C.DARWIN ( )

Size: px
Start display at page:

Download "C.DARWIN ( )"

Transcription

1 C.DARWIN ( )

2 LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships may be represented with a genealogical (phylogenetic) tree.

3

4 PHYLOGENY The history of descent of a group of taxa, such as species, from their common ancestor(s), including the sequence of ramifications and, sometimes, divergence times; it applies also to the genealogy of genes derived from an ancestral common gene IT IS REPRESENTED WITH A PHYLOGENETIC TREE

5 "The affnities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth. The green and budding twigs may represent existing species; and those produced during each former year may represent the long succession of extinct species... The limbs divided into great branches, and these into lesser and lesser branches, were themselves once, when the tree was small, budding twigs; and this connexion of the former and present buds by ramifying branches may well represent the classifcation of all extinct and living species in groups subordinate to groups... From the frst growth of the tree, many a limb and branch has decayed and dropped off, and these lost branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only from having been found in a fossil state... As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all a feebler branch, so by generation I believe it has been with the Tree of Life, which flls with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifcations" (Charles Darwin, 1859) (Charles Darwin, 1859)

6 Constructing phylogenetic trees implies reviving the Darwinian idea that a species originates from another species, and that similar species have common ancestors.

7 .and the same idea is extended backward through time.

8 .down to the origin of life on Earth TREE OF LIFE

9 PHYLOGENETIC TREE

10 TREES, NOT LADDERS! Aristotele

11 a phylogenetic tree is built using characters APOMORPHY: The derived (new) state of a character PLESIOMORPHY: The ancestral (ancient) state of a character SYNAPOMORPHY A derived character state (apomorphy) which is shared by two or more taxa, and is supposed to have beed inherited from the same common ancestor

12 SYNAPOMORPHY: A shared derived character state

13 SYNAPOMORPHY: A shared derived character state

14 A character must be HOMOLOGOUS, in order to be considered a synapomorphy similar anatomy Same embryonic origin

15 CONSTRUCTING A PHYLOGENETIC TREE

16 nested hierarchy

17

18 The "dichotomic" nature of phylogenetic trees lies on the fact that the origin of diversification of living organisms (what determines their phylogeny) is a process of differentiation of two evolutionary lineages which depart from their common ancestor (CLADOGENESIS)

19 TWO ASPECTS OF DARWINIAN EVOLUTION ANAGENESIS: Directional evolution (of a character) WITHIN a single evolutionary lineage CLADOGENESIS: The ramification of a phylogenetic tree through speciation events

20 SPECIATION Speciation Speciation is is aa diversification diversification event event along along an an evolutionary evolutionary lineage lineage which which produces produces two two or or more more different different species species

21 SPECIATION Speciation is the core of evolution Without speciation there would be no diversification, nor adaptive radiations, therefore the evolutionary process would be much more limited

22 SPECIATION SPECIATION is is the the evolution evolution of of mechanisms mechanisms of of reproductive reproductive isolation, isolation, i.e. i.e. Barriers Barriers to to gene gene flow flow among among populations populations

23 Sometimes, it is difficult to reconstruct the sequence of the events of diversification which have occurred in large numbers in a short period of evolutionary time ciclidi

24 A polytomy underlies the failure of resolving the phylogeny of a given group of taxa

25 A phylogenetic tree may - or may not have a root rooted tree unrooted tree

26 rooting an "unrooted" tree

27 The The Newick Newick format format

28 We can calculate the number of trees (topologies) which exist given the number of taxa (OTUs) rooted trees unrooted trees where n is the number of taxa

29 The number of possible trees increses with the increase of the number of taxa

30 Note that the # of unrooted trees with n OTUs is equal to the # of rooted trees with n-1 OTUs

31 A phylogenetic tree may also contain information relative to the quantity of evolution occurred along each single branch ccladogram ladogram phylogram phylogram

32 CONSTRUCTING A PHYLOGENETIC TREE Choose taxa Choose the characters Identify the characters possessed by each taxon Construct the tree that minimizes the numbers of evolutionary changes (PARSIMONY)

33 an example of matrix for the vertebrate tree

34

35 The principle of PARSIMONY 6 steps 7 steps

36 CONSTRUCTING A PHYLOGENETIC TREE USING DNA (OR PROTEIN) SEQUENCES Choose taxa Select genes Sequence the genes Align the sequences Construct the tree on the basis of the selected reconstruction method

37 DNA is the genetic material

38 Genetic information is encoded in long uninterrupted sequences of DNA. In such sequences, single GENES are recognizable; they encode for proteins through the translational system of a DNA sequence into an amino acid sequence.

39 THE GENETIC CODE

40 A protein is synthesizes as an amino acid chain on the basis of the nucleotide sequence of the gene by which the protein is encoded

41 Biological information always has the form of a sequence

42 ALIGNMENT

43

44

45 an alignment of sequences is nothing else a matrix of characters (taxon x character).. which can be analyzed with a similar approach

46

47 Maximum Parsimony tree 20 steps

48 Maximum Parsimony tree 20 steps

49 MAXIMUM PARSIMONY Is a method based on discrete characters Is a method based on an optimization criterion

50 MAXIMUM PARSIMONY

51 TYPES OF CHARACTERS Discrete characters taxon x character Genetic distances taxon x taxon

52 GENETIC DISTANCES THey can be easily calculated as the percentage of different nucleotides (or amino acids) in a sequence Nucleotide substitutions: 99/468 = 21.15% Amino acid substitutions: 1/156 = 0.64%

53 MATRIX OF GENETIC DISTANCES (taxon x taxon)

54 UPGMA Unweighted Pair-Group Method with Arithmetic Means

55

56 MULTIPLE SUBSTITUTIONS

57 The existence of multiple substitutions suggests that estimates of genetic distance based on the simple counting of nucleotide differences may well represent an underestimation of the "real" distance The size of the underestimation will become higher as phylogenetic distance increases (i.e.: as long as the time of divergence increases)

58

59 Jukes-Cantor (1969) (one-parameter model)

60 Kimura (1980) (two-parameter model)

61

62

63 TYPES OF METHODS OF RECONSTRUCTION Based on an algorithm Based on an optimization criterion

64 METHODS BASED ON AN OPTIMIZATION CRITERION A matrix is established An optimization criterion is chosen All possible topologies are drawn The best tree is chosen on the basis of the selected criterion

65 MAXIMUM LIKELIHOOD incorporates information on a model of evolution(jc, K2P, GTR, )

66 BOOTSTRAP

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Phylogeny: the evolutionary history of a species

More information

What is Phylogenetics

What is Phylogenetics What is Phylogenetics Phylogenetics is the area of research concerned with finding the genetic connections and relationships between species. The basic idea is to compare specific characters (features)

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

How to read and make phylogenetic trees Zuzana Starostová

How to read and make phylogenetic trees Zuzana Starostová How to read and make phylogenetic trees Zuzana Starostová How to make phylogenetic trees? Workflow: obtain DNA sequence quality check sequence alignment calculating genetic distances phylogeny estimation

More information

Lecture 6 Phylogenetic Inference

Lecture 6 Phylogenetic Inference Lecture 6 Phylogenetic Inference From Darwin s notebook in 1837 Charles Darwin Willi Hennig From The Origin in 1859 Cladistics Phylogenetic inference Willi Hennig, Cladistics 1. Clade, Monophyletic group,

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

How should we organize the diversity of animal life?

How should we organize the diversity of animal life? How should we organize the diversity of animal life? The difference between Taxonomy Linneaus, and Cladistics Darwin What are phylogenies? How do we read them? How do we estimate them? Classification (Taxonomy)

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

4/25/2009. Xi (Cici) Chen Texas Tech University. Ancient: folk taxonomy impulse to classify organisms Carl Linnaenus: binominal nomenclature (1735)

4/25/2009. Xi (Cici) Chen Texas Tech University. Ancient: folk taxonomy impulse to classify organisms Carl Linnaenus: binominal nomenclature (1735) Xi (Cici) Chen Texas Tech University Ancient: folk taxonomy impulse to classify y p y organisms Carl Linnaenus: binominal nomenclature (1735) 1 Darwin, On the origin of species The affinities of all the

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

Introduction to characters and parsimony analysis

Introduction to characters and parsimony analysis Introduction to characters and parsimony analysis Genetic Relationships Genetic relationships exist between individuals within populations These include ancestordescendent relationships and more indirect

More information

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book ESS 345 Ichthyology Systematic Ichthyology Part II Not in Book Thought for today: Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else,

More information

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses Anatomy of a tree outgroup: an early branching relative of the interest groups sister taxa: taxa derived from the same recent ancestor polytomy: >2 taxa emerge from a node Anatomy of a tree clade is group

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION Using Anatomy, Embryology, Biochemistry, and Paleontology Scientific Fields Different fields of science have contributed evidence for the theory of

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Unit 9: Evolution Guided Reading Questions (80 pts total)

Unit 9: Evolution Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Unit 9: Evolution Guided Reading Questions (80 pts total) Chapter 22 Descent

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Phylogenetics: Building Phylogenetic Trees

Phylogenetics: Building Phylogenetic Trees 1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

More information

Properties of Life. Levels of Organization. Levels of Organization. Levels of Organization. Levels of Organization. The Science of Biology.

Properties of Life. Levels of Organization. Levels of Organization. Levels of Organization. Levels of Organization. The Science of Biology. The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

Theory of Evolution Charles Darwin

Theory of Evolution Charles Darwin Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

More information

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them?

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Carolus Linneaus:Systema Naturae (1735) Swedish botanist &

More information

--Therefore, congruence among all postulated homologies provides a test of any single character in question [the central epistemological advance].

--Therefore, congruence among all postulated homologies provides a test of any single character in question [the central epistemological advance]. Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008 University of California, Berkeley B.D. Mishler Jan. 29, 2008. The Hennig Principle: Homology, Synapomorphy, Rooting issues The fundamental

More information

The Science of Biology. Chapter 1

The Science of Biology. Chapter 1 The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

Evolution Unit: What is Evolution?

Evolution Unit: What is Evolution? Evolution Unit: What is Evolution? What is The Theory of Evolution? Evolution is, a change (in the genetic composition) of a population over time. on a larger scale, the entire biological history, from

More information

Reconstructing the history of lineages

Reconstructing the history of lineages Reconstructing the history of lineages Class outline Systematics Phylogenetic systematics Phylogenetic trees and maps Class outline Definitions Systematics Phylogenetic systematics/cladistics Systematics

More information

Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab

Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab Date: Agenda Warm-Up- Review Natural Selection and Reproduction for quiz today!!!! Notes on Evidence of Evolution Work on Vocabulary and Lab Ask questions based on 5.1 and 5.2 Quiz on 5.1 and 5.2 How

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Chapter focus Shifting from the process of how evolution works to the pattern evolution produces over time. Phylogeny Phylon = tribe, geny = genesis or origin

More information

Evolutionary Tree Analysis. Overview

Evolutionary Tree Analysis. Overview CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

More information

Phylogenetic analysis. Characters

Phylogenetic analysis. Characters Typical steps: Phylogenetic analysis Selection of taxa. Selection of characters. Construction of data matrix: character coding. Estimating the best-fitting tree (model) from the data matrix: phylogenetic

More information

Outline. Evolution: Speciation and More Evidence. Key Concepts: Evolution is a FACT. 1. Key concepts 2. Speciation 3. More evidence 4.

Outline. Evolution: Speciation and More Evidence. Key Concepts: Evolution is a FACT. 1. Key concepts 2. Speciation 3. More evidence 4. Evolution: Speciation and More Evidence Evolution is a FACT 1. Key concepts 2. Speciation 3. More evidence 4. Conclusions Outline Key Concepts: A species consist of one or more populations of individuals

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Chapter 16: Reconstructing and Using Phylogenies

Chapter 16: Reconstructing and Using Phylogenies Chapter Review 1. Use the phylogenetic tree shown at the right to complete the following. a. Explain how many clades are indicated: Three: (1) chimpanzee/human, (2) chimpanzee/ human/gorilla, and (3)chimpanzee/human/

More information

Historical Biogeography. Historical Biogeography. Historical Biogeography. Historical Biogeography

Historical Biogeography. Historical Biogeography. Historical Biogeography. Historical Biogeography "... that grand subject, that almost keystone of the laws of creation, Geographical Distribution" [Charles Darwin, 1845, in a letter to Joseph Dalton Hooker, the Director of the Royal Botanic Garden, Kew]

More information

Biology 2. Lecture Material. For. Macroevolution. Systematics

Biology 2. Lecture Material. For. Macroevolution. Systematics Biology 2 Macroevolution & Systematics 1 Biology 2 Lecture Material For Macroevolution & Systematics Biology 2 Macroevolution & Systematics 2 Microevolution: Biological Species: Two Patterns of Evolutionary

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species.

Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species. AP Biology Chapter Packet 7- Evolution Name Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species. 2. Define the following terms: a. Natural

More information

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5.

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5. Five Sami Khuri Department of Computer Science San José State University San José, California, USA sami.khuri@sjsu.edu v Distance Methods v Character Methods v Molecular Clock v UPGMA v Maximum Parsimony

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

More information

Macroevolution Part I: Phylogenies

Macroevolution Part I: Phylogenies Macroevolution Part I: Phylogenies Taxonomy Classification originated with Carolus Linnaeus in the 18 th century. Based on structural (outward and inward) similarities Hierarchal scheme, the largest most

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Evolution and Darwin

Evolution and Darwin Evolution and Darwin Evolution The processes that have transformed life on earth from it s earliest forms to the vast diversity that characterizes it today - Darwin Old Theories of Evolution Jean Baptiste

More information

The Science of Biology. Chapter 1

The Science of Biology. Chapter 1 The Science of Biology Chapter 1 Properties of Life Living organisms: are composed of cells are complex and ordered respond to their environment can grow and reproduce obtain and use energy maintain internal

More information

CS5263 Bioinformatics. Guest Lecture Part II Phylogenetics

CS5263 Bioinformatics. Guest Lecture Part II Phylogenetics CS5263 Bioinformatics Guest Lecture Part II Phylogenetics Up to now we have focused on finding similarities, now we start focusing on differences (dissimilarities leading to distance measures). Identifying

More information

The Origin of New Species

The Origin of New Species The Origin of New Species Introduction If microevolution is small changes in gene frequencies What, then would macroevolution be? And how might that work???? The biological species concept emphasizes reproductive

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

FUNDAMENTALS OF MOLECULAR EVOLUTION

FUNDAMENTALS OF MOLECULAR EVOLUTION FUNDAMENTALS OF MOLECULAR EVOLUTION Second Edition Dan Graur TELAVIV UNIVERSITY Wen-Hsiung Li UNIVERSITY OF CHICAGO SINAUER ASSOCIATES, INC., Publishers Sunderland, Massachusetts Contents Preface xiii

More information

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 ʻTree of Life,ʼ ʻprimitive,ʼ ʻprogressʼ

More information

Phylogenetics. BIOL 7711 Computational Bioscience

Phylogenetics. BIOL 7711 Computational Bioscience Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium

More information

Unit 7: Evolution Guided Reading Questions (80 pts total)

Unit 7: Evolution Guided Reading Questions (80 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 7: Evolution Guided Reading Questions (80 pts total) Chapter 22 Descent

More information

Name. Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014

Name. Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014 Name 1 Ecology & Evolutionary Biology 2245/2245W Exam 2 1 March 2014 1. Use the following matrix of nucleotide sequence data and the corresponding tree to answer questions a. through h. below. (16 points)

More information

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony ioinformatics -- lecture 9 Phylogenetic trees istance-based tree building Parsimony (,(,(,))) rees can be represented in "parenthesis notation". Each set of parentheses represents a branch-point (bifurcation),

More information

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

More information

Consensus methods. Strict consensus methods

Consensus methods. Strict consensus methods Consensus methods A consensus tree is a summary of the agreement among a set of fundamental trees There are many consensus methods that differ in: 1. the kind of agreement 2. the level of agreement Consensus

More information

Lecture V Phylogeny and Systematics Dr. Kopeny

Lecture V Phylogeny and Systematics Dr. Kopeny Delivered 1/30 and 2/1 Lecture V Phylogeny and Systematics Dr. Kopeny Lecture V How to Determine Evolutionary Relationships: Concepts in Phylogeny and Systematics Textbook Reading: pp 425-433, 435-437

More information

Chapter 26: Phylogeny and the Tree of Life

Chapter 26: Phylogeny and the Tree of Life Chapter 26: Phylogeny and the Tree of Life 1. Key Concepts Pertaining to Phylogeny 2. Determining Phylogenies 3. Evolutionary History Revealed in Genomes 1. Key Concepts Pertaining to Phylogeny PHYLOGENY

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Many of the slides that I ll use have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Biology 1B Evolution Lecture 2 (February 26, 2010) Natural Selection, Phylogenies

Biology 1B Evolution Lecture 2 (February 26, 2010) Natural Selection, Phylogenies 1 Natural Selection (Darwin-Wallace): There are three conditions for natural selection: 1. Variation: Individuals within a population have different characteristics/traits (or phenotypes). 2. Inheritance:

More information

Phylogenetic inference: from sequences to trees

Phylogenetic inference: from sequences to trees W ESTFÄLISCHE W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT NIVERSITÄT WILHELMS-U ÜNSTER MM ÜNSTER VOLUTIONARY FUNCTIONAL UNCTIONAL GENOMICS ENOMICS EVOLUTIONARY Bioinformatics 1 Phylogenetic inference: from sequences

More information

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016 Molecular phylogeny - Using molecular sequences to infer evolutionary relationships Tore Samuelsson Feb 2016 Molecular phylogeny is being used in the identification and characterization of new pathogens,

More information

Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço

Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço jcarrico@fm.ul.pt Charles Darwin (1809-1882) Charles Darwin s tree of life in Notebook B, 1837-1838 Ernst Haeckel (1934-1919)

More information

Warm Up. Explain how a mutation can be detrimental in one environmental context and beneficial in another.

Warm Up. Explain how a mutation can be detrimental in one environmental context and beneficial in another. Warm Up Explain how a mutation can be detrimental in one environmental context and beneficial in another. Last Picture 4B Evidence for Evolution 1A.4a: Scientific evidence of biological evolution uses

More information

ELE4120 Bioinformatics Tutorial 8

ELE4120 Bioinformatics Tutorial 8 ELE4120 ioinformatics Tutorial 8 ontent lassifying Organisms Systematics and Speciation Taxonomy and phylogenetics Phenetics versus cladistics Phylogenetic trees iological classification Goal: To develop

More information

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Phylogenetic Analysis Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Outline Basic Concepts Tree Construction Methods Distance-based methods

More information

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#$%&'(!)* +,-.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods

More information

Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

More information

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline Phylogenetics Todd Vision iology 522 March 26, 2007 pplications of phylogenetics Studying organismal or biogeographic history Systematics ating events in the fossil record onservation biology Studying

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Lecture 11 Friday, October 21, 2011

Lecture 11 Friday, October 21, 2011 Lecture 11 Friday, October 21, 2011 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean system

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Chapters Objectives

Chapters Objectives Chapter 22 Darwinian View of Life Objectives Chapters 22-26 Objectives The Historical Context for Evolutionary Theory 1 Explain the mechanism for evolutionary change proposed by Charles Darwin in On the

More information

Evolution. Species Changing over time

Evolution. Species Changing over time Evolution Species Changing over time Charles Darwin Evolution by Means of Natural Selection Reasons for Change Mutation A mutation could cause parents with genes for bright green coloration to have offspring

More information

Reproduction- passing genetic information to the next generation

Reproduction- passing genetic information to the next generation 166 166 Essential Question: How has biological evolution led to the diversity of life? B-5 Natural Selection Traits that make an organism more or less likely to survive in an environment and reproduce

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

Evidence of Evolution

Evidence of Evolution 16.4 Evidence for Evolution Biogeography Biogeography - study of where organisms live, where they and ancestors lived. Two significant patterns: - closely related species separate in different climates.

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

1/27/2010. Systematics and Phylogenetics of the. An Introduction. Taxonomy and Systematics

1/27/2010. Systematics and Phylogenetics of the. An Introduction. Taxonomy and Systematics Systematics and Phylogenetics of the Amphibia: An Introduction Taxonomy and Systematics Taxonomy, the science of describing biodiversity, mainly naming unnamed species, and arranging the diversity into

More information

The Theory of Evolution

The Theory of Evolution Name Date Class CHAPTER 13 DIRECTED READING The Theory of Evolution Section 13-1: The Theory of Evolution by Natural Selection Darwin Proposed a Mechanism for Evolution Mark each statement below T if it

More information

Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley

Integrative Biology 200 PRINCIPLES OF PHYLOGENETICS Spring 2018 University of California, Berkeley Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler Feb. 14, 2018. Phylogenetic trees VI: Dating in the 21st century: clocks, & calibrations;

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2008 Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008 University of California, Berkeley B.D. Mishler March 18, 2008. Phylogenetic Trees I: Reconstruction; Models, Algorithms & Assumptions

More information

Historical Biogeography. Historical Biogeography. Systematics

Historical Biogeography. Historical Biogeography. Systematics Historical Biogeography I. Definitions II. Fossils: problems with fossil record why fossils are important III. Phylogeny IV. Phenetics VI. Phylogenetic Classification Disjunctions debunked: Examples VII.

More information

Chapter 7. Evolution and the Fossil Record

Chapter 7. Evolution and the Fossil Record Chapter 7 Evolution and the Fossil Record 1 Guiding Questions What lines of evidence convinced Charles Darwin that organic evolution produced the species of the modern world? What are the two components

More information

Phylogenetic trees 07/10/13

Phylogenetic trees 07/10/13 Phylogenetic trees 07/10/13 A tree is the only figure to occur in On the Origin of Species by Charles Darwin. It is a graphical representation of the evolutionary relationships among entities that share

More information

Laboratory. Phylogenetics

Laboratory. Phylogenetics Laboratory 11 Phylogenetics Biology 171L SP18 Lab 11: Phylogenetics Student Learning Outcomes 1. Discover Darwin s contribution to biology. 2. Understand the importance of evolution in the study of biology.

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

Molecular Evolution, course # Final Exam, May 3, 2006

Molecular Evolution, course # Final Exam, May 3, 2006 Molecular Evolution, course #27615 Final Exam, May 3, 2006 This exam includes a total of 12 problems on 7 pages (including this cover page). The maximum number of points obtainable is 150, and at least

More information

Gene Families part 2. Review: Gene Families /727 Lecture 8. Protein family. (Multi)gene family

Gene Families part 2. Review: Gene Families /727 Lecture 8. Protein family. (Multi)gene family Review: Gene Families Gene Families part 2 03 327/727 Lecture 8 What is a Case study: ian globin genes Gene trees and how they differ from species trees Homology, orthology, and paralogy Last tuesday 1

More information

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies Inferring Phylogenetic Trees Distance Approaches Representing distances in rooted and unrooted trees The distance approach to phylogenies given: an n n matrix M where M ij is the distance between taxa

More information