Given P(1,-4,-3), convert to cylindrical and spherical values;

Size: px
Start display at page:

Download "Given P(1,-4,-3), convert to cylindrical and spherical values;"

Transcription

1 CHAPTER 1 Poblems Pob. 1.1 Pob. 1.2 () Given P(1,-4,-3), convet to cylindicl nd spheicl vlues; 4

2 x y = + = + = = 1 ( 4) y 1 4 = tn = tn = x 1 P(,, ) = (4.123, , 3). Spheicl : x y = + + = + + = = tn = tn = P (,, ) = P(5.099, , ). (b) (c ) 1 y 1 0 = 3, = tn = tn = 0 x 3 o Q(,, ) = Q(3,0,5) o = = 5.831, = tn = tn = o o Q (,, ) = Q(5.831,30.96,0 ) = = 6.325, = tn = o R(,, ) = R(6.325,108.4,0) = = 6.325, = tn = tn = 90 0 o o R (,, ) = R(6.325,90,108.4 ) o o o Pob

3 6

4 Pob. 1.4 () x = cos, y = sin, 2 V = cos sincos + sin (b) U = x + y + + y = + sin sin + 2 cos = [1+ sin sin + 2 cos ] Pob

5 8

6 9

7 10

8 11

9 Pob. 1.6 () x + F cos sin 0 y F sin cos 0 = + F F F F 1 = + = + + [ cos sin ] ; 1 = [ cossin+ cossin ] = 0; + = F = ( + 4 ). + ; In Spheicl: x sin cos sin sin cos F y F coscos cossin sin = F sin cos F = sin cos + sin sin + cos = sin + cos ; 4 4 F = sin cos cos + sincos sin sin = sincos sin ; F = sincos sin + sinsincos = 0; F = (sin + cos ) + sin (cos ). 12

10 (b) 2 x + G cos sin 0 2 y G = sin cos 0 + G G G G 2 3 = [ cos + sin ] = ; + + = 0; = G = ( + ). + ; Spheicl : Pob G = ( xx + yy + ) = = sin sin 13

11 14

12 15

13 Pob. 1.8 () D cos sin 0 0 D = sin cos 0 x + D D = ( x + ) sin = ( cos + ) sin D = ( x+ ) cos = ( cos + ) cos D = ( cos + )[sin + cos ] Spheicl : Since D = D = 0, we my leve out the fist nd x thid column of the tnsfomtion mtix. Thus, D... sinsin... 0 D... cossin... x = + D... cos... 0 D = ( x+ )sinsin = (sincos+ cos )sinsin. D = ( x+ )cossin = (sincos + cos )cossin. D = ( x+ )cos = (sincos+ cos ) cos. D= (sincos+ cos )[sinsin + cossin + cos ]. (b) Cylindicl: E cos sin 0 y x E sin cos 0 = xy E x E = y x + xy ( )cos sin = (sin cos ) cos + cos sin 2 = cos 2 cos + sin cos. 2 E = y x + xy ( )sin cos 2 = cos 2 sin + sin cos. 2 E = x = cos. 2 E = cos ( sin cos 2 ) + sin ( cos + cos 2 ) + ( cos ). 16

14 In spheicl: E E = y x + xy + x E sincos sinsin cos y x E coscos cossin sin = xy E sin cos 0 x ( )sincos sinsin ( )cos ; but x= sincos, y = sinsin, = cos ; 2 3 = sin (sin cos + (sin cos cos ) cos ; )cos + sin cos sin cos E = ( y x )coscos + xy cossin ( x )sin ; 3 2 = sin cos2coscos + sin cos sin cos (sin cos 2 cos 2 ) sin ; E = ( x y )sin + xy cos 3 = sin cos2sin + sin cos sin cos ; [ sin cos 2 cos sin cos sin cos (sin cos cos ) cos ] E = [ sin cos 2coscos + sin cos sin cos sin (sin cos cos )] 3 [ sin cos 2 sin sin cos sin cos ] Pob. 1.9 () H cos sin 0 3 H sin cos 0 2 = H H = 3cos + 2sin, H = 3sin + 2cos, = 4 H H = (3cos + 2sin ) + ( 3sin + 2cos ) 4 o (b) At P, = 2, = 60, = 1 H = (3cos60 + 2sin60 ) + ( 3sin60 + 2cos60 ) 4 o o o o = 17

15 Pob () 18

16 19

17 Pob () = 2 x + y + = +. 1 = tn ; =. o = x + y = sin cos + sin sin. = sin ; = cos ; =. (b) Fom the figues below, - cos sin sin ( ) = sin + cos ; = cos sin ; = Hence, sin 0 cos = cos 0 sin Fom the figues below, = cos + sin ; = cos sin ; =.. 20

18 sin ( ) cos cos sin sin cos cos sin = Pob

19 Pob Using eq. (1.32), d = cos( 2 1) + ( 2 1) o o 2 = (5)(10)cos(60 30 ) + ( 4 2) = 74.4 d = 74.4 = Pob () d = ( 6 2) + ( 1 1) + ( 2 5) = 29 = (b) d = ()()cos 3 5 π + ( 1 5) = 100 d = 100 = 10 22

20 (c) d π π π π π π = (10)(5)cos cos 2(10)(5)sin sin cos(7 ) π π π π o = (cos cos sin sin ) = cos75 = d = = Pob A x Ay A cos sin 0 A = sin cos 0 A A x y 0 x + y x + y y x = 0 x + y x + y A A A Ax sincos coscos sin A = Ay sin sin cos sin cos A A cos sin 0 A x x y x + y + x + y x + y + x + y y y x = x + y + x + y x + y + x + y x + y 0 x + y + x + y + A A A 23

21 Pob

22 Pob () A B = (5,2, 1) (1, 3,4) = 5 (b) (c ) AxB= = A B 5 cosab = = = AB = AB o 25

23 (d) n AB x (5, 21, 17) (5, 21, 17) = = = AB x = ( A BB ) 5B (e) AB = ( A B) B = = = ` 2 B 26 Pob

24 Pob () At Q, = 10, = π / 2, = π / 3 x = sin cos = 10sin π / 2cos π /3 = 10(1)(1/ 2) = 5 y = sinsin = 10sin π / 2 sin π / 3 = 10(1)( 3 / 2) = 8.66 = cos = 10 cos π / 2 = 0 Q(x,y,) = Q(5,8.66,0) (b) At P, = = o cos = = = = cos = x 3 o = = 0.6 = x + y 5 o o P (,, ) = P (5.385,68.2, ) (c ) d = ( x x ) + ( y y ) + ( y y ) = = p Q p Q p Q d = Pob () An infinite line pllel to the -xis. (b) Point (2,-1,10). (c) A cicle of dius sin = 5, i.e. the intesection of cone nd sphee. (d) An infinite line pllel to the -xis. (e) (f) A semi-infinite line pllel to the x-y plne. A semi-cicle of dius 5 in the y- plne Pob

25 Pob ( ) At T, x = 3, y = 4, = 1, = 5,cos = 5 3 A= 0 5(1)( ) + 25(1) 5 = = 26, sin = cos = 26, B = 26( ) + 2( 26) 5 26 =

26 ( b) In cylindicl coodintes, B B B sin cos B = B cos sin = 15.6 sin = 15.6( ) = = 10, B = 15.6 cos = B(,, ) = ( 15.3,10, 3.059) AB = ( A B) B = ( A B) B 1 ( )( 15.3,10, 3.059) = B = () c In spheicl coodintes, A sin 0 cos 0 A = cos 0 sin 3 A A = 25cos = = A = 25 sin = 25( ) = A = 3 A B = = ± A B AxB = = ± + (

27 Pob At P( 02,, 5), = 90 ; B B B x y cos sin 0 = sin cos = B = 5 3 x y B B B ( ) A+ B = ( 2410,, ) + ( 1, 5, 3) = + 7 x y A B 52 ( b) cosab = = AB AB = cos ( ) = A B 52 () c AB = A B = = = B

28 Pob cossin 2 G= cos x + y+ (1 cos ) sin = cos + 2 cot sin + sin x y 2 G sin cos sin sin cos cos = G cos cos cos sin sin 2 cot sin 2 G sin cos 0 sin 3 G = sincos + 2cossin + cossin G G 3 2 = sincos + 3cos sin 3 = coscos + 2cotcossin sinsin 2 = sincos + 2cotsincos 3 2 G = [sin cos + 3 cos sin ] 3 + [ cos cos + 2 cot cos sin sin sin ] + sincos (2cot cos ) 31

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X I, 015-16 SUMMATIVE ASSESSMENT I, 015-16 / MATHEMATICS X / Class X : hours 90 Time Allowed: hours Maximum Marks: 90 JMYCH7I 1.. 1 1 6 10 11.. General Instructions: 1. All questions are compulsory.. The

More information

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2013

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2013 TED (10)-1002 (REVISION-2010) Reg. No.. Signature. FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2013 TECHNICAL MATHEMATICS- I (Common Except DCP and CABM) (Maximum marks: 100)

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

D Alembert s principle of virtual work

D Alembert s principle of virtual work PH101 Lecture 9 Review of Lagrange s equations from D Alembert s Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces D Alembert s principle of virtual

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Math 104 Midterm 3 review November 12, 2018

Math 104 Midterm 3 review November 12, 2018 Math 04 Midterm review November, 08 If you want to review in the textbook, here are the relevant sections: 4., 4., 4., 4.4, 4..,.,. 6., 6., 6., 6.4 7., 7., 7., 7.4. Consider a right triangle with base

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

Chapter 4: Christoffel Symbols, Geodesic Equations and Killing Vectors Susan Larsen 29 October 2018

Chapter 4: Christoffel Symbols, Geodesic Equations and Killing Vectors Susan Larsen 29 October 2018 Content 4 Chistoffel Symbols, Geodesic Equtions nd illing Vectos... 4. Chistoffel symbols.... 4.. Definitions... 4.. Popeties... 4..3 The Chistoffel Symbols of digonl metic in Thee Dimensions... 4. Cylindicl

More information

Collection of Formulas

Collection of Formulas Collection of Fomuls Electomgnetic Fields EITF8 Deptment of Electicl nd Infomtion Technology Lund Univesity, Sweden August 8 / ELECTOSTATICS field point '' ' Oigin ' Souce point Coulomb s Lw The foce F

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

INVERSE TRIGONOMETRY: SA 4 MARKS

INVERSE TRIGONOMETRY: SA 4 MARKS INVERSE TRIGONOMETRY: SA MARKS To prove Q. Prove that sin - tan - 7 = π 5 Ans L.H.S = Sin - tan - 7 5 = A- tan - 7 = tan - 7 tan- let A = Sin - 5 Sin A = 5 = tan - ( ( ) ) tan - 7 9 6 tan A = A = tan-

More information

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS MATH 5 (S). Definitions of Inverse Trigonometric Functions () y = sin or y = arcsin is the inverse function of y = sin on [, ]. The omain of y = sin = arcsin is

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES) MATHEMATICS GRADE SESSION 0 (LEARNER NOTES) TRIGONOMETRY () Learner Note: Trigonometry is an extremely important and large part of Paper. You must ensure that you master all the basic rules and definitions

More information

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l Part Part P t Part Part Total A B C E 1 Mark 2 Marks 5 Marks M k 4 Marks CIRCLES 12 Marks approximately Definition ; A circle is defined as the locus of a point which moves such that its distance from

More information

Section 7.1 Exercises

Section 7.1 Exercises Section 7.1 Solving Trigonometric Equations and Identities 109 Section 7.1 Eercises Find all solutions on the interval 0 sin 1. sin 1.. cos 1. cos Find all solutions 5. sin 1 9. cos 5 6. sin 10. 8cos 6

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

Section 7.1 Exercises

Section 7.1 Exercises Section 7. Solving Trigonometric Equations and Identities 5 Section 7. Eercises Find all solutions on the interval sin. sin.. cos. cos Find all solutions 5. sin 9. cos 5 6. sin. 8cos 6 7. cos t 8. cos

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenouseWe http://ocw.mit.edu 6.1/ESD.1J Electomgnetics nd pplictions, Fll 25 Plese use the following cittion fomt: Mkus Zhn, Eich Ippen, nd Dvid Stelin, 6.1/ESD.1J Electomgnetics nd pplictions, Fll

More information

Chapter 7, Continued

Chapter 7, Continued Math 150, Fall 008, c Benjamin Aurispa Chapter 7, Continued 7.3 Double-Angle, Half-Angle, and Product-Sum Formulas Double-Angle Formulas Formula for Sine: Formulas for Cosine: Formula for Tangent: sin

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

Introduction and Vectors

Introduction and Vectors SOLUTIONS TO PROBLEMS Intoduction and Vectos Section 1.1 Standads of Length, Mass, and Time *P1.4 Fo eithe sphee the volume is V = 4! and the mass is m =!V =! 4. We divide this equation fo the lage sphee

More information

Modeling and nonlinear tracking control of novel multi-rotor UAV

Modeling and nonlinear tracking control of novel multi-rotor UAV 290-2818151394 mme.modares.ac.ir 3 *2 1-1 -2-3 mmahjoob@ut.ac.ir11155-4563 *..... - -..... 1393 27 : 1394 19 : 1394 13 : Modelingandnonlineartrackingcontrolofnovelmulti-rotorUAV MohamadAliTofigh,MohamadMahjoob*,

More information

u(r, θ) = 1 + 3a r n=1

u(r, θ) = 1 + 3a r n=1 Mth 45 / AMCS 55. etuck Assignment 8 ue Tuesdy, Apil, 6 Topics fo this week Convegence of Fouie seies; Lplce s eqution nd hmonic functions: bsic popeties, computions on ectngles nd cubes Fouie!, Poisson

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4 07 00 MT A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 4 y intercept of the line (c) 0 By slope intercept form, The equation of the line is y m + c y (4) + (0) y 4 MT - GEOMETRY - SEMI

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Math 3335: Orthogonal Change of Variables., x(u) =

Math 3335: Orthogonal Change of Variables., x(u) = Math 3335: Orthogonal Change of Variables In these exercises we will explore what are called orthogonal change of coordinates. In general a d dimensional change of coordinates is a mapping x (u,...,u d

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 8 EXAMINATION Important Instructions to eaminers: ) The answers should be eamined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written

More information

Transweb Educational Services Pvt. Ltd Tel:

Transweb Educational Services Pvt. Ltd     Tel: . An aeroplane flying at a constant speed, parallel to the horizontal ground, km above it, is observed at an elevation of 6º from a point on the ground. If, after five seconds, its elevation from the same

More information

Trig Equations PS Sp2016

Trig Equations PS Sp2016 Trig Equations PS Sp016 NAME: SCORE: INSTRUCTIONS PLEASE RESPOND THOUGHTFULLY TO ALL OF THE PROMPTS IN THIS PACKET. TO COMPLETE THE TRIG EQUATIONS PROBLEM SET, YOU WILL NEED TO: 1. FILL IN THE KNOWLEDGE

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1 07 00 MT A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 5 intercept of the line (c) B slope intercept form, The equation of the line is m + c 5 () + ( ) 5 MT - GEOMETRY - SEMI PRELIM

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt MATEC Web of Conferences 114, 41 (217) DOI: 1.11/ matecconf/21711441 2MAE 217 Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt Haixia Gong 1, Zhe Liu 1,a and

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Trigonometric Identities. Sum and Differences

Trigonometric Identities. Sum and Differences Trigonometric Identities Sum and Differences WARNING: While viewing this pdf, the viewer may experience the following: 1.) Shock.) Confusion.) Denial 4.) Disbelief 5.) I never learned this 6.) Fear 7.)

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

CHAPTER 1 Systems of Linear Equations

CHAPTER 1 Systems of Linear Equations CHAPTER Systems of Linear Equations Section. Introduction to Systems of Linear Equations. Because the equation is in the form a x a y b, it is linear in the variables x and y. 0. Because the equation cannot

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 21 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 21 (LEARNER NOTES) MATHEMATICS GRADE SESSION (LEARNER NOTES) TRIGONOMETRY () Learner Noe: Trigonomery is an eremely imporan and large par of Paper. You mus ensure ha you maser all he basic rules and definiions, and be able

More information

4.3 Inverse Trigonometric Properties

4.3 Inverse Trigonometric Properties www.ck1.org Chapter. Inverse Trigonometric Functions. Inverse Trigonometric Properties Learning Objectives Relate the concept of inverse functions to trigonometric functions. Reduce the composite function

More information

Inverse Trigonometric Functions

Inverse Trigonometric Functions Inverse Trigonometric Functions. Inverse of a function f eists, if function is one-one and onto, i.e., bijective.. Trignometric functions are many-one functions but these become one-one, onto, if we restrict

More information

Honors Calculus II [ ] Midterm II

Honors Calculus II [ ] Midterm II Honors Calculus II [3-00] Midterm II PRINT NAME: SOLUTIONS Q]...[0 points] Evaluate the following expressions and its. Since you don t have a calculator, square roots, fractions etc. are allowed in your

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet. 2009 Booklet No. Test Code : SIA Forenoon Questions : 30 Time : 2 hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

More information

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57

Homework: Study 6.2 #1, 3, 5, 7, 11, 15, 55, 57 Gols: 1. Undestnd volume s the sum of the es of n infinite nume of sufces. 2. Be le to identify: the ounded egion the efeence ectngle the sufce tht esults fom evolution of the ectngle ound n xis o foms

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9 Mesuement f Residul Stess/Stin (Using Stin Gges nd the Hle Dilling Methd) Summy f Discussin in Sectin 8.9 The Hle Dilling Methd Is Bsed On: () Stess tnsfmtin equtins τ x' x' y' y' x' y' xx xx cs sin sin

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

MATH 151, SPRING 2013 COMMON EXAM II - VERSION A. Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #:

MATH 151, SPRING 2013 COMMON EXAM II - VERSION A. Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #: MATH 151, SPRING 2013 COMMON EXAM II - VERSION A Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #: THE AGGIE CODE OF HONOR "An Aggie does not lie, cheat, or steal, or tolerate those who do." By

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 2 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS (1) ( points) Solve the equation x 1 =. Solution: Since x 1 =, x 1 = or x 1 =. Solving for x, x = 4 or x = 2. (2) In the triangle below, let a = 4,

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

B.A. (PROGRAMME) 1 YEAR MATHEMATICS Gdute Couse B.A. (PROGRAMME) YEAR MATHEMATICS ALGEBRA & CALCULUS PART B : CALCULUS SM 4 CONTENTS Lesson Lesson Lesson Lesson Lesson Lesson Lesson : Tngents nd Nomls : Tngents nd Nomls (Pol Co-odintes)

More information

ALL INDIA TEST SERIES

ALL INDIA TEST SERIES Fom Classoom/Integated School Pogams 7 in Top 0, in Top 00, 54 in Top 00, 06 in Top 500 All India Ranks & 4 Students fom Classoom /Integated School Pogams & 7 Students fom All Pogams have been Awaded a

More information

4.3 Area of a Sector. Area of a Sector Section

4.3 Area of a Sector. Area of a Sector Section ea of a Secto Section 4. 9 4. ea of a Secto In geomety you leaned that the aea of a cicle of adius is π 2. We will now lean how to find the aea of a secto of a cicle. secto is the egion bounded by a cental

More information

Ma 227 Final Exam Solutions 12/22/09

Ma 227 Final Exam Solutions 12/22/09 Ma 7 Final Exam Solutions //9 Name: ID: Lecture Section: Problem a) (3 points) Does the following system of equations have a unique solution or an infinite set of solutions or no solution? Find any solutions.

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space.

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space. THE ONE THEOEM JOEL A. TOPP Abstact. We pove a fixed point theoem fo functions which ae positive with espect to a cone in a Banach space. 1. Definitions Definition 1. Let X be a eal Banach space. A subset

More information

Incompressible Viscous Flows

Incompressible Viscous Flows Incompessible Viscous Flows F an incompessible fluid, the continuity equation and the Navie-Stokes equation ae given as v = 0, () + v v = P + ν t v Using a vect identity, Equation () may be estated as

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chpte The lectic Field II: Continuous Chge Distibutions Conceptul Poblems [SSM] Figue -7 shows n L-shped object tht hs sides which e equl in length. Positive chge is distibuted unifomly long the length

More information

Problem 1: Multiple Choice Questions

Problem 1: Multiple Choice Questions Mathematics 102 Review Questions Poblem 1: Multiple Choice Questions 1: Conside the function y = f(x) = 3e 2x 5e 4x (a) The function has a local maximum at x = (1/2)ln(10/3) (b) The function has a local

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

GEOMETRY Properties of lines

GEOMETRY Properties of lines www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

The minus sign indicates that the centroid is located below point E. We will relocate the axis as shown in Figure (1) and take discard the sign:

The minus sign indicates that the centroid is located below point E. We will relocate the axis as shown in Figure (1) and take discard the sign: AOE 304: Thin Walled Structures Solutions to Consider a cantilever beam as shown in the attached figure. At the tip of the beam, a bending moment M = 1000 N-m is applied at an angle θ with respect to the

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

The Double Sum as an Iterated Integral

The Double Sum as an Iterated Integral Unit 2: The Double Sum as an Iterated Integral 1. Overview In Part 1 of our course, we showed that there was a relationship between a certain infinite sum known as the definite integral and the inverse

More information

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION When you are done with your homework you should be able to Recognize, and apply properties of, symmetric matrices Recognize, and apply properties

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

Some relations between the radiation patterns in the two main planes and the whole radiation pattern. *

Some relations between the radiation patterns in the two main planes and the whole radiation pattern. * Some relations between the radiation patterns in the two main planes and the whole radiation pattern. * abstract: In theoretical studies, the far fields radiated by antennas are derived by using a radiation

More information

Time Allowed : 3 hours Maximum Marks : 90. jsuniltutorial

Time Allowed : 3 hours Maximum Marks : 90. jsuniltutorial 6KN77NA I, 0 SUMMATIVE ASSESSMENT I, 0 / MATHEMATICS X / Class X 90 Time Allowed : hours Maximum Marks : 90 General Instructions: All questions are compulsory. - 8 0 6 0 The question paper consists of

More information

COORDINATE GEOMETRY LOCUS EXERCISE 1. The locus of P(x,y) such that its distance from A(0,0) is less than 5 units is x y 5 ) x y 10 x y 5 4) x y 0. The equation of the locus of the point whose distance

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Series Solutions of Differential Equations

Series Solutions of Differential Equations Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.

More information

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Example 2: ( ) 2. $ s ' 9.11 10 *31 kg ( )( 1 10 *10 m) ( e) Emple 1: Two point chge e locted on the i, q 1 = e t = 0 nd q 2 = e t =.. Find the wok tht mut be done b n etenl foce to bing thid point chge q 3 = e fom infinit to = 2. b. Find the totl potentil eneg

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information