Modeling and nonlinear tracking control of novel multi-rotor UAV

Size: px
Start display at page:

Download "Modeling and nonlinear tracking control of novel multi-rotor UAV"

Transcription

1 mme.modares.ac.ir 3 * mmahjoob@ut.ac.ir * : : : Modelingandnonlineartrackingcontrolofnovelmulti-rotorUAV MohamadAliTofigh,MohamadMahjoob*, MoosaAyati DepartmentofMechanicalEngineering,CollegeofEngineering,UniversityofTehran,Tehran,Iran P.O.B Tehran,Iran,mmahjoob@ut.ac.ir ARTICLEINFORMATION ABSTRACT OriginalResearchPaper Received17January2015 Accepted09June2015 AvailableOnline04July2015 Keywords: UnmannedAerialVehicle Five-rotorAircraft ModifiedQuadrotor Input-OutputFeedbackLinearization Inthispaper,modelinganddesignoftrajectorytrackingcontrolsystemfornovelmulti-rotor UAV(UnmannedAerialVehicle)isdeveloped.TheUAVissimilartoquadrotorwithanextrano feedbackpropellerwhichisaddedtocenterofvehicle.theadditionalrotorimprovestheability of lifting heavier payloads, and anti-crosswind capability for quadrotor. For validation, the dynamic model is obtained via both Newton Euler and Lagrange approaches. The dynamical model is under actuated, nonlinear, and has strongly coupled terms. Therefore, an appropriate controlsystemisnecessarytoachievedesiredperformance.theproposednonlinearcontrollerof thispaperisaninput-outputfeedbacklinearizationcompanionedwithanoptimallqrcontroller forthelinearizedsystem.thecontrollerinvolveshigh-orderderivativetermsandturnsouttobe quite sensitive to un-modeled dynamics. Therefore, precise model of UAV is derived by consideringactuator sdynamics.tocompensatethe actuator s dynamicandmoreover,toavoid complexityinthecontroller,secondcontrolloopisutilized.theobtainedsimulationresults confirmthat the proposedcontrolsystem has promising performancein termsofstabilization andpositiontrackingeveninpresenceofexternaldisturbances UAV Pleasecitethisarticleusing: : M.A.Tofigh,M.Mahjoob, M.Ayati, Modelingandnonlineartrackingcontrolofnovelmulti-rotorUAV,ModaresMechanicalEngineeringVol.15,No.8,pp ,2015 (InPersian)

2 . 1 x. y. () x. ) y. y ( () z. x () () = =.[2] (2) (1) D (1) (2) T.. 2 (6) (3) = ( ) + (3) = ( ) (4) = ( ) = ( + ) + z F y x (5) (6) z. [1].. [2].[4,3] [5] [7,6] ). (.[8]

3 . (10). = = 1 (ss + csc) (ssc cs) (10) cc. (11) - = ( (11) + + ) G. (6-4) (11). (12) ( + )/ = ( )/ (12) ( + )/ : = 4 2 = ( 13) = + = + (9) (14) = s c = c s + s c s s + c c = s c + c c s c (14) + s c (12) (14) (9) PE=mgZ (15) = (1/2)[ sin + cos + sin cos coscossin [( cossin ) + ( coscossin ) coscos sin +( cos cos sin ) ] + ( cos cos sin + ) (15) (7). 2 ( + ) + = (7) 2 ( ) + = mg (7) (2) (8) (,, ) = (, ). (, ). (, ) = cc sc s sc + css cc + sss cs ss + csc cs + ssc cc (8). sin cos s. (8) c.[9] (9) 1 0 s = = 0 c cs (9) 0 s cc

4 x 5 y. y Z F 4.. x y - 4..[10] (9).. -3 = + = = (18) L=KE-PE (16). = = + = ( ) sin cos + ( sin2(cos ) sin2 + 2 cos2 cos )) + cos + sin cos + cos + sin cos = (cos ) + (sin ) ( sin2 cos sin2cos2cos cos sin 2 (sin) (cos) cos sin cos sin sin( + )= (sin ) +(cos ) ( (cos ) + (sin ) sin+ 1 2 cos (sin 2+ cos 2 sincos 1 2 sinsin + cos + sin 2 (sin ) (cos ) + = ( 16) = (sin sin + cos sin cos ) = (sinsincos cossin) = coscos = = cos sin = sincos + cossin sin (17). sin cos. sin cos - sin sincos (12) (10). 200 rad/s. 40. x y

5 (23) = ( + ) tan / cos (23) = ( + ) tan -..[11] -2-3 X Y Z - (20). () = sin + 2 cos sin + cos () = + + sin cos sin sin (2 + ) cos cos + 2 cos sin () = cos cos 2 + sin cos (2 + )sin cos + 2 sin sin (24). (18) =[,,, ]. (25). X= [,,,,,,,,,,,,, ] z- y- x [ (), (), () ] =[][,, ] +[] (25) (26) = [] ([] + ) () = () = () =. (26) (25) (27).. =(,,) = () = LQR = 1 2 ( + ) (28). [,,, ] =,,,.. (,, ) = (, ). (, ). (, ) = cc + css ss csc sc cc sss cs + ssc (19) s cs cc. = sin = sin cos (20) = cos cos (20) (10) (20) (18) [,,,,, ] -. =[,,, ]. =,,,,,, = = (1/ )( + ) = = (1/ )( ) = = (1/ )( + ) = = (1/)( sin ) = = (1/)( sin cos ) = = (1/)( cos cos ) (21),,,,, (21) -1-3 Z 12 [,,, ] = /(cos cos )( + ) = ( ) = ( + ) = ( ). (22). (21) = PD - =,,,

6 () () sin 0 = cos sin () cos cos cos cos sin cos cos sin sin cos sin + 2 cos sin + cos cos sin sin sin 2 + cos cos + + sin cos 2 sin sin + cos cos ( ) cos sin (2 + ( ) sin cos. -. (31 26)...[8] (32) = (33) = = 1 ( + ) (33) = (33).. 5 (31 26). = = (34) = = (33) (34) (6-3) (25) ( ). + + =0 (1 1) B A (4 4) = = () + = () = = ( 29) (30) = () + (18). PD = = ( 31) -3-3 (31) (26) (32) = + = +,.[12] = (32)

7 5 6 (111) 7. 0 < (t) = + (1 + ( )) ( ) > (1 + ( )) ( ) (35) = Z (m) Y (m) (18) ) t 80s. 3 1 ( 0 X: 0 Y: 0 Z: X (m) X: 1 Y: 1 Z: rad/s = 500 y x. Z. = ( =1, = ) ( = 0, =0, = 0). (-2,0,2) (-2,-2,2) (0,-2,2) (0,0,0) (0,0,2) (0,0,2) = = = = m IX=IY IZ J J 1 4/082 9/842 9/822 4/ /0081 0/0142 0/0001 0/0005 kg NmS /rad NmS /rad NmS /rad NmS /rad / /0002 0/ / /103 15/ NS /rad NS /rad NmS /rad NmS /rad

8 /9 1 1/5 1/4 1 1/ ( = 2cos ) = 2 sin = 0.1 = 0 (0) (0)(0)(0)(0)(0)= RMS( )= RMS( )= RMS( )=0.011 RMS( )= RMS(rootmeansquare)

9 d(t)=0.04(sin(0.8t)+cos(0.2t)+sin(0.4t)).[13] Y X

10 -7 [1] P.Castillo,A.Dzul,andR.Lozano,Real-TimeStabilizationandTracking Four-Rotor Mini Rotorcraft, IEEETransactionsonControlSystems Technology,vol.12,pp ,2004. [2] G.M.Hoffmann,H.Huang,S.L.Waslander,andC.J.Tomlin,Precision ight control for multi-vehicle quad rotor helicopter testbed, Control EngineeringPractice,vol.19,pp ,2011. [3] D.Cabecinhas,R.C.a,andC.Silvestre,"Anonlinearquadrotortrajectory tracking controller with disturbance rejection," Control Engineering Practice,vol.26,pp.10,2014. [4] Y.-C. Choi and H.-S. Ahn, Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests, ASME TransactionsonMechatronics,pp.1-14,2014. [5] c.yang,z.yang, and x.huang, modelling androbusttrajectorytracking control for novel six-rotor uav, MathematicalProbleminEngineering, vol.2013,p.13,2013. [6] A. Sámano, R. Castro, R. Lozano, and S. Salazar, Modeling and Stabilization of Multi-Rotor Helicopter, IntellRobotSyst,vol. 69, pp ,2013. [7] A. a. Alaimo, V. Artale, and A. Ricciardello, PID Controller Applied to HexacopterFlight,IntellRobotSyst,vol73,pp ,2014. [8] m.k.mohamed,designandcontrolofuavsystem:tri-rotoruav,phd Thesis, School of Electrical and Electronic Engineering, University of Manchester,Manchester,2012. [9] J. H. Ginsberg, Advanced Engineering Dynamics Second Edition. New York:CambridgeUniversityPress,1998. [10]H.K.Khalil,NonlinearSystem,ThirdC.NewJersy:PrenticeHALL,2002. [11]D.LeeandH.J.Sastry,FeedbackLinearizationvs.AdaptiveSlidingMode Control for Quadrotor Helicopter, International Journal of Control, Automation,andSystems,vol.7,pp ,2009. [12]B. C. Kuo, AutomaticControlSystemSeventhEdition.NewYork:wiley, [13]H. Ramirez-Rodriguez and V. Parra-Vega, Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors, Intell RobotSyst,vol.73,pp.51-66, z z x y z J

QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES

QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES QUADROTOR: FULL DYNAMIC MODELING, NONLINEAR SIMULATION AND CONTROL OF ATTITUDES Somayeh Norouzi Ghazbi,a, Ali Akbar Akbari 2,a, Mohammad Reza Gharib 3,a Somaye_noroozi@yahoo.com, 2 Akbari@um.ac.ir, 3 mech_gharib@yahoo.com

More information

Nonlinear Landing Control for Quadrotor UAVs

Nonlinear Landing Control for Quadrotor UAVs Nonlinear Landing Control for Quadrotor UAVs Holger Voos University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab, D-88241 Weingarten Abstract. Quadrotor UAVs are one of the most preferred

More information

Analytical solution of stress and displacement in axisymmetric inhomogeneous half space under normal concentrated surface loading

Analytical solution of stress and displacement in axisymmetric inhomogeneous half space under normal concentrated surface loading 57-565394 mme.modares.ac.ir *2 - -2 aataee@ut.ac.ir 55-4563 *.. -..... 393 3 : 394 2 : 394 29 : Analyticalsolutionofstressanddisplacementinaxisymmetric inhomogeneoushalfspaceundernormalconcentratedsurfaceloading

More information

Given P(1,-4,-3), convert to cylindrical and spherical values;

Given P(1,-4,-3), convert to cylindrical and spherical values; CHAPTER 1 Poblems Pob. 1.1 Pob. 1.2 () Given P(1,-4,-3), convet to cylindicl nd spheicl vlues; 4 x y = + = + = = 1 ( 4) 17 4.123. 1 y 1 4 = tn = tn = 284.04. x 1 P(,, ) = (4.123, 284.04, 3). Spheicl :

More information

D Alembert s principle of virtual work

D Alembert s principle of virtual work PH101 Lecture 9 Review of Lagrange s equations from D Alembert s Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces D Alembert s principle of virtual

More information

Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter

Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter APPLICATIONS OF MODELLING AND SIMULATION http://amsjournal.ams-mss.org eissn 2680-8084 VOL 2, NO. 1, 2018, 34-40 Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter M.A.M. Basri*,

More information

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads 2 th International Conference on Control, Automation and Systems Oct. 26-29, 2 in KINTEX, Gyeonggi-do, Korea Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown

More information

Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller

Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller Vol.13 No.1, 217 مجلد 13 العدد 217 1 Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller Abdul-Basset A. Al-Hussein Electrical Engineering Department Basrah University

More information

Balance control of an unmanned bicycle using an improved classifier system

Balance control of an unmanned bicycle using an improved classifier system 78-69394 mme.modares.ac.ir * - - mshariatp@ut.ac.ir 4399-96 *.. ( ).. -.... 394 8 : 394 3 : 394 8 : Balancecontrolofanunmannedbicycleusinganimprovedclassifier system SaeedHashemnia,MasoudShariatPanahi

More information

LQR and SMC Stabilization of a New Unmanned Aerial Vehicle

LQR and SMC Stabilization of a New Unmanned Aerial Vehicle World Academy of Science, Engineering Technology 58 9 LQR SMC Stabilization of a New Unmanned Aerial Vehicle Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel Abstract

More information

Numerical Study on the Effects of Oscillation Frequency and Amplitude on Flow around Flapping Airfoil via an Improved Immersed Boundary Method

Numerical Study on the Effects of Oscillation Frequency and Amplitude on Flow around Flapping Airfoil via an Improved Immersed Boundary Method 30-29 6 4393 mme.modares.ac.ir *2 - -2 ashrafizadeh@kntu.ac.ir999-9395 *..... /77.. 2/80 0/ 22 0/4 0/3 0/7 0/... 393 9 : 393 9 : 393 24 : NumericalStudyontheEffectsofOscillationFrequencyandAmplitude onflowaroundflappingairfoilviaanimprovedimmersedboundary

More information

Regulating and Helix Path Tracking for Unmanned Aerial Vehicle (UAV) Using Fuzzy Logic Controllers

Regulating and Helix Path Tracking for Unmanned Aerial Vehicle (UAV) Using Fuzzy Logic Controllers Journal of mathematics and computer science 3 (24), 7-89 Regulating and Helix Path Tracking for Unmanned Aerial Vehicle (UAV) Using Fuzzy Logic Controllers Mehdi Zare, Jafar Sadeghi 2*, Said Farahat 3,

More information

Study of young modulus change effect on resonance frequency and mode shape of magnetostrictive Terfenol-D transducer

Study of young modulus change effect on resonance frequency and mode shape of magnetostrictive Terfenol-D transducer 26-25595394 mme.modares.ac.ir - 2 3 2 * -2-3 yhojjat@modares.ac.ir45-43 * -...-.-.-... 4 8252 3.. 394 4 : 394 2 : 394 24 : Studyofyoungmoduluschangeeffectonresonancefrequencyandmode shapeofmagnetostrictiveterfenol-dtransducer

More information

Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

More information

Unknown input observer for sensor fault detection in linear systems with unmatched uncertainties

Unknown input observer for sensor fault detection in linear systems with unmatched uncertainties 3-9 4 5394 mme.modares.ac.ir * - - myazdi@ut.ac.ir55-4395 *.). ().. -.-.... --. 393 : 393 3 : 393 6 : - Unknowninputobserverforsensorfaultdetectioninlinearsystemswith unmatcheduncertainties EsmaeelBagherpour-Ardakani,MohammadRezaHairi-Yazdi

More information

Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization

Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization Proceedings of the 2009 IEEE International Conference on Mechatronics. Malaga, Spain, April 2009. Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization Holger Voos University of Applied

More information

Visual Servoing for a Quadrotor UAV in Target Tracking Applications. Marinela Georgieva Popova

Visual Servoing for a Quadrotor UAV in Target Tracking Applications. Marinela Georgieva Popova Visual Servoing for a Quadrotor UAV in Target Tracking Applications by Marinela Georgieva Popova A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Modeling and Sliding Mode Control of a Quadrotor Unmanned Aerial Vehicle

Modeling and Sliding Mode Control of a Quadrotor Unmanned Aerial Vehicle Modeling and Sliding Mode Control of a Quadrotor Unmanned Aerial Vehicle Nour BEN AMMAR, Soufiene BOUALLÈGUE and Joseph HAGGÈGE Research Laboratory in Automatic Control LA.R.A), National Engineering School

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

ROBUST SECOND ORDER SLIDING MODE CONTROL

ROBUST SECOND ORDER SLIDING MODE CONTROL ROBUST SECOND ORDER SLIDING MODE CONTROL FOR A QUADROTOR CONSIDERING MOTOR DYNAMICS Nader Jamali Soufi Amlashi 1, Mohammad Rezaei 2, Hossein Bolandi 2 and Ali Khaki Sedigh 3 1 Department of Control Engineering,

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

Different Approaches of PID Control UAV Type Quadrotor

Different Approaches of PID Control UAV Type Quadrotor Different Approaches of PD Control UAV ype Quadrotor G. Szafranski, R. Czyba Silesian University of echnology, Akademicka St 6, Gliwice, Poland ABSRAC n this paper we focus on the different control strategies

More information

Prediction of fatigue life of spot welding connections subjected to unidirectional dynamic shear load

Prediction of fatigue life of spot welding connections subjected to unidirectional dynamic shear load 8-5 49 mme.modares.ac.ir * - - golabi-s@kashanu.ac.ir87757 *. ST DIN55. C-G -.. ASME998.... ST 9 4 : 9 : 9 4 : Predictionoffatiguelifeofspotweldingconnectionssubjectedto unidirectionaldynamicshearload

More information

Investigation of effective parameters on darrieus wind turbine efficiency with aerodynamics models

Investigation of effective parameters on darrieus wind turbine efficiency with aerodynamics models 3-9555394 mme.modares.ac.ir *3 - - -3 mohammad.javadi@qiet.ac.ir 9775- *......... ()... 393 3 : 393 5 : 394 5 : Investigationofeffectiveparametersondarrieuswindturbineefficiency withaerodynamicsmodels

More information

Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)

Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3) 22 American Control Conference Fairmont Queen Elizabeth Montréal Canada June 27-June 29 22 Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3) Taeyoung Lee Melvin Leok and N. Harris McClamroch

More information

Design of Sliding Mode Attitude Control for Communication Spacecraft

Design of Sliding Mode Attitude Control for Communication Spacecraft Design of Sliding Mode Attitude Control for Communication Spacecraft Erkan Abdulhamitbilal 1 and Elbrous M. Jafarov 1 ISTAVIA Engineering, Istanbul Aeronautics and Astronautics Engineering, Istanbul Technical

More information

Control and Navigation Framework for Quadrotor Helicopters

Control and Navigation Framework for Quadrotor Helicopters DOI 1.17/s1846-1-9789-z Control and Navigation Framework for Quadrotor Helicopters Amr Nagaty Sajad Saeedi Carl Thibault Mae Seto Howard Li Received: September 1 / Accepted: September 1 Springer Science+Business

More information

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems Proceedings of the 4 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) Toronto, Canada August 21 23, 2017 Paper No. 119 DOI: 10.11159/cdsr17.119 A Model-Free Control System

More information

An Intrinsic Robust PID Controller on Lie Groups

An Intrinsic Robust PID Controller on Lie Groups 53rd IEEE Conference on Decision and Control December 15-17, 2014. Los Angeles, California, USA An Intrinsic Robust PID Controller on Lie Groups D.H.S. Maithripala and J. M. Berg Abstract This paper presents

More information

Section 7.1 Exercises

Section 7.1 Exercises Section 7. Solving Trigonometric Equations and Identities 5 Section 7. Eercises Find all solutions on the interval sin. sin.. cos. cos Find all solutions 5. sin 9. cos 5 6. sin. 8cos 6 7. cos t 8. cos

More information

Special Mathematics Notes

Special Mathematics Notes Special Mathematics Notes Tetbook: Classroom Mathematics Stds 9 & 10 CHAPTER 6 Trigonometr Trigonometr is a stud of measurements of sides of triangles as related to the angles, and the application of this

More information

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 015) Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du,

More information

Section 7.1 Exercises

Section 7.1 Exercises Section 7.1 Solving Trigonometric Equations and Identities 109 Section 7.1 Eercises Find all solutions on the interval 0 sin 1. sin 1.. cos 1. cos Find all solutions 5. sin 1 9. cos 5 6. sin 10. 8cos 6

More information

Adaptive Control of a Quadrotor UAV Transporting a Cable-Suspended Load with Unknown Mass

Adaptive Control of a Quadrotor UAV Transporting a Cable-Suspended Load with Unknown Mass rd IEEE Conference on Decision and Control December -7,. Los Angeles, California, USA Adaptive Control of a Quadrotor UAV Transporting a Cable-Suspended Load with Unknown Mass Shicong Dai, Taeyoung Lee,

More information

Dynamic modeling and control system design for tri-rotor UAV

Dynamic modeling and control system design for tri-rotor UAV Loughborough University Institutional Repository Dynamic modeling and control system design for tri-rotor UAV This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Math 104 Midterm 3 review November 12, 2018

Math 104 Midterm 3 review November 12, 2018 Math 04 Midterm review November, 08 If you want to review in the textbook, here are the relevant sections: 4., 4., 4., 4.4, 4..,.,. 6., 6., 6., 6.4 7., 7., 7., 7.4. Consider a right triangle with base

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES) MATHEMATICS GRADE SESSION 0 (LEARNER NOTES) TRIGONOMETRY () Learner Note: Trigonometry is an extremely important and large part of Paper. You must ensure that you master all the basic rules and definitions

More information

A Nonlinear Control Law for Hover to Level Flight for the Quad Tilt-rotor UAV

A Nonlinear Control Law for Hover to Level Flight for the Quad Tilt-rotor UAV Preprints of the 19th World Congress The International Federation of Automatic Control A Nonlinear Control Law for Hover to Level Flight for the Quad Tilt-rotor UAV Gerardo R. Flores-Colunga Rogelio Lozano-Leal

More information

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor Robot Dynamics Rotary Wing AS: Control of a Quadrotor 5-85- V Marco Hutter, Roland Siegwart and Thomas Stastny Robot Dynamics - Rotary Wing AS: Control of a Quadrotor 7..6 Contents Rotary Wing AS. Introduction

More information

A novel control structure for wind turbine with synchronous generator for tower load reduction

A novel control structure for wind turbine with synchronous generator for tower load reduction 53456395 mme.modares.ac.ir * 2 2 imani@um.ac.ir 977948944 *. ()........ 26 395 22 : 395 3 : 395 5 : A novel control structure for wind turbine with synchronous generator for tower load reduction Arash

More information

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS

NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS NOTES ON INVERSE TRIGONOMETRIC FUNCTIONS MATH 5 (S). Definitions of Inverse Trigonometric Functions () y = sin or y = arcsin is the inverse function of y = sin on [, ]. The omain of y = sin = arcsin is

More information

Flow separation and temperature control in U- shape tube by using DBD plasma actuator

Flow separation and temperature control in U- shape tube by using DBD plasma actuator 161-15111151394 mme.modares.ac.ir DBD U *2 1-1 -2 n.rezazadeh@hsu.ac.ir 9617976487 * U 19kV 12kV 5kV 6000 4500 3000 U..500. 1394 15 : 1394 31 : 1394 28 : DBD FlowseparationandtemperaturecontrolinU-shapetubebyusingDBD

More information

Passivity Based Control of a Quadrotor UAV

Passivity Based Control of a Quadrotor UAV Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 214 Passivity Based Control of a Quadrotor UAV C. Souza G. V. Raffo E. B. Castelan

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

arxiv: v1 [math.oc] 21 Sep 2011

arxiv: v1 [math.oc] 21 Sep 2011 Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3) Taeyoung Lee Melvin Leok and N. Harris McClamroch arxiv:9.4457v [math.oc 2 Sep 2 Abstract This paper provides nonlinear tracking control systems

More information

Improving Leader-Follower Formation Control Performance for Quadrotors. By Wesam M. Jasim Alrawi

Improving Leader-Follower Formation Control Performance for Quadrotors. By Wesam M. Jasim Alrawi Improving Leader-Follower Formation Control Performance for Quadrotors By Wesam M. Jasim Alrawi A thesis submitted for the degree of Doctor of Philosophy School of Computer Science and Electronic Engineering

More information

Quadrotors Flight Formation Control Using a Leader-Follower Approach*

Quadrotors Flight Formation Control Using a Leader-Follower Approach* 23 European Conference (ECC) July 7-9, 23, Zürich, Switzerland. Quadrotors Flight Formation Using a Leader-Follower Approach* D. A. Mercado, R. Castro and R. Lozano 2 Abstract In this paper it is presented

More information

IDETC STABILIZATION OF A QUADROTOR WITH UNCERTAIN SUSPENDED LOAD USING SLIDING MODE CONTROL

IDETC STABILIZATION OF A QUADROTOR WITH UNCERTAIN SUSPENDED LOAD USING SLIDING MODE CONTROL ASME 206 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC206 August 2-24, 206, Charlotte, North Carolina, USA IDETC206-60060 STABILIZATION

More information

The Role of Zero Dynamics in Aerospace Systems

The Role of Zero Dynamics in Aerospace Systems The Role of Zero Dynamics in Aerospace Systems A Case Study in Control of Hypersonic Vehicles Andrea Serrani Department of Electrical and Computer Engineering The Ohio State University Outline q Issues

More information

Flight control of a balloon-hexacopter: uncertainty quantification for a range of temperature and pressure conditions

Flight control of a balloon-hexacopter: uncertainty quantification for a range of temperature and pressure conditions Flight control of a balloon-hexacopter: uncertainty quantification for a range of temperature and pressure conditions Davi Antonio Santos, Americo Cunha Jr To cite this version: Davi Antonio Santos, Americo

More information

Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt MATEC Web of Conferences 114, 41 (217) DOI: 1.11/ matecconf/21711441 2MAE 217 Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt Haixia Gong 1, Zhe Liu 1,a and

More information

Trigonometric Identities. Sum and Differences

Trigonometric Identities. Sum and Differences Trigonometric Identities Sum and Differences WARNING: While viewing this pdf, the viewer may experience the following: 1.) Shock.) Confusion.) Denial 4.) Disbelief 5.) I never learned this 6.) Fear 7.)

More information

A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control Aerospace 2015, 2, 325-352; doi:10.3390/aerospace2020325 OPEN ACCESS aerospace ISSN 2226-4310 www.mdpi.com/journal/aerospace Article A Comparison of Closed-Loop Performance of Multirotor Configurations

More information

Robust Adaptive Attitude Control of a Spacecraft

Robust Adaptive Attitude Control of a Spacecraft Robust Adaptive Attitude Control of a Spacecraft AER1503 Spacecraft Dynamics and Controls II April 24, 2015 Christopher Au Agenda Introduction Model Formulation Controller Designs Simulation Results 2

More information

Nonlinear and Neural Network-based Control of a Small Four-Rotor Aerial Robot

Nonlinear and Neural Network-based Control of a Small Four-Rotor Aerial Robot Nonlinear and Neural Network-based Control of a Small Four-Rotor Aerial Robot Holger Voos Abstract Small four-rotor aerial robots, so called quadrotor UAVs, have an enormous potential for all kind of neararea

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

Bending analysis of micro cantilevers based on the Chen-Wang strain gradient plasticity theory

Bending analysis of micro cantilevers based on the Chen-Wang strain gradient plasticity theory 204-98 2 5394 mme.modares.ac.ir - *2 - -2 r_ansari@guilan.ac.ir3756 * -... 393 06 : 393 24 : 393 3 : - Bendinganalysisofmicro cantileversbasedonthechen-wangstrain gradientplasticitytheory HakimehAlizadeh,RezaAnsari

More information

Dynamic Model and Control of Quadrotor in the Presence of Uncertainties

Dynamic Model and Control of Quadrotor in the Presence of Uncertainties University of South Carolina Scholar Commons Theses and Dissertations 5-2017 Dynamic Model and Control of Quadrotor in the Presence of Uncertainties Courage Agho University of South Carolina Follow this

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

ROBUST NEURAL NETWORK CONTROL OF A QUADROTOR HELICOPTER. Schulich School of Engineering, University of Calgary

ROBUST NEURAL NETWORK CONTROL OF A QUADROTOR HELICOPTER. Schulich School of Engineering, University of Calgary ROBUST NEURAL NETWORK CONTROL OF A QUADROTOR HELICOPTER C. Nicol,C.J.B. Macnab, A. Ramirez-Serrano Schulich School of Engineering, University of Calgary Department of Electrical and Computer Engineering

More information

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations DENIS KOTARSKI, Department of Mechanical Engineering, Karlovac University of Applied Sciences, J.J. Strossmayera 9, Karlovac,

More information

Modeling and Control Strategy for the Transition of a Convertible Tail-sitter UAV

Modeling and Control Strategy for the Transition of a Convertible Tail-sitter UAV Modeling and Control Strategy for the Transition of a Convertible Tail-sitter UAV J. Escareño, R.H. Stone, A. Sanchez and R. Lozano Abstract This paper addresses the problem of the transition between rotary-wing

More information

Design and Development of a Novel Controller for Robust Stabilisation and Attitude Control of an Unmanned Air Vehicle for Nuclear Environments*

Design and Development of a Novel Controller for Robust Stabilisation and Attitude Control of an Unmanned Air Vehicle for Nuclear Environments* Design and Development of a Novel Controller for Robust Stabilisation and Attitude Control of an Unmanned Air Vehicle for Nuclear Environments* Hamidreza Nemati Engineering Department Lancaster University

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems Romeo Ortega, Antonio Loria, Per Johan Nicklasson and Hebertt Sira-Ramfrez Passivity-based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications Springer Contents

More information

Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics and Control Lecture «Robot Dynamics»: Dynamics and Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES Wen-Hua Chen Professor in Autonomous Vehicles Department of Aeronautical and Automotive Engineering Loughborough University 1 Outline

More information

A Simulation Study for Practical Control of a Quadrotor

A Simulation Study for Practical Control of a Quadrotor A Siulation Study for Practical Control of a Quadrotor Jeongho Noh* and Yongkyu Song** *Graduate student, Ph.D. progra, ** Ph.D., Professor Departent of Aerospace and Mechanical Engineering, Korea Aerospace

More information

Óbuda University PhD Dissertation

Óbuda University PhD Dissertation Óbuda University PhD Dissertation Tools for Efficient Soft Computing Modelling and Feasible Optimal Control of Complex Dynamic Systems, with Application to Multi-Rotor Unmanned Aerial Vehicle Navigation

More information

Russo, A. (2017) Adaptive augmentation of the attitude control system for a multirotor UAV In:

Russo, A. (2017) Adaptive augmentation of the attitude control system for a multirotor UAV In: http://www.diva-portal.org This is the published version of a paper presented at 7 th EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES. Citation for the original published paper: Russo, A. (217) Adaptive augmentation

More information

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles Technical Paper Int l J. of Aeronautical & Space Sci. 11(3), 167 174 (010) DOI:10.5139/IJASS.010.11.3.167 Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles Dong-Wan Yoo*,

More information

Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique

Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 3-5, 006 Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique

More information

Lecture 1: Feedback Control Loop

Lecture 1: Feedback Control Loop Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

More information

Position Control for a Class of Vehicles in SE(3)

Position Control for a Class of Vehicles in SE(3) Position Control for a Class of Vehicles in SE(3) Ashton Roza, Manfredi Maggiore Abstract A hierarchical design framework is presented to control the position of a class of vehicles in SE(3) that are propelled

More information

Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor

Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005 Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor Samir Bouabdallah

More information

Robot Dynamics Rotorcrafts: Dynamic Modeling of Rotorcraft & Control

Robot Dynamics Rotorcrafts: Dynamic Modeling of Rotorcraft & Control Robot Dynamics Rotorcrafts: Dynamic Modeling of Rotorcraft & Control 5-85- V Marco Hutter, Roland Siegwart and Thomas Stastny Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling 7..5

More information

Triple Tilting Rotor mini-uav: Modeling and Embedded Control of the Attitude

Triple Tilting Rotor mini-uav: Modeling and Embedded Control of the Attitude 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June -3, 28 ThC6.4 Triple Tilting Rotor mini-uav: Modeling and Embedded Control of the Attitude J. Escareño, A. Sanchez, O.

More information

Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory

Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory J. Colorado, A. Barrientos, Senior Member, IEEE, A. Martinez, B. Lafaverges, and J. Valente Abstract This paper is about

More information

The PVTOL Aircraft. 2.1 Introduction

The PVTOL Aircraft. 2.1 Introduction 2 The PVTOL Aircraft 2.1 Introduction We introduce in this chapter the well-known Planar Vertical Take-Off and Landing (PVTOL) aircraft problem. The PVTOL represents a challenging nonlinear systems control

More information

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

More information

Gain-scheduling Control of a Quadrotor Using the Takagi-Sugeno Approach

Gain-scheduling Control of a Quadrotor Using the Takagi-Sugeno Approach Treball de Fi de Màster Master s degree in Automatic Control and Robotics Gain-scheduling Control of a Quadrotor Using the Takagi-Sugeno Approach MEMÒRIA Autor: Director/s: Convocatòria: Diego Ruiz Paz

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE - DIMEAS

DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE - DIMEAS DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE - DIMEAS COURSE TITLE: INSTRUCTOR: COURSE LEVEL: [LIVELLO DI CORSO: Navigation and Control of Unmanned Aerial Vehicles (UAVs): A Comprehensive Approach

More information

ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE

ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE International Journal of Robotics and Automation, Vol. 30, No. 2, 205 ADAPTIVE SLIDING MODE CONTROL OF UNMANNED FOUR ROTOR FLYING VEHICLE Shafiqul Islam, Xiaoping P. Liu, and Abdulmotaleb El Saddik Abstract

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Lecture «Robot Dynamics»: Dynamics 2

Lecture «Robot Dynamics»: Dynamics 2 Lecture «Robot Dynamics»: Dynamics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK

DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH ACCELERATION FEEDBACK Feng Tian Department of Mechanical Engineering Marquette University Milwaukee, WI 53233 USA Email: feng.tian@mu.edu Kevin

More information

Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and Backstepping Techniques

Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and Backstepping Techniques 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV7 & European Micro Air Vehicle Conference and light Competition (EMAV27, 17-21 September 27, Toulouse, rance Nonlinear Attitude

More information

Improving control of quadrotors carrying a manipulator arm

Improving control of quadrotors carrying a manipulator arm Improving control of quadrotors carrying a manipulator arm J. U. Álvarez-Muñoz, Nicolas Marchand, Fermi Guerrero-Castellanos, Sylvain Durand, A. E. Lopez-Luna To cite this version: J. U. Álvarez-Muñoz,

More information

Numerical study of different models of an Agnew micro hydro turbine

Numerical study of different models of an Agnew micro hydro turbine 0-6594 mme.modares.ac.ir * - - - amirzaei@iust.ac.ir68464 *......... 9 : 94 6 : 94 05 : - NumericalstudyofdifferentmodelsofanAgnewmicrohydroturbine MohammadHasanShojaeefard * AmmarMirzaei, MohamadSadeghAbedinejad

More information

MATH 151, SPRING 2013 COMMON EXAM II - VERSION A. Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #:

MATH 151, SPRING 2013 COMMON EXAM II - VERSION A. Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #: MATH 151, SPRING 2013 COMMON EXAM II - VERSION A Print name (LAST, First): SECTION #: INSTRUCTOR: SEAT #: THE AGGIE CODE OF HONOR "An Aggie does not lie, cheat, or steal, or tolerate those who do." By

More information

Mathematical modeling and vertical flight control of a tilt-wing UAV

Mathematical modeling and vertical flight control of a tilt-wing UAV Turk J Elec Eng & Comp Sci, Vol., No.1, 1, c TÜBİTAK doi:1.96/elk-17-64 Mathematical modeling and vertical flight control of a tilt-wing UAV Kaan Taha ÖNER 1,Ertuğrul ÇETİNSOY 1,EfeSIRIMOĞLU 1,CevdetHANÇER

More information

Robust Nonlinear Real-time Control Strategy to Stabilize a PVTOL Aircraft in Crosswind

Robust Nonlinear Real-time Control Strategy to Stabilize a PVTOL Aircraft in Crosswind The IEEE/RSJ International Conference on Intelligent Robots and Systems October 8-,, Taipei, Taiwan Robust Nonlinear Real-time Control Strategy to Stabilize a PVTOL Aircraft in Crosswind Laura E. Muñoz

More information

H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV

H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV Proceedings of the 2nd WSEAS International Conference on Dynamical Systems and Control, Bucharest, Romania, October 16-17, 2006 105 H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case

More information

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 3 MOTION MODELING. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 3 MOTION MODELING. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 3 MOTION MODELING Prof. Steven Waslander COMPONENTS Mission Planning Mission Mapping Mission Autonomy Path Planning Mapping Environmental Autonomy Control Estimation

More information