Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions

Size: px
Start display at page:

Download "Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions"

Transcription

1 PLGW05 Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 1 joint work with Ilan Gronau 2, Shlomo Moran 3, and Irad Yavneh Dept. of Biological Statistics and Computational Biology, Cornell University, Ithaca, USA, 3 Computer Science Dept.,Technion, Haifa, Israel June 24, 2011 Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 1 / 16

2 Motivation Motivation X... t 5? t 6 t 1 t 2 t 3 t 4 A t 1 B t 2 t int t 3 t 4 D C ATCA... A A : ATCA... B : ATGA... C : ATTA... D : TTTA... ATGA... ATTA... TTTA... B C A G 1 2 C T D Substitution Rate function (Distance measure) 1 (P) 4 (P) 2 (P) 3 (P) 3 4 D AB = ( ATCA..., ATGA... ) D AC = ( ATCA..., ATTA... ) D AD = ( ATCA..., TTTA... ) D BC = ( ATGA..., ATTA... )... Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 2 / 16

3 Motivation Motivation... t 5 t 1 t 2 t 3 t 4 X? A t What 6 distance measure t 1 t int should I choose? B t 2 t 3 t 4 D C ATCA... A A : ATCA... B : ATGA... C : ATTA... D : TTTA... ATGA... ATTA... TTTA... B C A G 1 2 C T D Substitution Rate function (Distance measure) 1 (P) 4 (P) 2 (P) 3 (P) 3 4 D AB = ( ATCA..., ATGA... ) D AC = ( ATCA..., ATTA... ) D AD = ( ATCA..., TTTA... ) D BC = ( ATGA..., ATTA... )... Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 2 / 16

4 Motivation An ongoing quest... Previous works: I. Gronau, S. Moran, and I. Yavneh: Towards optimal distance functions for stochastic substitution models. J Theor Biol, 260(2): , I. Gronau, S. Moran, and I. Yavneh: Adaptive distance measures for resolving K2P quartets: Metric separation versus stochastic noise. J Comp Biol, 17(11): , Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 3 / 16

5 SR functions Distance measures Kimura two-parameter (K2P) model Distance measures A α G β C β α β T d uw = d uv + d vw u v w α=transitions β=transversions transition-to-transversion ratio R = α 2β biological evidence that α>β normalization: α + 2β = 1 additive distance measures induce tree metrics in homogeneous models distance measures given by (t) additive distance measure in K2P: standard SR function: K2P (t) = αt + 2βt = t Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 4 / 16

6 Evaluation of SR functions Experiment: Hasegawa s tree average normalized RF distance Hasegawa's tree, sequence length = 500bp, R = 2 K2P Mouse 0.77 Gibbon Orang Gorilla Chimp Human tree diameter Bovine Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 5 / 16

7 Evaluation of SR functions Experiment: Hasegawa s tree average normalized RF distance Hasegawa's tree, sequence length = 500bp, R = 2 K2P tree diameter 1. simulate evolution according to K2P model with ti-tv ratio R = 2 2. for each tree size, generate batches of 7-way alignments of 500bp length 3. measure Robinson-Foulds tree distance to true tree Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 5 / 16

8 Evaluation of SR functions Experiment: Hasegawa s tree average normalized RF distance Hasegawa's tree, sequence length = 500bp, R = 2 K2P JC tree diameter 1. simulate evolution according to K2P model with ti-tv ratio R = 2 2. for each tree size, generate batches of 7-way alignments of 500bp length 3. measure Robinson-Foulds tree distance to true tree JC is statistical consistent w.r.t. Haswegawa s tree! Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 5 / 16

9 Evaluation of SR functions Non-additive SR functions estimated distance (t) JC K2P ti tv ratio: 10 Jukes Cantor (JC) model is a homogeneous submodel of K2P for R = 1 2 JC deviates from additivity in K2P and in homogeneous submodels for R > 0.5 induces near-additive metric w.r.t to Hasegawa s tree has lower stochastic variance than K2P evolutionary time t Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 6 / 16

10 Evaluation of SR functions Non-additive SR functions estimated distance (t) ti tv ratio: 10, sequence length: 1000bp JC K2P σ ( JC ) σ ( K2P ) Jukes Cantor (JC) model is a homogeneous submodel of K2P for R = 1 2 JC deviates from additivity in K2P and in homogeneous submodels for R > 0.5 induces near-additive metric w.r.t to Hasegawa s tree has lower stochastic variance than K2P evolutionary time t Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 6 / 16

11 Evaluation of SR functions Non-additive SR functions 2 JC ti tv ratio: 10 Gibbon Orang Gorilla Chimp K2P Mouse Human t 0 estimated distance (t) t t evolutionary time t t 1 Bovine affine additive transformation aff = A + b remains additive allows analysis of non-additive SR function deviation from additivity in [t 0, t 1]: 1 max{ (t) at b : t [t0, t1]} a check consistency using nearadditivity theorem (Atteson, 1999) Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 7 / 16

12 Evaluation of SR functions Non-additive SR functions 2 JC ti tv ratio: 10 Gibbon Orang Gorilla Chimp K2P Mouse Human t 0 estimated distance (t) int = A K2P + b 0 0 t t evolutionary time t t 1 Bovine affine additive transformation aff = A + b remains additive allows analysis of non-additive SR function deviation from additivity in [t 0, t 1]: 1 max{ (t) at b : t [t0, t1]} a check consistency using nearadditivity theorem (Atteson, 1999) Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 7 / 16

13 Evaluation of SR functions Non-additive SR functions estimated distance (t) ti tv ratio: 10, sequence length: 1000bp JC aff = A K2P + b σ ( JC ) σ ( aff ) 0 t t evolutionary time t Mouse t 1 Gibbon Orang Bovine Gorilla Human Chimp affine additive transformation aff = A + b remains additive allows analysis of non-additive SR function deviation from additivity in [t 0, t 1]: 1 max{ (t) at b : t [t0, t1]} a check consistency using nearadditivity theorem (Atteson, 1999) t 0 Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 7 / 16

14 Evaluation of SR functions Non-additive SR functions ti tv ratio: 10, sequence length: 1000bp Gibbon Orang estimated distance (t) t 0 JC aff = A K2P + b σ ( JC ) σ ( aff ) dev ( JC, [t 0, t 1 ]) fixed error evolutionary time t t 1 Mouse t 1 Bovine Human Chimp affine additive transformation aff = A + b remains additive allows analysis of non-additive SR function deviation from additivity in [t 0, t 1]: 1 max{ (t) at b : t [t0, t1]} a check consistency using nearadditivity theorem (Atteson, 1999) t 0 Gorilla Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 7 / 16

15 Experiments on Quartets Two extreme archetypes of quartets with long and short edges Felsenstein quartet Farris quartet t 0 B D t t s s ts t l = 5 t s t 0 t C s D t s t s C D t l t l t l t l A C A B B A t 1 t 1 underestimation of t 0 + t 1 decreases separation of the split AB CD biased towards AC BD underestimation of t 0 + t 1 increases separation of the split AB CD bias towards correct split Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 8 / 16

16 Experiments on Quartets Two extreme archetypes of quartets with long and short edges Felsenstein quartet Felsensteinquartet, sequencelength=500bp, R =5 Δ J C Δ K2P Farris quartet Farris quartet, sequence length =500bp, R =5 Δ J C Δ K2P failure rate 0.10 failure rate t 1 t 1 underestimation of t 0 + t 1 decreases separation of the split AB CD biased towards AC BD underestimation of t 0 + t 1 increases separation of the split AB CD bias towards correct split Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 8 / 16

17 Experiments on Quartets Two extreme archetypes of quartets with long and short edges Felsenstein quartet Felsensteinquartet, sequencelength=500bp, R =5 Δ J C Δ K2P Farris quartet Farris quartet, sequence length =500bp, R =5 Δ J C Δ K2P failure rate 0.10 failure rate t 1 t 1 despite impedimental bias JC performs better than K2P for moderate t l /t s ratio e.g. t l = 3.5 t s underestimation of t 0 + t 1 increases separation of the split AB CD bias towards correct split Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 8 / 16

18 Fisher s Linear Discriminant Fisher s Linear Discriminant Fisher s Linear Discriminant measures separation between independent normally-distributed random variables: X N(µ 1, σ 1) and Y N(µ 2, σ 2) FLD(X, Y ) = µ 1 µ 2 σ 2 1 +σ2 2 = SEP( ) NOISE( ) B D µ 1 = D AC + D BD µ 2 = D AB + D CD σ1 2 = σ 2 (D AC ) + σ 2 (D BD ) σ2 2 = σ 2 (D AB ) + σ 2 (D CD ) A w int C Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 9 / 16

19 Fisher s Linear Discriminant FLD on Felsenstein s quartet t i = 0.2 t l = 1 t s [0.2, 1] % % & & s t i t s t l " # $! t l t s t i t s t l # $!"#!" #$% $!"#!" #$% $!" #$%!" #$%!" #$%!" #$% Simulation: 100,000 trees per data point, sequence length of 1000 bp. Prediction based on FLD. Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 10 / 16

20 Modelling Seperation and Noise with FLD Fisher s Linear Discriminant: Separation vs. Noise Fisher s Linear Discriminant measures separation between independent normally-distributed random variables: X N(µ 1, σ 1) and Y N(µ 2, σ 2) FLD(X, Y ) = µ 1 µ 2 σ 2 1 +σ2 2 = SEP( ) NOISE( ) SEP( ) = µ 1 µ 2, NOISE( ) = σ σ2 2 FLD( 1 ) FLD( 2 ) = SEP( 1) SEP( 2 ) / NOISE( 1) NOISE( 2 ) independent of sequence length Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 11 / 16

21 Modelling Seperation and Noise with FLD Fisher s Linear Discriminant: Separation vs. Noise Fisher s Linear Discriminant measures separation between independent normally-distributed random variables: X N(µ 1, σ 1) and Y N(µ 2, σ 2) FLD(X, Y ) = µ 1 µ 2 σ 2 1 +σ2 2 = SEP( ) NOISE( ) SEP( ) = µ 1 µ 2, NOISE( ) = σ σ2 2 FLD( 1 ) FLD( 2 ) = SEP( 1) SEP( 2 ) / NOISE( 1) NOISE( 2 ) independent of sequence length Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 11 / 16

22 Modelling Seperation and Noise with FLD Separation between noise and deviation from additivity R=5 R=2 Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 12 / 16

23 Experiment on biological data Experiment on biological data difference from RF of BIONJ GTR tree JC K2P LogDet number of trees RF between BIONJ GTR tree and LTP tree 163 bacterial species 31 marker genes (Ciccarelli et al, 2006) sample 40, 000 random 10-species sub-alignments extract four-fold degenerate sites reference tree from the Living Tree Project (ARB-Silva) Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 13 / 16

24 Summary Summary Surprising observation: non-additive SR functions can improve reconstruction accuracy Example: JC SR function in K2P trees Introduced concepts: deviation from additivity affine-additive SR function SEP and NOISE More information in our (soon published) WABI paper Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 14 / 16

25 Summary The end Thank you! Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 15 / 16

26 Summary Selected references K. Atteson. The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica, 25: , D. Doerr, I. Gronau, S. Moran, and I. Yavneh. Stochastic errors vs. modeling errors in distance based phylogenetic reconstructions, in preparation, Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, 2 edition, September I. Gronau, S. Moran, and I. Yavneh. Towards optimal distance functions for stochastic substitution models. J Theor Biol, 260(2): , I. Gronau, S. Moran, and I. Yavneh. Adaptive distance measures for resolving K2P quartets: Metric separation versus stochastic noise. J Comp Biol, 17(11): , Motoo Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): , June Stochastic Errors vs. Modeling Errors in Distance Based Phylogenetic Reconstructions 16 / 16

Phylogenetics: Building Phylogenetic Trees

Phylogenetics: Building Phylogenetic Trees 1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

More information

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

More information

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Distance Methods COMP 571 - Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distance-based methods Evolutionary Models and Distance Correction

More information

How should we go about modeling this? Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe?

How should we go about modeling this? Model parameters? Time Substitution rate Can we observe time or subst. rate? What can we observe? How should we go about modeling this? gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG Model parameters? Time Substitution rate Can we observe time or subst. rate? What

More information

Lecture 27. Phylogeny methods, part 7 (Bootstraps, etc.) p.1/30

Lecture 27. Phylogeny methods, part 7 (Bootstraps, etc.) p.1/30 Lecture 27. Phylogeny methods, part 7 (Bootstraps, etc.) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 27. Phylogeny methods, part 7 (Bootstraps, etc.) p.1/30 A non-phylogeny

More information

NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees

NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana

More information

Substitution = Mutation followed. by Fixation. Common Ancestor ACGATC 1:A G 2:C A GAGATC 3:G A 6:C T 5:T C 4:A C GAAATT 1:G A

Substitution = Mutation followed. by Fixation. Common Ancestor ACGATC 1:A G 2:C A GAGATC 3:G A 6:C T 5:T C 4:A C GAAATT 1:G A GAGATC 3:G A 6:C T Common Ancestor ACGATC 1:A G 2:C A Substitution = Mutation followed 5:T C by Fixation GAAATT 4:A C 1:G A AAAATT GAAATT GAGCTC ACGACC Chimp Human Gorilla Gibbon AAAATT GAAATT GAGCTC ACGACC

More information

Understanding relationship between homologous sequences

Understanding relationship between homologous sequences Molecular Evolution Molecular Evolution How and when were genes and proteins created? How old is a gene? How can we calculate the age of a gene? How did the gene evolve to the present form? What selective

More information

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive.

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive. Additive distances Let T be a tree on leaf set S and let w : E R + be an edge-weighting of T, and assume T has no nodes of degree two. Let D ij = e P ij w(e), where P ij is the path in T from i to j. Then

More information

Letter to the Editor. Department of Biology, Arizona State University

Letter to the Editor. Department of Biology, Arizona State University Letter to the Editor Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep Evolutionary Relationships Equally Well Michael S. Rosenberg and Sudhir Kumar Department of Biology, Arizona

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Reconstruire le passé biologique modèles, méthodes, performances, limites

Reconstruire le passé biologique modèles, méthodes, performances, limites Reconstruire le passé biologique modèles, méthodes, performances, limites Olivier Gascuel Centre de Bioinformatique, Biostatistique et Biologie Intégrative C3BI USR 3756 Institut Pasteur & CNRS Reconstruire

More information

Distance Corrections on Recombinant Sequences

Distance Corrections on Recombinant Sequences Distance Corrections on Recombinant Sequences David Bryant 1, Daniel Huson 2, Tobias Kloepper 2, and Kay Nieselt-Struwe 2 1 McGill Centre for Bioinformatics 3775 University Montréal, Québec, H3A 2B4 Canada

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057 Estimating Phylogenies (Evolutionary Trees) II Biol4230 Thurs, March 2, 2017 Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057 Tree estimation strategies: Parsimony?no model, simply count minimum number

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

BMI/CS 776 Lecture 4. Colin Dewey

BMI/CS 776 Lecture 4. Colin Dewey BMI/CS 776 Lecture 4 Colin Dewey 2007.02.01 Outline Common nucleotide substitution models Directed graphical models Ancestral sequence inference Poisson process continuous Markov process X t0 X t1 X t2

More information

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#$%&'(!)* +,-.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods

More information

Using algebraic geometry for phylogenetic reconstruction

Using algebraic geometry for phylogenetic reconstruction Using algebraic geometry for phylogenetic reconstruction Marta Casanellas i Rius (joint work with Jesús Fernández-Sánchez) Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya IMA

More information

Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/22

Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/22 Lecture 24. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 24. Phylogeny methods, part 4 (Models of DNA and

More information

Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used

Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used Molecular Phylogenetics and Evolution 31 (2004) 865 873 MOLECULAR PHYLOGENETICS AND EVOLUTION www.elsevier.com/locate/ympev Efficiencies of maximum likelihood methods of phylogenetic inferences when different

More information

Lecture 4. Models of DNA and protein change. Likelihood methods

Lecture 4. Models of DNA and protein change. Likelihood methods Lecture 4. Models of DNA and protein change. Likelihood methods Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 4. Models of DNA and protein change. Likelihood methods p.1/36

More information

Minimum evolution using ordinary least-squares is less robust than neighbor-joining

Minimum evolution using ordinary least-squares is less robust than neighbor-joining Minimum evolution using ordinary least-squares is less robust than neighbor-joining Stephen J. Willson Department of Mathematics Iowa State University Ames, IA 50011 USA email: swillson@iastate.edu November

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary CSCI1950 Z Computa4onal Methods for Biology Lecture 4 Ben Raphael February 2, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary Parsimony Probabilis4c Method Input Output Sankoff s & Fitch

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

Phylogenetic Assumptions

Phylogenetic Assumptions Substitution Models and the Phylogenetic Assumptions Vivek Jayaswal Lars S. Jermiin COMMONWEALTH OF AUSTRALIA Copyright htregulation WARNING This material has been reproduced and communicated to you by

More information

Phylogenetic Algebraic Geometry

Phylogenetic Algebraic Geometry Phylogenetic Algebraic Geometry Seth Sullivant North Carolina State University January 4, 2012 Seth Sullivant (NCSU) Phylogenetic Algebraic Geometry January 4, 2012 1 / 28 Phylogenetics Problem Given a

More information

Neighbor Joining Algorithms for Inferring Phylogenies via LCA-Distances

Neighbor Joining Algorithms for Inferring Phylogenies via LCA-Distances Neighbor Joining Algorithms for Inferring Phylogenies via LCA-Distances Ilan Gronau Shlomo Moran September 6, 2006 Abstract Reconstructing phylogenetic trees efficiently and accurately from distance estimates

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26 Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 27. Phylogeny methods, part 4 (Models of DNA and

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree) I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by

More information

Evolutionary Tree Analysis. Overview

Evolutionary Tree Analysis. Overview CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

More information

Molecular Evolution and Phylogenetic Tree Reconstruction

Molecular Evolution and Phylogenetic Tree Reconstruction 1 4 Molecular Evolution and Phylogenetic Tree Reconstruction 3 2 5 1 4 2 3 5 Orthology, Paralogy, Inparalogs, Outparalogs Phylogenetic Trees Nodes: species Edges: time of independent evolution Edge length

More information

Maximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington.

Maximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington. Maximum Likelihood This presentation is based almost entirely on Peter G. Fosters - "The Idiot s Guide to the Zen of Likelihood in a Nutshell in Seven Days for Dummies, Unleashed. http://www.bioinf.org/molsys/data/idiots.pdf

More information

Molecular evolution 2. Please sit in row K or forward

Molecular evolution 2. Please sit in row K or forward Molecular evolution 2 Please sit in row K or forward RBFD: cat, mouse, parasite Toxoplamsa gondii cyst in a mouse brain http://phenomena.nationalgeographic.com/2013/04/26/mind-bending-parasite-permanently-quells-cat-fear-in-mice/

More information

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution 1. Rates of amino acid replacement The initial motivation for the neutral

More information

C.DARWIN ( )

C.DARWIN ( ) C.DARWIN (1809-1882) LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships

More information

Modeling Noise in Genetic Sequences

Modeling Noise in Genetic Sequences Modeling Noise in Genetic Sequences M. Radavičius 1 and T. Rekašius 2 1 Institute of Mathematics and Informatics, Vilnius, Lithuania 2 Vilnius Gediminas Technical University, Vilnius, Lithuania 1. Introduction:

More information

Assessing an Unknown Evolutionary Process: Effect of Increasing Site- Specific Knowledge Through Taxon Addition

Assessing an Unknown Evolutionary Process: Effect of Increasing Site- Specific Knowledge Through Taxon Addition Assessing an Unknown Evolutionary Process: Effect of Increasing Site- Specific Knowledge Through Taxon Addition David D. Pollock* and William J. Bruno* *Theoretical Biology and Biophysics, Los Alamos National

More information

Weighted Quartets Phylogenetics

Weighted Quartets Phylogenetics Weighted Quartets Phylogenetics Yunan Luo E. Avni, R. Cohen, and S. Snir. Weighted quartets phylogenetics. Systematic Biology, 2014. syu087 Problem: quartet-based supertree Input Output A B C D A C D E

More information

arxiv: v1 [q-bio.pe] 27 Oct 2011

arxiv: v1 [q-bio.pe] 27 Oct 2011 INVARIANT BASED QUARTET PUZZLING JOE RUSINKO AND BRIAN HIPP arxiv:1110.6194v1 [q-bio.pe] 27 Oct 2011 Abstract. Traditional Quartet Puzzling algorithms use maximum likelihood methods to reconstruct quartet

More information

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods

More information

Distances that Perfectly Mislead

Distances that Perfectly Mislead Syst. Biol. 53(2):327 332, 2004 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150490423809 Distances that Perfectly Mislead DANIEL H. HUSON 1 AND

More information

Recent Advances in Phylogeny Reconstruction

Recent Advances in Phylogeny Reconstruction Recent Advances in Phylogeny Reconstruction from Gene-Order Data Bernard M.E. Moret Department of Computer Science University of New Mexico Albuquerque, NM 87131 Department Colloqium p.1/41 Collaborators

More information

Preliminaries. Download PAUP* from: Tuesday, July 19, 16

Preliminaries. Download PAUP* from:   Tuesday, July 19, 16 Preliminaries Download PAUP* from: http://people.sc.fsu.edu/~dswofford/paup_test 1 A model of the Boston T System 1 Idea from Paul Lewis A simpler model? 2 Why do models matter? Model-based methods including

More information

Inferring Molecular Phylogeny

Inferring Molecular Phylogeny Dr. Walter Salzburger he tree of life, ustav Klimt (1907) Inferring Molecular Phylogeny Inferring Molecular Phylogeny 55 Maximum Parsimony (MP): objections long branches I!! B D long branch attraction

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Phylogenetic Analysis Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Outline Basic Concepts Tree Construction Methods Distance-based methods

More information

Lie Markov models. Jeremy Sumner. School of Physical Sciences University of Tasmania, Australia

Lie Markov models. Jeremy Sumner. School of Physical Sciences University of Tasmania, Australia Lie Markov models Jeremy Sumner School of Physical Sciences University of Tasmania, Australia Stochastic Modelling Meets Phylogenetics, UTAS, November 2015 Jeremy Sumner Lie Markov models 1 / 23 The theory

More information

TheDisk-Covering MethodforTree Reconstruction

TheDisk-Covering MethodforTree Reconstruction TheDisk-Covering MethodforTree Reconstruction Daniel Huson PACM, Princeton University Bonn, 1998 1 Copyright (c) 2008 Daniel Huson. Permission is granted to copy, distribute and/or modify this document

More information

Identifiability of the GTR+Γ substitution model (and other models) of DNA evolution

Identifiability of the GTR+Γ substitution model (and other models) of DNA evolution Identifiability of the GTR+Γ substitution model (and other models) of DNA evolution Elizabeth S. Allman Dept. of Mathematics and Statistics University of Alaska Fairbanks TM Current Challenges and Problems

More information

Phylogenetic invariants versus classical phylogenetics

Phylogenetic invariants versus classical phylogenetics Phylogenetic invariants versus classical phylogenetics Marta Casanellas Rius (joint work with Jesús Fernández-Sánchez) Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya Algebraic

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Effects of Gap Open and Gap Extension Penalties

Effects of Gap Open and Gap Extension Penalties Brigham Young University BYU ScholarsArchive All Faculty Publications 200-10-01 Effects of Gap Open and Gap Extension Penalties Hyrum Carroll hyrumcarroll@gmail.com Mark J. Clement clement@cs.byu.edu See

More information

Evolutionary Models. Evolutionary Models

Evolutionary Models. Evolutionary Models Edit Operators In standard pairwise alignment, what are the allowed edit operators that transform one sequence into the other? Describe how each of these edit operations are represented on a sequence alignment

More information

Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences

Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences Basic Bioinformatics Workshop, ILRI Addis Ababa, 12 December 2017 1 Learning Objectives

More information

Lab 9: Maximum Likelihood and Modeltest

Lab 9: Maximum Likelihood and Modeltest Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2010 Updated by Nick Matzke Lab 9: Maximum Likelihood and Modeltest In this lab we re going to use PAUP*

More information

Genetic distances and nucleotide substitution models

Genetic distances and nucleotide substitution models 4 Genetic distances and nucleotide substitution models THEORY Korbinian Strimmer and Arndt von Haeseler 4.1 Introduction One of the first steps in the analysis of aligned nucleotide or amino acid sequences

More information

Predicting the Evolution of two Genes in the Yeast Saccharomyces Cerevisiae

Predicting the Evolution of two Genes in the Yeast Saccharomyces Cerevisiae Available online at wwwsciencedirectcom Procedia Computer Science 11 (01 ) 4 16 Proceedings of the 3rd International Conference on Computational Systems-Biology and Bioinformatics (CSBio 01) Predicting

More information

Phylogenetics. BIOL 7711 Computational Bioscience

Phylogenetics. BIOL 7711 Computational Bioscience Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium

More information

Lecture 4. Models of DNA and protein change. Likelihood methods

Lecture 4. Models of DNA and protein change. Likelihood methods Lecture 4. Models of DNA and protein change. Likelihood methods Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 4. Models of DNA and protein change. Likelihood methods p.1/39

More information

In: M. Salemi and A.-M. Vandamme (eds.). To appear. The. Phylogenetic Handbook. Cambridge University Press, UK.

In: M. Salemi and A.-M. Vandamme (eds.). To appear. The. Phylogenetic Handbook. Cambridge University Press, UK. In: M. Salemi and A.-M. Vandamme (eds.). To appear. The Phylogenetic Handbook. Cambridge University Press, UK. Chapter 4. Nucleotide Substitution Models THEORY Korbinian Strimmer () and Arndt von Haeseler

More information

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building How Molecules Evolve Guest Lecture: Principles and Methods of Systematic Biology 11 November 2013 Chris Simon Approaching phylogenetics from the point of view of the data Understanding how sequences evolve

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

1. Can we use the CFN model for morphological traits?

1. Can we use the CFN model for morphological traits? 1. Can we use the CFN model for morphological traits? 2. Can we use something like the GTR model for morphological traits? 3. Stochastic Dollo. 4. Continuous characters. Mk models k-state variants of the

More information

Maximum Likelihood in Phylogenetics

Maximum Likelihood in Phylogenetics Maximum Likelihood in Phylogenetics June 1, 2009 Smithsonian Workshop on Molecular Evolution Paul O. Lewis Department of Ecology & Evolutionary Biology University of Connecticut, Storrs, CT Copyright 2009

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2015 Week-4 BLAST Algorithm Continued Multiple Sequence Alignment Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004, Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

More information

Week 5: Distance methods, DNA and protein models

Week 5: Distance methods, DNA and protein models Week 5: Distance methods, DNA and protein models Genome 570 February, 2016 Week 5: Distance methods, DNA and protein models p.1/69 A tree and the expected distances it predicts E A 0.08 0.05 0.06 0.03

More information

ELIZABETH S. ALLMAN and JOHN A. RHODES ABSTRACT 1. INTRODUCTION

ELIZABETH S. ALLMAN and JOHN A. RHODES ABSTRACT 1. INTRODUCTION JOURNAL OF COMPUTATIONAL BIOLOGY Volume 13, Number 5, 2006 Mary Ann Liebert, Inc. Pp. 1101 1113 The Identifiability of Tree Topology for Phylogenetic Models, Including Covarion and Mixture Models ELIZABETH

More information

The Phylogenetic Handbook

The Phylogenetic Handbook The Phylogenetic Handbook A Practical Approach to DNA and Protein Phylogeny Edited by Marco Salemi University of California, Irvine and Katholieke Universiteit Leuven, Belgium and Anne-Mieke Vandamme Rega

More information

Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction

Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction William J. Bruno,* Nicholas D. Socci, and Aaron L. Halpern *Theoretical Biology and Biophysics, Los Alamos

More information

7. Tests for selection

7. Tests for selection Sequence analysis and genomics 7. Tests for selection Dr. Katja Nowick Group leader TFome and Transcriptome Evolution Bioinformatics group Paul-Flechsig-Institute for Brain Research www. nowicklab.info

More information

Molecular Evolution, course # Final Exam, May 3, 2006

Molecular Evolution, course # Final Exam, May 3, 2006 Molecular Evolution, course #27615 Final Exam, May 3, 2006 This exam includes a total of 12 problems on 7 pages (including this cover page). The maximum number of points obtainable is 150, and at least

More information

On the Uniqueness of the Selection Criterion in Neighbor-Joining

On the Uniqueness of the Selection Criterion in Neighbor-Joining Journal of Classification 22:3-15 (2005) DOI: 10.1007/s00357-005-0003-x On the Uniqueness of the Selection Criterion in Neighbor-Joining David Bryant McGill University, Montreal Abstract: The Neighbor-Joining

More information

BIOINFORMATICS DISCOVERY NOTE

BIOINFORMATICS DISCOVERY NOTE BIOINFORMATICS DISCOVERY NOTE Designing Fast Converging Phylogenetic Methods!" #%$&('$*),+"-%./ 0/132-%$ 0*)543768$'9;:(0'=A@B2$0*)A@B'9;9CD

More information

An Investigation of Phylogenetic Likelihood Methods

An Investigation of Phylogenetic Likelihood Methods An Investigation of Phylogenetic Likelihood Methods Tiffani L. Williams and Bernard M.E. Moret Department of Computer Science University of New Mexico Albuquerque, NM 87131-1386 Email: tlw,moret @cs.unm.edu

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

Maximum Likelihood Tree Estimation. Carrie Tribble IB Feb 2018

Maximum Likelihood Tree Estimation. Carrie Tribble IB Feb 2018 Maximum Likelihood Tree Estimation Carrie Tribble IB 200 9 Feb 2018 Outline 1. Tree building process under maximum likelihood 2. Key differences between maximum likelihood and parsimony 3. Some fancy extras

More information

A Minimum Spanning Tree Framework for Inferring Phylogenies

A Minimum Spanning Tree Framework for Inferring Phylogenies A Minimum Spanning Tree Framework for Inferring Phylogenies Daniel Giannico Adkins Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-010-157

More information

Phylogenies Scores for Exhaustive Maximum Likelihood and Parsimony Scores Searches

Phylogenies Scores for Exhaustive Maximum Likelihood and Parsimony Scores Searches Int. J. Bioinformatics Research and Applications, Vol. x, No. x, xxxx Phylogenies Scores for Exhaustive Maximum Likelihood and s Searches Hyrum D. Carroll, Perry G. Ridge, Mark J. Clement, Quinn O. Snell

More information

Consistency Index (CI)

Consistency Index (CI) Consistency Index (CI) minimum number of changes divided by the number required on the tree. CI=1 if there is no homoplasy negatively correlated with the number of species sampled Retention Index (RI)

More information

X X (2) X Pr(X = x θ) (3)

X X (2) X Pr(X = x θ) (3) Notes for 848 lecture 6: A ML basis for compatibility and parsimony Notation θ Θ (1) Θ is the space of all possible trees (and model parameters) θ is a point in the parameter space = a particular tree

More information

A Statistical Test of Phylogenies Estimated from Sequence Data

A Statistical Test of Phylogenies Estimated from Sequence Data A Statistical Test of Phylogenies Estimated from Sequence Data Wen-Hsiung Li Center for Demographic and Population Genetics, University of Texas A simple approach to testing the significance of the branching

More information

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG Department of Biology (Galton Laboratory), University College London, 4 Stephenson

More information

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016 Molecular phylogeny - Using molecular sequences to infer evolutionary relationships Tore Samuelsson Feb 2016 Molecular phylogeny is being used in the identification and characterization of new pathogens,

More information

Phylogeny: traditional and Bayesian approaches

Phylogeny: traditional and Bayesian approaches Phylogeny: traditional and Bayesian approaches 5-Feb-2014 DEKM book Notes from Dr. B. John Holder and Lewis, Nature Reviews Genetics 4, 275-284, 2003 1 Phylogeny A graph depicting the ancestor-descendent

More information

Phylogenetic Inference and Hypothesis Testing. Catherine Lai (92720) BSc(Hons) Department of Mathematics and Statistics University of Melbourne

Phylogenetic Inference and Hypothesis Testing. Catherine Lai (92720) BSc(Hons) Department of Mathematics and Statistics University of Melbourne Phylogenetic Inference and Hypothesis Testing Catherine Lai (92720) BSc(Hons) Department of Mathematics and Statistics University of Melbourne November 13, 2003 Contents 1 Introduction 4 2 Molecular Phylogenetics

More information

The Generalized Neighbor Joining method

The Generalized Neighbor Joining method The Generalized Neighbor Joining method Ruriko Yoshida Dept. of Mathematics Duke University Joint work with Dan Levy and Lior Pachter www.math.duke.edu/ ruriko data mining 1 Challenge We would like to

More information

Algebraic Statistics Tutorial I

Algebraic Statistics Tutorial I Algebraic Statistics Tutorial I Seth Sullivant North Carolina State University June 9, 2012 Seth Sullivant (NCSU) Algebraic Statistics June 9, 2012 1 / 34 Introduction to Algebraic Geometry Let R[p] =

More information

The least-squares approach to phylogenetics was first suggested

The least-squares approach to phylogenetics was first suggested Combinatorics of least-squares trees Radu Mihaescu and Lior Pachter Departments of Mathematics and Computer Science, University of California, Berkeley, CA 94704; Edited by Peter J. Bickel, University

More information

arxiv:q-bio/ v1 [q-bio.pe] 27 May 2005

arxiv:q-bio/ v1 [q-bio.pe] 27 May 2005 Maximum Likelihood Jukes-Cantor Triplets: Analytic Solutions arxiv:q-bio/0505054v1 [q-bio.pe] 27 May 2005 Benny Chor Michael D. Hendy Sagi Snir December 21, 2017 Abstract Complex systems of polynomial

More information