cos( α ) sin( α ) 0 RzLongitude := sin( α ) cos( α ) > RyLatitude:=linalg[matrix](3,3,[[cos(beta),0,sin(beta)],[0,1,0 ],[-sin(beta),0,cos(beta)]]); RyLatitude cos( β ) 0 sin( β ) := sin( β ) 0 cos( β ) > OverheadRotationCombo:=linalg[multiply](RzAnnual,RyAxisOffset, RzDaily,RzLongitude,RyLatitude); OverheadRotationCombo := [ ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) cos( β ) cos( ε ) sin( φ ) sin( β ), ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) sin( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) cos( α ), ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) sin( β ) + cos( ε ) sin( φ ) cos( β ) ] [ ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) cos( β ) sin( ε ) sin( φ ) sin( β ), ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) sin( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) cos( α ), ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) sin( β ) + sin( ε ) sin( φ ) cos( β ) ] [ ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) cos( β ) cos( φ ) sin( β ), sin( φ ) cos( θ ) sin( α ) + sin( φ ) sin( θ ) cos( α ), ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) sin( β ) + cos( φ ) cos( β ) ] > OverheadPointer:=linalg[multiply](OverheadRotationCombo,linalg [vector]([1,0,0])); 24

145 OverheadPointer := [ ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) cos( β ) cos( ε ) sin( φ ) sin( β ), ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) cos( β ) sin( ε ) sin( φ ) sin( β ), ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) cos( β ) cos( φ ) sin( β ) ] > NorthVector:=linalg[multiply](OverheadRotationCombo,linalg[vec tor]([0,0,1])); NorthVector := [ ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) sin( β ) + cos( ε ) sin( φ ) cos( β ), ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) sin( β ) + sin( ε ) sin( φ ) cos( β ), ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) sin( β ) + cos( φ ) cos( β ) ] > EastVector:=linalg[multiply](OverheadRotationCombo,linalg[vect or]([0,1,0])); EastVector := [ ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) sin( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) cos( α ), ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) sin( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) cos( α ), sin( φ ) cos( θ ) sin( α ) + sin( φ ) sin( θ ) cos( α ) ] > PanelPointer:=evalm(linalg[scalarmul](OverheadPointer,cos(SPD) )+linalg[scalarmul](eastvector,sin(spd)*sin(sre))- linalg[scalarmul](northvector,sin(spd)*cos(sre))); PanelPointer := [ cos( SPD ) ( ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) cos( β ) cos( ε ) sin( φ ) sin( β ) ) + sin( SPD ) sin( SRE ) ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) sin( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) cos( α ) ) sin( SPD ) cos( SRE ) ( ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) sin( β ) + cos( ε ) sin( φ ) cos( β ) ), cos( SPD ) ( ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) cos( β ) 2:

146 sin( ε ) sin( φ ) sin( β ) ) + sin( SPD ) sin( SRE ) ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) sin( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) cos( α ) ) sin( SPD ) cos( SRE ) ( ( ( sin( ε ) cos( φ ) cos( θ ) + cos( ε ) sin( θ ) ) cos( α ) + ( sin( ε ) cos( φ ) sin( θ ) + cos( ε ) cos( θ ) ) sin( α ) ) sin( β ) + sin( ε ) sin( φ ) cos( β ) ), cos( SPD ) ( ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) cos( β ) cos( φ ) sin( β ) ) + sin( SPD ) sin( SRE ) ( sin( φ ) cos( θ ) sin( α ) + sin( φ ) sin( θ ) cos( α ) ) sin( SPD ) cos( SRE ) ( ( sin( φ ) cos( θ ) cos( α ) + sin( φ ) sin( θ ) sin( α ) ) sin( β ) + cos( φ ) cos( β ) ) ] > SunDeclinationFromOverhead_F:=arccos(OverheadPointer[1])*180/P i; SunDeclinationFromOverhead_F := 180 arccos ( ( ( cos( ε ) cos( φ ) cos( θ ) sin( ε ) sin( θ ) ) cos( α ) + ( cos( ε ) cos( φ ) sin( θ ) sin( ε ) cos( θ ) ) sin( α ) ) cos( β ) cos( ε ) ( ) sin φ sin( β ) )/ π > North:=linalg[dotprod](NorthVector,linalg[vector]([1,0,0])); North := sin( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) sin( β ) cos( α ) sin( ε ) sin( θ ) sin( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) sin( β ) sin( α ) sin( ε ) cos( θ ) + cos( ε ) sin( φ ) cos( β ) > East:=linalg[dotprod](EastVector,linalg[vector]([1,0,0])); East := sin( α ) cos( ε ) cos( φ ) cos( θ ) + sin( α ) sin( ε ) sin( θ ) cos( α ) cos( ε ) cos( φ ) sin( θ ) cos( α ) sin( ε ) cos( θ ) > SunBearing:=arctan(East,North)*180/Pi; SunBearing := 180 arctan ( sin( α ) cos( ε ) cos( φ ) cos( θ ) + sin( α ) sin( ε ) sin( θ ) cos( α ) cos( ε ) cos( φ ) sin( θ ) cos( α ) sin( ε ) cos( θ ), sin( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) sin( β ) cos( α ) sin( ε ) sin( θ ) sin( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) sin( β ) sin( α ) sin( ε ) cos( θ ) + cos( ε ) sin( φ ) cos( β ) )/ π > AimFactor:=evalm(linalg[dotprod](PanelPointer,linalg[vector]([ 1,0,0]))); 2;

147 AimFactor := cos( SPD ) cos( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) cos( SPD ) cos( β ) cos( α ) sin( ε ) sin( θ ) cos( SPD ) cos( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) cos( SPD ) cos( β ) sin( α ) sin( ε ) cos( θ ) cos( SPD ) cos( ε ) sin( φ ) sin( β ) sin( SPD ) sin( SRE ) sin( α ) cos( ε ) cos( φ ) cos( θ ) + sin( SPD ) sin( SRE ) sin( α ) sin( ε ) sin( θ ) sin( SPD ) sin( SRE ) cos( α ) cos( ε ) cos( φ ) sin( θ ) sin( SPD ) sin( SRE ) cos( α ) sin( ε ) cos( θ ) sin( SPD ) cos( SRE ) sin( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) + sin( SPD ) cos( SRE ) sin( β ) cos( α ) sin( ε ) sin( θ ) + sin( SPD ) cos( SRE ) sin( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) + sin( SPD ) cos( SRE ) sin( β ) sin( α ) sin( ε ) cos( θ ) sin( SPD ) cos( SRE ) cos( ε ) sin( φ ) cos( β ) > SunOffsetFromPanelDegs_F:=arccos(AimFactor)*180/Pi; SunOffsetFromPanelDegs_F := 180 ( π arccos ( cos( SPD ) cos( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) + cos( SPD ) cos( β ) cos( α ) sin( ε ) sin( θ ) + cos( SPD ) cos( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) + cos( SPD ) cos( β ) sin( α ) sin( ε ) cos( θ ) + cos( SPD ) cos( ε ) sin( φ ) sin( β ) + sin( SPD ) sin( SRE ) sin( α ) cos( ε ) cos( φ ) cos( θ ) sin( SPD ) sin( SRE ) sin( α ) sin( ε ) sin( θ ) + sin( SPD ) sin( SRE ) cos( α ) cos( ε ) cos( φ ) sin( θ ) + sin( SPD ) sin( SRE ) cos( α ) sin( ε ) cos( θ ) + sin( SPD ) cos( SRE ) sin( β ) cos( α ) cos( ε ) cos( φ ) cos( θ ) sin( SPD ) cos( SRE ) sin( β ) cos( α ) sin( ε ) sin( θ ) sin( SPD ) cos( SRE ) sin( β ) sin( α ) cos( ε ) cos( φ ) sin( θ ) sin( SPD ) cos( SRE ) sin( β ) sin( α ) sin( ε ) cos( θ ) + sin( SPD ) cos( SRE ) cos( ε ) sin( φ ) cos( β ) ) )/ π > DPE_F:=evalm(linalg[dotprod](PanelPointer,EastVector)); > DPN_F:=evalm(linalg[dotprod](PanelPointer,NorthVector)); > PanelBearing:=arctan(DPE,DPN)*180/Pi; arctan ( DPE, DPN ) PanelBearing := 180 π > PanelDeclination_F:=arccos(evalm(linalg[dotprod](PanelPointer, OverheadPointer)))*180/Pi; Above are all the big formulas. Below we put the numbers in 2

148 phi:=23.45*pi/180; φ := π > LongEastDegs:=-3.169; LatNDegs:=55.977; LongEastDegs := LatNDegs := > SolarPanelRotationToEast:=0; SolarPanelDeclination:=30; := SolarPanelRotationToEast 0 > Date:=242.5; SolarPanelDeclination := 30 Date := t is time (in days) relative to midday (GMT) on June 21 of a reference year when Greenwich obtains it's most overhead sun possible at this time. > t:=(date-171.5); t := 71.0 > alpha:=longeastdegs*pi/180; α := π > beta:=-latndegs*pi/180; β := π > SRE:=SolarPanelRotationToEast*Pi/180; SPD:=SolarPanelDeclination*Pi/180; SRE := 0 SPD := 1 6 π > epsilon:=-t/365.25*2*pi; ε := π > theta:=t*(1+1/365.25)*2*pi; θ := π > SB:=evalf(SunBearing); SB2:=round(SB); SunBearingTrue:=SB2 mod SB-SB2; SB := SB2 := 174 SunBearingTrue := > SunDeclinationFromOverhead:=evalf(SunDeclinationFromOverhead_F ); SunDeclinationFromOverhead := > SunOffsetFromPanelDegs:=evalf(SunOffsetFromPanelDegs_F); PowerRelativeToDirectNormal:=evalf(AimFactor); 2

149 SunOffsetFromPanelDegs := PowerRelativeToDirectNormal := > DPE:=evalf(DPE_F); DPN:=evalf(DPN_F); PB:=evalf(PanelBearing); PB2:=round(PB); PanelBearingTrue:=PB2 mod PB-PB2; BE:=SunBearingTrue-PanelBearingTrue; BE2:=round(BE); BearingError:=(BE2 +180) mod BE-BE2; DPE := DPN := PB := PB2 := 180 PanelBearingTrue := BE := BE2 := -6 BearingError := > PanelDeclination:=evalf(PanelDeclination_F); DeclinationError:=SunDeclinationFromOverhead-PanelDeclination; PanelDeclination := > DeclinationError :=

150 2 %Γ = > Ρ β,β β β ββw %D/?%D/?= > Ρ Η 0(2? W %?= > Ρ )3. +2W 02 ;/ / =2 ;>6 6 05% Ρ ) 7β +W 4 0(2 ; 0 3 : (/%( = > Ρ W ; (. #=>= > Ρ ) β +W (. 2Ρ ) +W 2 (. = > Ρ ) β +W 22 (. = > Ρ ) β +W 2 / = > Ρ &).7β()β?W 2 = > Ρ )βββ ββw 2 + = >Ρ + )W 26 %+% = >Ρ W 24 8 )% = >Ρ )W 2: D 2 / 2:=2 6>;2 2; D 2 6 2:8=2 6> 2 : % 2ΚΓ,ΜΛ 2 Γ/ Γ / = >Ρ,)W?2( ) Ρ W / 1 = >Ρ ΗΜ%.(Ο22W 2

151 =>= > Ρ ) β β W 4 8(/.8 ( ( / 0/ 8 ϑ1 ) Ρ W : 8%8 % 0 = > Ρ +β W ; 8.%7 = > Ρ )β2w / = >Ρ W 2 / = > Ρ Μ(.(Ο;29.(Ο 44W = >Ρ ))W 7)= > Ρ ) ) β β βw 2

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan 1. What is the most likely wavelength and frequency of light emitted from the sun which has a black body temperature of about 6600 deg K? What

More information

Energy Forecasting Customers: Analysing end users requirements Dec 3rd, 2013 Carlos Alberto Castaño, PhD Head of R&D

Energy Forecasting Customers: Analysing end users requirements Dec 3rd, 2013 Carlos Alberto Castaño, PhD Head of R&D IT Solutions for Renewables Energy Forecasting Customers: Analysing end users requirements Dec 3rd, 2013 Carlos Alberto Castaño, PhD Head of R&D carlos.castano@gnarum.com I. Who we are II. Customers Profiles

More information

Autoregressive modelling for rolling element bearing fault diagnosis

Autoregressive modelling for rolling element bearing fault diagnosis Al-Bugharbee, H and Trendafilova, I (2015) Autoregressive modelling for rolling element bearing fault diagnosis. Journal of Physics: Conference Series, 628 (1). ISSN 1742-6588, http://dx.doi.org/10.1088/1742-6596/628/1/012088

More information

Battery Energy Storage

Battery Energy Storage Battery Energy Storage Implications for Load Shapes and Forecasting April 28, 2017 TOPICS» What is Energy Storage» Storage Market, Costs, Regulatory Background» Behind the Meter (BTM) Battery Storage Where

More information

FORECAST ACCURACY REPORT 2017 FOR THE 2016 NATIONAL ELECTRICITY FORECASTING REPORT

FORECAST ACCURACY REPORT 2017 FOR THE 2016 NATIONAL ELECTRICITY FORECASTING REPORT FORECAST ACCURACY REPORT 2017 FOR THE 2016 NATIONAL ELECTRICITY FORECASTING REPORT Published: November 2017 Purpose The National Electricity Rules (Rules) require AEMO to report to the Reliability Panel

More information

4. Solar radiation on tilted surfaces

4. Solar radiation on tilted surfaces 4. Solar radiation on tilted surfaces Petros Axaopoulos TEI of Athens Greece Learning Outcomes After studying this chapter, readers will be able to: define the direct, diffuse and reflected solar radiation

More information

(2008) 74 (5) ISSN

(2008) 74 (5) ISSN Eliasson, Bengt and Shukla, Padma (008) Ion solitary waves in a dense quantum plasma. Journal of Plasma Physics, 74 (5). pp. 581-584. ISSN 00-3778, http://dx.doi.org/10.1017/s0037780800737x This version

More information

WIND INTEGRATION IN ELECTRICITY GRIDS WORK PACKAGE 3: SIMULATION USING HISTORICAL WIND DATA

WIND INTEGRATION IN ELECTRICITY GRIDS WORK PACKAGE 3: SIMULATION USING HISTORICAL WIND DATA WIND INTEGRATION IN ELECTRICITY GRIDS WORK PACKAGE 3: SIMULATION USING PREPARED BY: Strategy and Economics DATE: 18 January 2012 FINAL Australian Energy Market Operator Ltd ABN 94 072 010 327 www.aemo.com.au

More information

Power Engineering II. Fundamental terms and definitions

Power Engineering II. Fundamental terms and definitions Fundamental terms and definitions Power engineering A scientific discipline that focuses on: Generation of electrical energy (EE) Transmission and distribution of EE Consumption of EE Power grid operation

More information

not for commercial-scale installations. Thus, there is a need to study the effects of snow on

not for commercial-scale installations. Thus, there is a need to study the effects of snow on 1. Problem Statement There is a great deal of uncertainty regarding the effects of snow depth on energy production from large-scale photovoltaic (PV) solar installations. The solar energy industry claims

More information

Planning a 100 percent renewable electricity system

Planning a 100 percent renewable electricity system Planning a 100 percent renewable electricity system Andy Philpott Electric Power Optimization Centre University of Auckland www.epoc.org.nz (Joint work with Michael Ferris) INI Open for Business Meeting,

More information

Optimal Demand Response

Optimal Demand Response Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech June 2011 Outline o Motivation o Demand response model o Some results Wind power over land (outside

More information

Chapter 1 Solar Radiation

Chapter 1 Solar Radiation Chapter 1 Solar Radiation THE SUN The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 10 9 m It is, on the average, 1.5 10 11 m away from the earth. The sun rotates on its axis

More information

4sec 2xtan 2x 1ii C3 Differentiation trig

4sec 2xtan 2x 1ii C3 Differentiation trig A Assignment beta Cover Sheet Name: Question Done Backpack Topic Comment Drill Consolidation i C3 Differentiation trig 4sec xtan x ii C3 Differentiation trig 6cot 3xcosec 3x iii C3 Differentiation trig

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

Energy Use in Homes 2007

Energy Use in Homes 2007 Energy Use in Homes 2007 A series of reports on domestic energy use in England Space and Water Heating Energy Use in Homes 2007 A series of reports on domestic energy use in England This is one of a series

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *7651586991* PHYSICS 0625/33 Paper 3 Extended May/June 2015 1 hour 15 minutes Candidates answer on

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Y1 Double Maths Assignment λ (lambda) Exam Paper to do Core 1 Solomon C on the VLE. Drill

Y1 Double Maths Assignment λ (lambda) Exam Paper to do Core 1 Solomon C on the VLE. Drill α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Nature is an infinite sphere of which the centre is everywhere and the circumference nowhere Blaise Pascal Y Double Maths Assignment λ (lambda) Tracking

More information

NEW GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1

NEW GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 Surname Other Names Centre Number 0 Candidate Number NEW GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 ADDITIONAL MATERIALS In addition to this paper you may require a calculator. INSTRUCTIONS TO CANDIDATES

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4694696559* GEOGRAPHY 0460/23 Paper 2 October/November 2015 Candidates answer on the Question Paper.

More information

Alberto Troccoli, Head of Weather and Energy Research Unit, CSIRO, Australia ICCS 2013 Jamaica, 5 December 2013 (remotely, unfortunately)

Alberto Troccoli, Head of Weather and Energy Research Unit, CSIRO, Australia ICCS 2013 Jamaica, 5 December 2013 (remotely, unfortunately) 013 Alberto Troccoli, Head of Weather and Energy Research Unit, CSIRO, Australia ICCS 013 Jamaica, 5 December 013 (remotely, unfortunately) Historical and projected changes in World primary energy demand

More information

ASSIGNMENT COVER SHEET omicron

ASSIGNMENT COVER SHEET omicron ASSIGNMENT COVER SHEET omicron Name Question Done Backpack Ready for test Drill A differentiation Drill B sketches Drill C Partial fractions Drill D integration Drill E differentiation Section A integration

More information

Value of Forecasts in Unit Commitment Problems

Value of Forecasts in Unit Commitment Problems Tim Schulze, Andreas Grothery and School of Mathematics Agenda Motivation Unit Commitemnt Problem British Test System Forecasts and Scenarios Rolling Horizon Evaluation Comparisons Conclusion Our Motivation

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

SECOND GENERAL REPORT - APRIL 1954 35 During the same period, France and the Saar increased their hard coal purchases from other countries by 689,000 metric tons, or 14.4 %, with 5,486,000 tons in 1953

More information

Needs for Flexibility Caused by the Variability and Uncertainty in Wind and Solar Generation in 2020, 2030 and 2050 Scenarios

Needs for Flexibility Caused by the Variability and Uncertainty in Wind and Solar Generation in 2020, 2030 and 2050 Scenarios Downloaded from orbit.dtu.dk on: Jan 12, 2019 Needs for Flexibility Caused by the Variability and Uncertainty in Wind and Solar Generation in 2020, 2030 and 2050 Scenarios Koivisto, Matti Juhani; Sørensen,

More information

Numerical illustration

Numerical illustration A umerical illustration Inverse demand is P q, t = a 0 a 1 e λ 2t bq, states of the world are distributed according to f t = λ 1 e λ 1t, and rationing is anticipated and proportional. a 0, a 1, λ = λ 1

More information

Into Avista s Electricity Forecasts. Presented by Randy Barcus Avista Chief Economist Itron s Energy Forecaster s Group Meeting

Into Avista s Electricity Forecasts. Presented by Randy Barcus Avista Chief Economist Itron s Energy Forecaster s Group Meeting Incorporating Global Warming Into Avista s Electricity Forecasts Presented by Randy Barcus Avista Chief Economist Itron s Energy Forecaster s Group Meeting May 1, 009 Las Vegas, Nevada Presentation Outline

More information

GCSE 4463/02 PHYSICS 1 HIGHER TIER SCIENCE A/PHYSICS. A.M. MONDAY, 15 June hour S Centre Number. Candidate Number.

GCSE 4463/02 PHYSICS 1 HIGHER TIER SCIENCE A/PHYSICS. A.M. MONDAY, 15 June hour S Centre Number. Candidate Number. Surname Centre Number Candidate Number Other Names 0 GCSE 4463/02 SCIENCE A/PHYSICS S15-4463-02 PHYSICS 1 HIGHER TIER A.M. MONDAY, 15 June 2015 1 hour For s use Question Maximum Mark Mark Awarded 1. 13

More information

The Spatial Analysis of Wind Power on Nodal Prices in New Zealand

The Spatial Analysis of Wind Power on Nodal Prices in New Zealand The Spatial Analysis of Wind Power on Nodal Prices in New Zealand Le Wen Research Fellow Energy Centre The University of Auckland l.wen@auckland.ac.nz 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

More information

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, Seoul National University and Princeton

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, Seoul National University and Princeton Dynamics of Firms and Trade in General Equilibrium Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, Seoul National University and Princeton Figure a. Aggregate exchange rate disconnect (levels) 28.5

More information

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value APPENDIX C USEFUL INFORMATION 1247 C USEFUL INFORMATION This appendix is broken into several tables. Table C1, Important Constants Table C2, Submicroscopic Masses Table C3, Solar System Data Table C4,

More information

Simulation of diffuse reflectance for characterisation of particle suspensions

Simulation of diffuse reflectance for characterisation of particle suspensions Thomson, Kelly and Stoliarskaia, Daria and Tiernan-Vandermotten, Sarra and Lue, Leo and Chen, Yi-Chieh (2017) Simulation of diffuse reflectance for characterisation of particle suspensions. In: Optical

More information

5, 0. Math 112 Fall 2017 Midterm 1 Review Problems Page Which one of the following points lies on the graph of the function f ( x) (A) (C) (B)

5, 0. Math 112 Fall 2017 Midterm 1 Review Problems Page Which one of the following points lies on the graph of the function f ( x) (A) (C) (B) Math Fall 7 Midterm Review Problems Page. Which one of the following points lies on the graph of the function f ( ) 5?, 5, (C) 5,,. Determine the domain of (C),,,, (E),, g. 5. Determine the domain of h

More information

Math 112 Spring 2018 Midterm 1 Review Problems Page 1

Math 112 Spring 2018 Midterm 1 Review Problems Page 1 Math Spring 8 Midterm Review Problems Page Note: Certain eam questions have been more challenging for students. Questions marked (***) are similar to those challenging eam questions.. Which one of the

More information

New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1

New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 Surname Other Names Centre Number 0 Candidate Number New GCSE 4463/01 SCIENCE A FOUNDATION TIER PHYSICS 1 P.M. THURSDAY, 17 January 2013 1 hour Question For s use Maximum Mark Mark Awarded 1. 2 2. 3 3.

More information

2018 FORECAST ACCURACY BENCHMARKING SURVEY AND ENERGY TRENDS. Mark Quan

2018 FORECAST ACCURACY BENCHMARKING SURVEY AND ENERGY TRENDS. Mark Quan 2018 FORECAST ACCURACY BENCHMARKING SURVEY AND ENERGY TRENDS Mark Quan Please Remember» Phones are Muted: In order to help this session run smoothly, your phones are muted.» Full Screen Mode: To make the

More information

Further Maths A2 (M2FP2D1) Assignment ψ (psi) A Due w/b 19 th March 18

Further Maths A2 (M2FP2D1) Assignment ψ (psi) A Due w/b 19 th March 18 α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω The mathematician s patterns, like the painter s or the poet s, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious

More information

Any correspondence concerning this service should be sent to The Strathprints Administrator:

Any correspondence concerning this service should be sent to The Strathprints Administrator: Sullivan, J.M. and Wilson, S.K. and Duffy, B.R. 2008 Air-blown rivulet flow of a perfectly wetting fluid on an inclined substrate. In: Progress in Industrial Mathematics at ECMI 2006. Springer, pp. 774-778.

More information

MATHEMATICS: SPECIALIST 3A/3B

MATHEMATICS: SPECIALIST 3A/3B Western Australian Certificate of Education Examination, 2014 Question/Answer Booklet MATHEMATICS: SPECIALIST 3A/3B Section Two: Calculator-assumed Please place your student identification label in this

More information

Speedwell High Resolution WRF Forecasts. Application

Speedwell High Resolution WRF Forecasts. Application Speedwell High Resolution WRF Forecasts Speedwell weather are providers of high quality weather data and forecasts for many markets. Historically we have provided forecasts which use a statistical bias

More information

Calculating equation coefficients

Calculating equation coefficients Solar Energy 1 Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

Renewables and the Smart Grid. Trip Doggett President & CEO Electric Reliability Council of Texas

Renewables and the Smart Grid. Trip Doggett President & CEO Electric Reliability Council of Texas Renewables and the Smart Grid Trip Doggett President & CEO Electric Reliability Council of Texas North American Interconnected Grids The ERCOT Region is one of 3 North American grid interconnections. The

More information

License: Creative Commons Attribution Non-commercial No Derivatives

License: Creative Commons Attribution Non-commercial No Derivatives Title Type URL Design in the Time of Policy Problems Article Date 2016 Citation Creators http://ualresearchonline.arts.ac.uk/9542/ Kimbell, Lucy (2016) Design in the Time of Policy Problems. Proceedings

More information

A new stochastic program to facilitate intermittent renewable generation

A new stochastic program to facilitate intermittent renewable generation A new stochastic program to facilitate intermittent renewable generation Golbon Zakeri Geoff Pritchard, Mette Bjorndal, Endre Bjorndal EPOC UoA and Bergen, IPAM 2016 Premise for our model Growing need

More information

Polynomial Matrix Formulation-Based Capon Beamformer

Polynomial Matrix Formulation-Based Capon Beamformer Alzin, Ahmed and Coutts, Fraser K. and Corr, Jamie and Weiss, Stephan and Proudler, Ian K. and Chambers, Jonathon A. (26) Polynomial matrix formulation-based Capon beamformer. In: th IMA International

More information

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT Bringing Renewables to the Grid John Dumas Director Wholesale Market Operations ERCOT 2011 Summer Seminar August 2, 2011 Quick Overview of ERCOT The ERCOT Market covers ~85% of Texas overall power usage

More information

GCSE 0237/02 SCIENCE HIGHER TIER PHYSICS 1

GCSE 0237/02 SCIENCE HIGHER TIER PHYSICS 1 Surname Centre Number Candidate Number Other Names 0 GCSE 0237/02 SCIENCE HIGHER TIER PHYSICS 1 P.M. FRIDAY, 15 June 2012 45 minutes ADDITIONAL MATERIALS For s use Question Maximum Mark 1. 5 2. 5 3. 8

More information

Multivariate Regression Model Results

Multivariate Regression Model Results Updated: August, 0 Page of Multivariate Regression Model Results 4 5 6 7 8 This exhibit provides the results of the load model forecast discussed in Schedule. Included is the forecast of short term system

More information

Implementation Status & Results Argentina AR RENEW.ENERGY R.MKTS (P006043)

Implementation Status & Results Argentina AR RENEW.ENERGY R.MKTS (P006043) Public Disclosure Authorized Public Disclosure Authorized losure Authorized Public Disclosure Authorized Implementation Status & Results Argentina AR RENEW.ENERGY R.MKTS (P006043) Operation Name: AR RENEW.ENERGY

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Port Stanley Observatory Monthly Magnetic Bulletin July 2010 10/07/PS Jason Islands a ar C West Falkland Kin gg eor ge B Port Salavador ay Weddell Island Mount Osborne So un d

More information

Global Coal Bed Methane (CBM) Market Professional Survey Report 2016

Global Coal Bed Methane (CBM) Market Professional Survey Report 2016 Published on Market Research Reports Inc. (https://www.marketresearchreports.com) Home > Global Coal Bed Methane (CBM) Market Professional Survey Report 2016 Global Coal Bed Methane (CBM) Market Professional

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A. and Macdonald, M. and McInnes, C.R. (2007) Optical solar sail degradation modelling. In: 1st International

More information

CAISO Participating Intermittent Resource Program for Wind Generation

CAISO Participating Intermittent Resource Program for Wind Generation CAISO Participating Intermittent Resource Program for Wind Generation Jim Blatchford CAISO Account Manager Agenda CAISO Market Concepts Wind Availability in California How State Supports Intermittent Resources

More information

AME LEX-4 Solar Panels Week 2-3

AME LEX-4 Solar Panels Week 2-3 AME 20213 LEX-4 Solar Panels Week 2-3 TA: Dustin Coleman Email: dcolema4@nd.edu LEX-4 website : www.nd.edu/ dcolema4/homepage/ame 20213.html Report Due: May 3, 2011 Last Revised: April 18, 2011 Overview

More information

Skilful seasonal predictions for the European Energy Industry

Skilful seasonal predictions for the European Energy Industry Skilful seasonal predictions for the European Energy Industry Hazel Thornton, Philip Bett, Robin Clark, Adam Scaife, Brian Hoskins, David Brayshaw WGSIP, 10/10/2017 Outline Energy industry and climate

More information

MATHEMATICS: SPECIALIST 3A/3B

MATHEMATICS: SPECIALIST 3A/3B Western Australian Certificate of Education Examination, 2015 Question/Answer Booklet MATHEMATICS: SPECIALIST 3A/3B Section Two: Calculator-assumed Please place your student identification label in this

More information

A NAVIER-STOKES MODEL INCORPORATING THE EFFECTS OF NEAR- WALL MOLECULAR COLLISIONS WITH APPLICATIONS TO MICRO GAS FLOWS

A NAVIER-STOKES MODEL INCORPORATING THE EFFECTS OF NEAR- WALL MOLECULAR COLLISIONS WITH APPLICATIONS TO MICRO GAS FLOWS Arlemark, E.J. and Dadzie, S.K. and Reese, J.M. (2008) A Navier-Stokes model incorporating the effects of near-wall molecular collisions with applications to micro gas flows. In: 1st European Conference

More information

Thursday 13 June 2013 Morning

Thursday 13 June 2013 Morning Thursday 13 June 2013 Morning A2 GCE MATHEMATICS (MEI) 4754/01B Applications of Advanced Mathematics (C4) Paper B: Comprehension INSERT * 4 7 1 5 7 1 0 6 1 3 * INFORMATION FOR CANDIDATES This Insert contains

More information

Demand Forecasting Reporting Period: 19 st Jun th Sep 2017

Demand Forecasting Reporting Period: 19 st Jun th Sep 2017 N A T I O N A L G R I D P A G E 1 O F 21 C O M M E R C I A L, E L E C T R I C I T Y C O M M E R C I A L O P E R A T I O N S Demand Forecasting Reporting Period: 19 st Jun 2017 10 th Sep 2017 EXECUTIVE

More information

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min

A2 Assignment zeta Cover Sheet. C3 Differentiation all methods. C3 Sketch and find range. C3 Integration by inspection. C3 Rcos(x-a) max and min A Assignment zeta Cover Sheet Name: Question Done Backpack Ready? Topic Comment Drill Consolidation M1 Prac Ch all Aa Ab Ac Ad Ae Af Ag Ah Ba C3 Modulus function Bb C3 Modulus function Bc C3 Modulus function

More information

THE SOLAR SYSTEM NOTE TAKING WORKSHEET ANSWERS

THE SOLAR SYSTEM NOTE TAKING WORKSHEET ANSWERS page 1 / 5 page 2 / 5 the solar system note pdf The Solar System is the gravitationally bound planetary system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that

More information

Stationary Booster Reflectors for Solar Thermal Process Heat Generation

Stationary Booster Reflectors for Solar Thermal Process Heat Generation 1 Stationary Booster Reflectors for Solar Thermal Process Heat Generation Dr Stefan Hess a), Prof Vic Hanby b) a) Solar Thermal Energy Research Group (STERG) Stellenbosch University b) De Montfort University

More information

NABCEP Entry Level Exam Review Solfest practice test by Sean White

NABCEP Entry Level Exam Review Solfest practice test by Sean White 1. A fall protection system must be in place for all work done at heights in excess of a. 4 feet b. 6 feet c. 8 feet d. 10 feet 2. A circuit breaker performs the same function a. as a fuse b. as a switch

More information

Belgian Wind Forecasting Phase 1

Belgian Wind Forecasting Phase 1 Phase 1 Users Group 09/02/2012 Pieter-Jan Marsboom v12.02.09 1 Overview 1. Context & Drivers 2. Forecast & Upscaling Model 3. Forecast Service 4. Wind Forecast Tool 5. Wind Forecast Quality 6. Challenges

More information

MATHEMATICS METHODS. Calculator-assumed. Sample WACE Examination Marking Key

MATHEMATICS METHODS. Calculator-assumed. Sample WACE Examination Marking Key MATHEMATICS METHODS Calculator-assumed Sample WACE Examination 016 Marking Key Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Port Stanley Observatory Monthly Magnetic Bulletin July 2011 11/07/PS Jason Islands West Falkland King George Bay Queen Charlotte Bay Weddell Island Caracass Island Saunders Island

More information

peak half-hourly New South Wales

peak half-hourly New South Wales Forecasting long-term peak half-hourly electricity demand for New South Wales Dr Shu Fan B.S., M.S., Ph.D. Professor Rob J Hyndman B.Sc. (Hons), Ph.D., A.Stat. Business & Economic Forecasting Unit Report

More information

Draft Wholesale Power Price Forecasts

Draft Wholesale Power Price Forecasts Sixth & Electric Power Plan Draft Wholesale Power Price Forecasts Maury Galbraith Generating Resource Advisory Committee Meeting Portland, OR December 18, 28 Outline 1. Overall Perspective: Major AURORA

More information

Monthly Magnetic Bulletin

Monthly Magnetic Bulletin BRITISH GEOLOGICAL SURVEY Ascension Island Observatory Monthly Magnetic Bulletin March 2017 17/03/AS Crown copyright; Ordnance Survey ASCENSION ISLAND OBSERVATORY MAGNETIC DATA 1. Introduction Ascension

More information

Predicting Solar Irradiance and Inverter power for PV sites

Predicting Solar Irradiance and Inverter power for PV sites Area of Expertise: Industry: Name of Client: Predicting Solar Irradiance and Inverter power for PV sites Data Analytics Solar Project End Date: January 2019 Project Timeline: 1. Optimisation Scope InnovateUK

More information

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class:

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class: 1830 UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS Pre-Class: Take notes on the videos and readings (use the space below). Work and check problem #1 in the 2.1 NOTES section.

More information

NEGST. New generation of solar thermal systems. Advanced applications ENEA. Comparison of solar cooling technologies. Vincenzo Sabatelli

NEGST. New generation of solar thermal systems. Advanced applications ENEA. Comparison of solar cooling technologies. Vincenzo Sabatelli NEGST New generation of solar thermal systems Advanced applications Comparison of solar cooling technologies Vincenzo Sabatelli ENEA vincenzo.sabatelli@trisaia.enea.it NEGST Workshop - Freiburg - June

More information

Entities for Symbols and Greek Letters

Entities for Symbols and Greek Letters Entities for Symbols and Greek Letters The following table gives the character entity reference, decimal character reference, and hexadecimal character reference for symbols and Greek letters, as well

More information

California Independent System Operator (CAISO) Challenges and Solutions

California Independent System Operator (CAISO) Challenges and Solutions California Independent System Operator (CAISO) Challenges and Solutions Presented by Brian Cummins Manager, Energy Management Systems - CAISO California ISO by the numbers 65,225 MW of power plant capacity

More information

Celeste: Variational inference for a generative model of astronomical images

Celeste: Variational inference for a generative model of astronomical images Celeste: Variational inference for a generative model of astronomical images Jerey Regier Statistics Department UC Berkeley July 9, 2015 Joint work with Jon McAulie (UCB Statistics), Andrew Miller, Ryan

More information

Weather Dynamics. Amazing Weather!

Weather Dynamics. Amazing Weather! Lesson1Weather Hurricane Igor, St. John's, 2010 Tsunami, Japan, 2011 Amazing Weather! Weather Dynamics Weather Dynamics is the study of how the movement of water and air causes weather patterns. The main

More information

Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage

Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage ISMP 2018 S. Pineda J. M. Morales OASYS group, University of Málaga (Spain) Funded by the Spanish Ministry of Economy,

More information

Basic information about developed Calculator for solar / wind hybrid power supply

Basic information about developed Calculator for solar / wind hybrid power supply Basic information about developed Calculator for solar / wind hybrid power supply It simulates behavior of the system for off grid power supply (components: solar panels, wind generator, batteries and

More information

CHAPTER 5 - QUEENSLAND FORECASTS

CHAPTER 5 - QUEENSLAND FORECASTS CHAPTER 5 - QUEENSLAND FORECASTS Summary This chapter presents information about annual energy, maximum demand (summer and winter), and nonscheduled generation for the Queensland region. It also includes

More information

Noadswood Science. Revision Cards. Science A (Core) Physics Basics.

Noadswood Science. Revision Cards. Science A (Core) Physics Basics. Noadswood Science Revision Cards Science A (Core) Physics Basics www.noadswoodscience.com How to use the revision cards It is suggested you cut the pack of cards out, so that there is a question on one

More information

The Origins of Firm Heterogeneity: A Production Network Approach

The Origins of Firm Heterogeneity: A Production Network Approach The Origins of Firm Heterogeneity: A Production Network Approach A. Bernard E. Dhyne G. Magerman K. Manova A. Moxnes Tuck@Dartmouth NBB ECARES Oxford Oslo CEPR, NBER UMons NBB CEPR CEPR Princeton, September

More information

Energy and demand projections

Energy and demand projections Chapter 2: Energy and demand projections 2.1 Overview 2.2 Customer consultation 2.3 Demand forecast outlook 2.4 Zone forecasts 2.5 Daily and annual load profiles 2 Energy and demand projections Key highlights

More information

Solar Radiation and Solar Programs. Training Consulting Engineering Publications GSES P/L

Solar Radiation and Solar Programs. Training Consulting Engineering Publications GSES P/L Solar Radiation and Solar Programs Training Consulting Engineering Publications SOLAR RADIATION Purposes of Solar Radiation Software Successful project planning and solar plant implementation starts by

More information

Macroeconomics II. Dynamic AD-AS model

Macroeconomics II. Dynamic AD-AS model Macroeconomics II Dynamic AD-AS model Vahagn Jerbashian Ch. 14 from Mankiw (2010) Spring 2018 Where we are heading to We will incorporate dynamics into the standard AD-AS model This will offer another

More information

Dynamic AD-AS model vs. AD-AS model Notes. Dynamic AD-AS model in a few words Notes. Notation to incorporate time-dimension Notes

Dynamic AD-AS model vs. AD-AS model Notes. Dynamic AD-AS model in a few words Notes. Notation to incorporate time-dimension Notes Macroeconomics II Dynamic AD-AS model Vahagn Jerbashian Ch. 14 from Mankiw (2010) Spring 2018 Where we are heading to We will incorporate dynamics into the standard AD-AS model This will offer another

More information

EUROPEAN EXPERIENCE: Large-scale cross-country forecasting with the help of Ensemble Forecasts

EUROPEAN EXPERIENCE: Large-scale cross-country forecasting with the help of Ensemble Forecasts WEPROG Weather & wind Energy PROGnoses EUROPEAN EXPERIENCE: Large-scale cross-country forecasting with the help of Ensemble Forecasts Session 6: Integrating forecasting into market operation, the EMS and

More information

Physics Unit Physics P1

Physics Unit Physics P1 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Science B Unit Physics P1 Physics Unit Physics P1 Friday 17 June 2011 General Certificate of

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Wilson, S.K. and Duffy, B.R. and Lee, M.E.M. (25) A mathematical model of three-dimensional flow in a scraped-surface heat exchanger. In: Proceedings of the 13th European

More information

Operational event attribution

Operational event attribution Operational event attribution Peter Stott, NCAR, 26 January, 2009 August 2003 Events July 2007 January 2009 January 2009 Is global warming slowing down? Arctic Sea Ice Climatesafety.org climatesafety.org

More information

2. Linear Programming Problem

2. Linear Programming Problem . Linear Programming Problem. Introduction to Linear Programming Problem (LPP). When to apply LPP or Requirement for a LPP.3 General form of LPP. Assumptions in LPP. Applications of Linear Programming.6

More information

Total Market Demand Wed Jan 02 Thu Jan 03 Fri Jan 04 Sat Jan 05 Sun Jan 06 Mon Jan 07 Tue Jan 08

Total Market Demand Wed Jan 02 Thu Jan 03 Fri Jan 04 Sat Jan 05 Sun Jan 06 Mon Jan 07 Tue Jan 08 MW This report provides a summary of key market data from the IESO-administered markets. It is intended to provide a quick reference for all market stakeholders. It is composed of two sections: Section

More information

UNIT 1: THE PLANET EARTH

UNIT 1: THE PLANET EARTH UNIT 1: THE PLANET EARTH How many planets are there in our Solar System? What is the Equator? Why does life exist in our planet? Does The Earth move? What is a map? 1. Planet Earth TOPICS 2. Movements

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Robertson, R.J. (2007) An ecologically influenced approach. In: Towards an European repository ecology: conceptualising interactions between networks of repositories

More information

Tick the box next to those resources for which the Sun is also the source of energy.

Tick the box next to those resources for which the Sun is also the source of energy. 1 (a) The source of solar energy is the Sun. Tick the box next to those resources for which the Sun is also the source of energy. coal geothermal hydroelectric nuclear wind [2] (b) Fig. 4.1 shows a solar

More information

Energy Use in Homes. A series of reports on domestic energy use in England. Energy Efficiency

Energy Use in Homes. A series of reports on domestic energy use in England. Energy Efficiency Energy Use in Homes A series of reports on domestic energy use in England Energy Efficiency Energy Use in Homes A series of reports on domestic energy use in England This is one of a series of three reports

More information

Summary of wool production estimates and forecasts for Australia. 2014/15 Fourth forecast

Summary of wool production estimates and forecasts for Australia. 2014/15 Fourth forecast Australian Wool Production Forecast Report Australian Wool Production Forecast Committee Summary April 2015 The Australian Wool Production Forecasting Committee (AWPFC) has set its forecast production

More information