First Shell EXAFS Analysis

Size: px
Start display at page:

Download "First Shell EXAFS Analysis"

Transcription

1 EXAFS Data Collection and Analysis Workshop, NSLS, July, First Shell EXAFS Analysis Anatoly Frenkel Physics Department, Yeshiva University, New York, NY 116 General strategy: -Collect good data -Come up with a physically reasonable, constrained model -Test your model on a reference compound -Fit it to the unknown sample data -Be conservative with the number of fitting parameters

2 Bottom-up approach the preferred strategy of the First Shell Analysis: (You will avoid going in the wrong direction too early ) Implementation Analysis Strategy Conceptual Modeling Find the best analysis software that can implement your strategy. Not all packages are universally good. -Plan on doing reality checks; -Reference compounds should be measured and analyzed first; -Try to maximize the number of degrees of freedom in the fits (use constraints, experimental/theoretical info etc.) Linear fit is better than nonlinear fit! -Start with the crude picture first, then refine it; -Homogeneous or heterogeneous environment? (bulk or nano, eq. or ineq. unit cell positions, solution or separate phases etc.)

3 Test case: supported Pt nanoparticles What are we after? -Size, -Structure, -Thermal properties. (Beamline: X16C, NSLS) Raw absorption coefficient What relevant info can be found from EXAFS? -Model of atomic packing, -Average CN, -Average distances, -Average disorder Photon energy, ev

4 EXAFS data measured of particles of ~ Å in size: 1. K K 47 K 67 K.5 k χ(k), Å k, Å -1 Can we tell what is the particle s structure? Whether particles agglomerate at high T? Whether the changes are dominated by atomic rearrangements or by thermal disorder?

5 Can we answer the same questions if a reference compound is measured as well? 1. Pt particles (~ Å) K K 47 K 67 K Bulk Pt K K 47 K 67 K.5 1. k χ(k), Å - k χ(k), Å χ( k) = k, Å -1 NS kr f eff ( k) e σ k sin k, Å -1 [ ( )] 4 kr C k + δ k Can we tell what is the particle s structure? -Yes, consistent with fcc Whether particles agglomerate at high T? - Most likely no, the size effect is not evident Whether the changes are dominated by atomic rearrangements or by thermal disorder?

6 How to tell size dependence from temperature dependence? T= K; Size is varied Bulk Pt; Temperature is varied Bulk Pt 8 Å 45 Å Å K K 47 K 67 K k χ(k), Å k χ(k), Å χ( k) ~ N e σ k k, Å -1 k, Å -1 As a function of size, EXAFS amplitude is scaled uniformly throughout the k-range As a function of temperature, EXAFS amplitude is scaled nonuniformly

7 How to model metal (Pt) foil data:.5 K. # Pt foil, T= K guess S =.9 guess ss1 = guess dr1 = guess th1 = guess e = χ( k) = sin NS kr ( k) e [ ( )] 4 kr C k + δ k f eff σ k k χ(k), Å data = ptfoil-avk.chi out = ptfoil-avk rmin =.1 rmax =. kmin = kmax= w = dk= k, Å K!% 1st path: eshift 1 e amp 1 S path 1 p1.dat id 1 SS Pt-Pt(1), r=.7719 delr 1 dr1 sigma 1 abs(ss1) third 1 th1 k χ(k), Å k, Å -1

8 5 4 S = ss1 = dr1 = th1 = - 19 e = Fit Results This is not physically reasonable What caused S to be different at K and 67 K? S = ss1 = dr1 = th1 = e = χ( k) = sin - correlation with other fit variables: NS kr ( k) e [ ( )] 4 kr C k + δ k f eff σ k

9 χ( k) = NS kr f eff ( k) k χ(k) of Pt foil: temperature dependence How to break the correlation? e σ k sin [ ( )] 4 kr C k + δ k One possible solution: a multiple-data-set (mds) fit K K 47 K 67 K What variables are not expected to change at different temperatures? k χ(k), Å σ σ E, N d = σ = s + σ d σ s, ΘE h 1+ exp( Θ ωµ 1 exp( Θ E E T ) T ) k, Å -1

10 title = Pt L-edge, foil data = ptfoil-avk.chi out = ptfoil-avk rmin =.1 rmax =. kmin = kmax= w = dk = path 1 p1.dat id 1 SS Pt-Pt1 eshift 1 e amp 1 S delr 1 dr11 sigma 1 abs(ss11) third 1 th11 next data set data = ptfoil-avk.chi out = ptfoil-avk rmin =.1 rmax =. kmin = kmax= w = dk = path 1 p1.dat id 1 SS Pt-Pt1 eshift 1 e amp 1 S delr 1 dr1 sigma 1 abs(ss1) third 1 th1 Multiple-Data-Set Fit next data set.. ptfoil-47avk.chi. next data set.. ptfoil-67avk.chi. set ss11 = abs(ss11) + eins(, theins1) set ss1 = abs(ss11) + eins(, theins1) set ss1 = abs(ss11) + eins(47, theins1) set ss14 = abs(ss11) + eins(67, theins1) guess e =. guess s =.9 guess ss11 = guess theins1 = guess th11 = guess th1 = guess th1 = guess th14 = σ d = guess dr11 = guess dr1 = guess dr1 = guess dr14 = σ = σ s + σ d h 1+ exp( Θ ωµ 1 exp( Θ E E T ) T )

11 MDS fit results K K K K ss11 = 5 9 theins1 = s = dr11 = dr1 = dr1 = dr14 = th11 = -5 1 th1 = -17 th1 = 11 th14 = 67 6 e = Physical (chemical, engineering, mat.science, life science etc.) reality checks: 1) Debye temperature: 4 K for Pt As obtained (through ): 5() K Θ E σ s ) Static disorder : ~ ) Corrections to model distances: ~ 4) Thermal expansion: evident 5) S: reasonable (between.7 and 1.)

12 χ( k) = NS kr How to tell right from wrong? f eff ( k) e σ k sin [ ( )] 4 kr C k + δ k Pretend, we do not believe in third cumulants. With C Without C ss11 = 5 9 theins1 = s = dr11 = dr1 = dr1 = dr14 = th11 = -5 1 th1 = -17 th1 = 11 th14 = 67 6 ss11 = theins1 = s = dr11 = dr1 = dr1 = dr14 = e = e =

13 How to model XAFS data in nanoparticles? A priori knowledge or a working hypothesis must exist (the zero approximation) otherwise: the transferability of amplitude/phase will not work!) 1) Hemispherical ) Crystal order ) Size: about Å What information can be obtained from 1 st shell EXAFS analysis? 1) Size of the particle (via N) ) Distances, thermal vibration, expansion ) Static disorder (icosahedral? surface tension?) Average First-Shell Coordination Average CN Nanoparticle Diameter (A) (Å) Relative Abundance

14 MDS fit (1shell) to the nanoparticles EXAFS - Coordination number is now guessed (a variable) S - is fixed to be equal to that in Pt foil EXAFS - E is fixed to be equal to that in Pt foil EXAFS K K K K ss11 = theins1 = n1 = dr11 = dr1 = dr1 = dr14 = th11 = -17 th1 = th1 = th14 = 41 79

15 To get the most out of the data, the Multiple-Scattering Analysis is often needed. What are the limitations of the 1 st Shell Analysis in the case of nanoparticles? -Shape, Size, Surface orientation are not revealed through the 1NN CN -Short Range Order in nanoparticle alloys:

16 Another example: Giant inorganic molecules, Polyoxomolybdates (POMs): [Mo 1 O 7 (HCOO) ] {Mo 1 } [Mo 7 Fe O 5 ] {Mo 7 Fe } Fe +.9 nm.5 nm

17 {Mo 7 Fe } {Mo 1 } Modeling pair distribution functions using XRD results g AB ( r) = dn dr AB

18 K K Mo K-edge K K Fe K-edge 1 Mo-O Å shift Mo-O Mo-O Å shift Mo-Fe Mo-Mo -. Å shift Mo-Mo Å shift Fe-Mo Fe-O Å shift Fe-O 1

19 Mo K-edge T=14 K 1. Fe K-edge T=14 K Mo K-edge T= K Fe K-edge T= K Mo-O 1 Mo-O Mo-O Fe-O Mo-Mo Mo-Fe Mo-Mo Bond N 14 K K Mo-O 1.67 r (Å) 1.75(1) 1.75(1) σ (Å ) 6(5) 8() Mo-O.5 r (Å).5(1).5(1) σ (Å ) 4(9) 51(7) Mo-O 1. r (Å).7().7() σ (Å ) 5(7) 67() Fe-O 6. r (Å).(1).(1) σ (Å ) 18(14) 4(17) Mo-Mo 1.67 r (Å).1(1).1(1) σ (Å ) 7(5) 7(4) Fe-Mo 4. r (Å).58().61() σ (Å ) 1(1) 14(1) Mo-Fe 1.67 r (Å).58 f.61 f σ (Å ) 1 f 14 f Mo-Mo 1.67 r (Å).89().9() σ (Å ) 5(14) 9(19)

20 4 Mo-O Mo 1 1 Mo-O 1 Mo-O O Mo 1 -Mo 1 O Mo -Mo Mo -Mo O 4 Mo-Mo 1 Mo-Mo 1 Mo-Mo

21 k χ(k), Å K.6 K Mo K 47 K Mo-O 1 k, Å -1 Mo-O Mo-O Å shift -. Å shift Mo-Mo 1 Mo-Mo 14 K K 7 K 47 K Mo-Mo

22 T=14 K T= K.5 T=7 K T=47 K Mo-Mo Mo-O 1 Mo-O Mo-O Mo-Mo 1 1 Mo-Mo O Mo 1 -Mo 1 Mo -Mo O O Asymmetric distortion of MoO 6 octahedron Mo -Mo

23 References (send reprint requests to: 1) A. I. Frenkel, C. W. Hills, and R. G. Nuzzo, Feature Article, J. Phys. Chem. B, 15, (1). ) A. I. Frenkel, M. S. Nashner, C. W. Hills, R. G. Nuzzo, and J. R. Shapley, Science Highlights, NSLS Activity Report 1999, NSLS, Brookhaven National Laboratory,. ) A. I. Frenkel, J.Synchrotron Rad., 6, 9 (1999). 4) C. W. Hills, M. S. Nashner, A. I. Frenkel, J. R. Shapley, and R. G. Nuzzo, Langmuir, 15, 69-7 (1999). 5) M. S. Nashner, A. I. Frenkel, D. Somerville, C. W. Hills, J. R. Shapley, and R. G. Nuzzo, J. Am. Chem. Soc., 1, (1998). 6) M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, and R. G. Nuzzo, J. Am. Chem. Soc., 119, 776 (1997)

First Shell EXAFS Analysis

First Shell EXAFS Analysis EXAFS Data Collection and Analysis Workshop, NSLS, September -5, 00 First Shell EXAFS Analysis Anatoly Frenkel It is very difficult to find a black cat in a dark room, especially if it is not there Physics

More information

Lecture 3. Data Analysis. Common errors in EXAFS analysis Z ± 10 N ± 1 R ± 0.02 Å

Lecture 3. Data Analysis. Common errors in EXAFS analysis Z ± 10 N ± 1 R ± 0.02 Å Lecture. Data Analysis Tutorials and other Training Material Bruce Ravel's notes on using FEFFIT for data analysis Daresbury Laboratory lectures on data analysis (EXURV9) Grant Buner's XAFS tutorials Frenel

More information

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis Introduction to XAFS Part 1: What is XAFS? What does it tell us? The EXAFS equation Part 2: Basic steps in the analysis Quick overview of typical analysis Tomorrow Measurement methods and examples The

More information

Introduction to EXAFS data analysis. Shelly D. Kelly Argonne National Laboratory

Introduction to EXAFS data analysis. Shelly D. Kelly Argonne National Laboratory Introduction to EXAFS data analysis Shelly D. Kelly Argonne National Laboratory Data processing overview Absorption data Crystal structures (Atoms) Background subtracted EXAFS data (IFEFFIT) Theoretical

More information

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis Part II Fundamentals of X-ray Absorption Fine Structure: data analysis Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Page 1 S. Pascarelli HERCULES 2016 Data Analysis: EXAFS

More information

EXAFS data analysis. Extraction of EXAFS signal

EXAFS data analysis. Extraction of EXAFS signal EXAFS data analysis Extraction of EXAFS signal 1 Experimental EXAFS spectrum Φ x Φ µ (ω) source monochromator sample detectors 1 6 1 5 32 - Ge 1 4 1 3 1 2 1 1 1 1 1 Photon energy hω (kev) 1-1 Ge, 1 K µ

More information

Theory, Interpretation and Applications of X-ray Spectra*

Theory, Interpretation and Applications of X-ray Spectra* REU Seminar University of Washington 27 July, 2015 Theory, Interpretation and Applications of X-ray Spectra* J. J. Rehr et al. A theoretical horror story Starring Fernando Vila & Anatoly Frenkel with J.

More information

EXAFS. Extended X-ray Absorption Fine Structure

EXAFS. Extended X-ray Absorption Fine Structure AOFSRR Cheiron School 2010, SPring-8 EXAFS Oct. 14th, 2010 Extended X-ray Absorption Fine Structure Iwao Watanabe Ritsumeikan University EXAFS Theory Quantum Mechanics Models Approximations Experiment

More information

Designing Nanoplatelet Alloy/Nafion Catalytic Interface for optimization of PEMFCs:

Designing Nanoplatelet Alloy/Nafion Catalytic Interface for optimization of PEMFCs: Supporting Information Designing Nanoplatelet Alloy/Nafion Catalytic Interface for optimization of PEMFCs: Performance, Durability, and CO Resistance Likun Wang a, Yuchen Zhou a, Janis Timoshenko a, Shizhong

More information

3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20

3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20 3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20 IFEFFIT package FEFFIT Fit χ(k) data to the theoretical calculations of FEFF, and assess the errors in the fitting parameters. The fitting

More information

Anharmonicity and Quantum Effect in Thermal Expansion of an Invar Alloy

Anharmonicity and Quantum Effect in Thermal Expansion of an Invar Alloy Anharmonicity and Quantum Effect in Thermal Expansion of an Invar Alloy 1 Institute for Molecular Science (IMS), Okazaki The Graduate University for Advanced Studies (Sokendai) Toshihiko YOKOYAMA 1,, Keitaro

More information

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL Basics of EXAFS data analysis Shelly Kelly Argonne National Laboratory, Argonne, IL X-ray-Absorption Fine Structure NSLS monochromator slits Sample I 0 I t Ion Chambers I f Attenuation of x-rays I t =

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Basics of EXAFS Data Analysis

Basics of EXAFS Data Analysis Basics of EXAFS Data Analysis Shelly Kelly EXAFS Analysis 2009 UOP LLC. All rights reserved. Data processing overview Introduction to Artemis Modeling Cu foil Background subtraction using theory Modeling

More information

Exploring the anomalous behavior of metal nanocatalysts with finite temperature AIMD and x-ray spectra

Exploring the anomalous behavior of metal nanocatalysts with finite temperature AIMD and x-ray spectra Exploring the anomalous behavior of metal nanocatalysts with finite temperature AIMD and x-ray spectra F.D. Vila DOE grant DE-FG02-03ER15476 With computer support from DOE - NERSC. Importance of Theoretical

More information

An Introduction to XAFS

An Introduction to XAFS An Introduction to XAFS Matthew Newville Center for Advanced Radiation Sources The University of Chicago 21-July-2018 Slides for this talk: https://tinyurl.com/larch2018 https://millenia.cars.aps.anl.gov/gsecars/data/larch/2018workshop

More information

Basics of EXAFS Processing

Basics of EXAFS Processing Basics of EXAFS Processing Shelly Kelly 2009 UOP LLC. All rights reserved. X-ray-Absorption Fine Structure Attenuation of x-rays It= I0e-µ(E) x Absorption coefficient µ(e) If/I0 2 File Number X-ray-Absorption

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL Basics of EXAFS data analysis Shelly Kelly Argonne National Laboratory, Argonne, IL X-ray-Absorption Fine Structure APS monochromator slits Sample I 0 I t Ion Chambers I f Attenuation of x-rays I t = I

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts Zhiqiang Niu 1, Nigel Becknell 1, Yi Yu 1,2, Dohyung Kim 3, Chen Chen 1,4, Nikolay Kornienko 1, Gabor A.

More information

Practical approach to EXAFS Data Analysis

Practical approach to EXAFS Data Analysis Practical approach to EXAFS Data Analysis by Alexei Kuzmin Institute of Solid State Physics, University of Latvia Kengaraga street 8, LV-1063 Riga, Latvia E-mail: a.kuzmin@cfi.lu.lv Software for EXAFS

More information

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr TIMES Lecture Series SLAC-Stanford U March 2, 2017 IV. Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr Calculations of X-ray Spectra in Real-space and Real-time Goal: Real-space, real

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Matthew Newville Center for Advanced Radiation Sources University of Chicago 12-Sept-2014 SES VI SES VI 12-Sept-2014 SES VI What Is XAFS? X-ray Absorption Fine-Structure (XAFS)

More information

X-ray absorption spectroscopy

X-ray absorption spectroscopy X-ray absorption spectroscopy Prof. Hugh H. Harris Department of Chemistry The University of Adelaide hugh.harris@adelaide.edu.au AOFSRR - synchrotron school May 30, 2017 1 Outline X-ray absorption spectroscopy

More information

Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2)

Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2) Journal of Physics: Conference Series PAPER OPEN ACCESS Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2) To cite this article: Namrata soni et al 2016 J. Phys.:

More information

Characterization of Model Nanocatalysts by X-ray Absorption Spectroscopy

Characterization of Model Nanocatalysts by X-ray Absorption Spectroscopy Chapter 5 Characterization of Model Nanocatalysts by X-ray Absorption Spectroscopy Qi Wang and Anatoly I. Frenkel Stony Brook University, Stony Brook, NY, United States Chapter Outline 5.1 Introduction

More information

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D.

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D. Supporting Information The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang,

More information

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001 PHYSICAL REVIEW B VOLUME 54, NUMBER 4 5 JULY 996-II X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 000 P. Le Fèvre Laboratoire pour l Utilisation du Rayonnement Electromagnetique

More information

Chapter 2 EXAFS structure analysis using the program XFIT

Chapter 2 EXAFS structure analysis using the program XFIT 13 Chapter EXAFS structure analysis using the program XFIT This chapter is based on a paper published in J. Synchrotron Rad. (Ellis & Freeman, 1995)..1 Introduction The analysis of EXAFS can yield the

More information

X-ray absorption spectroscopy

X-ray absorption spectroscopy X-ray absorption spectroscopy Jagdeep Singh Jeroen A. van Bokhoven Absorption as function of energy of the x-ray Data-analysis Absorption (a.u.) 2.0 Pre-edge subtraction 1.5 1.0 0.5 0.0-0.5 8800 9000 9200

More information

Speciation of Actinides Using XAFS

Speciation of Actinides Using XAFS Speciation of Actinides Using XAFS Part I Tobias Reich Johannes Gutenberg-Universität Mainz Institut für Kernchemie Ringvorlesung des GRK Elementspeziation im SS 2006 Mainz, 4.9.2006 Outline Introduction

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. X-ray diffraction patterns of (a) pure LDH, (b) AuCl 4 ion-exchanged LDH and (c) the Au/LDH hybrid catalyst. The refined cell parameters for pure, ion-exchanged,

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Probing the Limits of Conventional Extended X ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles

Probing the Limits of Conventional Extended X ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles Probing the Limits of Conventional Extended X ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles Samuel T. Chill, Rachel M. Anderson, David F. Yancey, Anatoly I. Frenkel, Richard

More information

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30 Today s Outline - April 07, 2015 C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015 1 / 30 Today s Outline - April 07, 2015 PHYS 570 days at 10-ID C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015

More information

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water

Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This ournal is The Royal Society of Chemistry 2014 Supporting Information Electrodeposited nickel-sulfide films as competent

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information

Calculations of X-ray Spectra in Real-space and Real-time

Calculations of X-ray Spectra in Real-space and Real-time X-Ray Science in the 21st Century Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr, F. Vila, Y. Takimoto Department of Physics University of Washington Seattle, WA USA Time (s) KITP,

More information

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE Jay D. Bourke Postdoctoral Fellow in X-ray Science! School of Physics,! University

More information

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE 314 315 XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE W. E. O 1,D.F.Roeper 1,2,K.I.Pandya 3 andg.t.cheek 4 1 Naval Research Laboratory,

More information

Supporting Information

Supporting Information Supporting Information Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts Kotaro Sasaki 1*, Nebojsa Marinkovic 2, Hugh S. Isaacs 1, Radoslav

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Structural characterization of bimetallic nanomaterials with overlapping x-ray absorption edges

Structural characterization of bimetallic nanomaterials with overlapping x-ray absorption edges PHYSICAL REVIEW B, 9 Structural characterization of bimetallic nanomaterials with overlapping x-ray absorption edges Laurent D. Menard, Qi Wang, Joo H. Kang, Andrew J. Sealey, Gregory S. Girolami, Xiaowei

More information

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm Name:.57/.570 Midterm Exam No. April 4, 0 :00 am -:30 pm Instructions: ().57 students: try all problems ().570 students: Problem plus one of two long problems. You can also do both long problems, and one

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

AASCIT Journal of Physics 2015; 1(2): Published online April 30, 2015 (http://www.aascit.org/journal/physics) Nguyen Ba Duc, Nguyen Thi Lan Anh

AASCIT Journal of Physics 2015; 1(2): Published online April 30, 2015 (http://www.aascit.org/journal/physics) Nguyen Ba Duc, Nguyen Thi Lan Anh AASCIT Journal of Physics 5; (): 64-68 Published online April, 5 (http://www.aascit.org/journal/physics) ffective Anharmonic instein Potential for the Thermodynamic Parameters, Three First Cumulants and

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Molecular dynamics simulations of EXAFS in germanium

Molecular dynamics simulations of EXAFS in germanium Cent. Eur. J. Phys. 93 2011 710-715 DOI: 10.2478/s11534-010-0074-0 Central European Journal of Physics Molecular dynamics simulations of EXAFS in germanium Research Article Janis Timoshenko Alexei Kuzmin

More information

Introduction of X-ray Absorption Near Edge Structure (XANES)

Introduction of X-ray Absorption Near Edge Structure (XANES) Introduction of X-ray Absorption Near Edge Structure (XANES) 2012 년 2 월 29 일 11:00 11:50 Eun Suk Jeong February 29-March 1, 2012 xafs school Outline 1. Introduction of XANES 2. Structural and chemical

More information

Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure

Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure Mini-school X-ray Absorption Spectroscopy Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure Martin C. Feiters, IMM, HG 03.021, Radboud University Heijendaalsweg 153,

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7. (9 pts)

More information

Part III. Examples of Applications

Part III. Examples of Applications Part III Examples of Applications Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Page 1 Examples of applications Major historical EXAFS breakthroughs Selection of recent results

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

Korrelationsfunktionen in Flüssigkeiten oder Gasen

Korrelationsfunktionen in Flüssigkeiten oder Gasen Korrelationsfunktionen in Flüssigkeiten oder Gasen mittlere Dichte Relaxationszeit T 0 L. Van Hove, Phys. Rev. 95, 249 (1954) Inelastische und quasielastische Streuung M. Bée, Chem. Phys. 292, 121 (2003)

More information

Catalysis Science & Technology

Catalysis Science & Technology Catalysis Science & Technology PAPER Cite this: Catal. Sci. Technol., 2016, 6, 6879 A combined theoretical and experimental EXAFS study of the structure and dynamics of Au 147 nanoparticles Zhiyao Duan,

More information

Doped lithium niobate

Doped lithium niobate Chapter 6 Doped lithium niobate Figure 6.1: a) An iron-doped LiNbO 3 crystal has been illuminated for days with a light stripe. As a result, a region with deficit of Fe 2+ (more Fe 3+ ) and saturated with

More information

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 1 BROOKHAVEN SCIENCE ASSOCIATES Overview Material s response to applied forces or what to measure Definitions

More information

Information Content of EXAFS (I)

Information Content of EXAFS (I) Content of EXAFS (I) Sometimes, we have beautiful data. This is the merge of 5 scans on a 50 nm film of GeSb on silica, at the Ge edge and measured in fluorescence at NSLS X23a2. Here, I show a Fourier

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland Structure and Phase Transition of [(CH 2 OH) 3 CNH 3 ] 2 SiF B. Kosturek, Z. Czapla, and A. Waśkowska a Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, 50-204 Wrocław, Poland a Institute

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

日本物理学会 第58回年次大会 2003年3月28日 東北大学(仙台) 28aYE-5 Cuエチレンジアミン錯体 における光誘起相転移の XAFS 横山利彦1 高橋一志2 佐藤治2 1 分子科学研究所 2 神奈川科学技術アカデミー

日本物理学会 第58回年次大会 2003年3月28日 東北大学(仙台) 28aYE-5 Cuエチレンジアミン錯体 における光誘起相転移の XAFS 横山利彦1 高橋一志2 佐藤治2 1 分子科学研究所 2 神奈川科学技術アカデミー u XAFS Previous XAFS works on photoinduced phases Local structures of the photo-induced phases are usually equivalent to the high-temperature ones. Fe (II) (pic) l H OH H. Oyanagi et al., to be published.

More information

Calculation of thermal expansion coefficient of Fe3Al with the addition of transition metal elements Abstract Introduction Methodology

Calculation of thermal expansion coefficient of Fe3Al with the addition of transition metal elements Abstract Introduction Methodology Calculation of thermal expansion coefficient of Fe Al with the addition of transition metal elements Tatiana Seletskaia, Leonid Muratov, Bernard Cooper, West Virginia University, Physics Departement, Hodges

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C a 2 15 before cycle test mean particle size: 3.8 ± 1.2 nm b 2 15 after.6v - 1.V 1k cycle test mean particle size: 4.1 ± 1.5 nm Number 1 total number: 558 Number 1 total number: 554 5 5 1 2 3 4 5 6 7 8

More information

Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions

Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions Chemical tuning of electrochemical properties of Ptskin surface for highly active oxygen reduction reactions Namgee Jung, a Young-Hoon Chung, b Dong-Young Chung, b Kwang-Hyun Choi, b Hee- Young Park, a

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

Using the Anharmonic Correclated Einstein Model for Calculation the Thermodynamic Parameters and Cumulants of Dopant Face Cubic Center Crystals

Using the Anharmonic Correclated Einstein Model for Calculation the Thermodynamic Parameters and Cumulants of Dopant Face Cubic Center Crystals AASCIT Journal of Physics 015; 1(1: 1-5 Published online March 0, 015 (http://www.aascit.org/journal/physics Using the Anharmonic Correclated instein Model for Calculation the Thermodynamic Parameters

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Why do We Trust X-ray Crystallography?

Why do We Trust X-ray Crystallography? Why do We Trust X-ray Crystallography? Andrew D Bond All chemists know that X-ray crystallography is the gold standard characterisation technique: an X-ray crystal structure provides definitive proof of

More information

Supporting Information to

Supporting Information to Supporting Information to 'Bisulfide reaction with natural organic matter enhances arsenite sorption: Insights from X-ray absorption spectroscopy' Martin Hoffmann, Christian Mikutta* and Ruben Kretzschmar

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Fairfield University. Laurent D. Menard. Huiping Xu. Shang-Peng Gao. Ray D. Twesten

Fairfield University. Laurent D. Menard. Huiping Xu. Shang-Peng Gao. Ray D. Twesten Fairfield University DigitalCommons@Fairfield Chemistry & Biochemistry Faculty Publications Chemistry & Biochemistry Department 1-1-2006 Metal Core Bonding Motifs of Monodisperse Icosahedral Au13 and Larger

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Zerovalent Iron with High Sulfur Content Enhances the Formation of Cadmium Sulfide in Reduced Paddy Soils Yohey Hashimoto 1*, Mitsuhiro Furuya 1, Noriko Yamaguchi 2*, and Tomoyuki

More information

Local structure of disordered Au-Cu and Au-Ag alloys

Local structure of disordered Au-Cu and Au-Ag alloys PHYSICAL REVIEW B VOLUME 62, NUMBER 14 Local structure of disordered Au-Cu and Au-Ag alloys 1 OCTOBER 2000-II A. I. Frenkel, 1 V. Sh. Machavariani, 2 A. Rubshtein, 2 Yu. Rosenberg, 2,3 A. Voronel, 2 and

More information

Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010

Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010 Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010 Basics of X-ray Absorption Spectroscopy (XAS) An edge results when a core

More information

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97 Introduction to XAFS Grant Bunker Associate Professor, Physics Illinois Institute of Technology Revised 4/11/97 2 tutorial.nb Outline Overview of Tutorial 1: Overview of XAFS 2: Basic Experimental design

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

Periodicity and Atomic Ordering in Nanosized Particles of Crystals

Periodicity and Atomic Ordering in Nanosized Particles of Crystals J. Phys. Chem. C 2008, 112, 8907 8911 8907 Periodicity and Atomic Ordering in Nanosized Particles of Crystals Valeri Petkov,*, Nick Bedford, Marc R. Knecht,, Michael G. Weir, Richard M. Crooks, Wenjie

More information

X-ray Spectroscopy. Lecture plan. A Critical Look at the Past Accomplishments and Future Prospects. Proposal body not more than 5 pages

X-ray Spectroscopy. Lecture plan. A Critical Look at the Past Accomplishments and Future Prospects. Proposal body not more than 5 pages X-ray Spectroscopy A Critical Look at the Past Accomplishments and Future Prospects James Penner-Hahn jeph@umich.edu Room 243 Monday Wednesday 3-5 PM and by appointment http://www.chem.usyd.edu.au/~penner_j/index.htm

More information

Understanding interlayer interaction in layered supercoducting materials. Eugenio Paris University La Sapienza of Rome

Understanding interlayer interaction in layered supercoducting materials. Eugenio Paris University La Sapienza of Rome Understanding interlayer interaction in layered supercoducting materials Eugenio Paris University La Sapienza of Rome My PhD Thesis project Study of local structure, local disorder and interlayer interaction

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201502134 Stable Metallic 1T-WS 2 Nanoribbons Intercalated with Ammonia

More information

Chemical Bonding Forces and Metallization of Hydrogen

Chemical Bonding Forces and Metallization of Hydrogen Chemical Bonding Forces and Metallization of Hydrogen Ivan I. Naumov Geophysical Laboratory, Carnegie Institution of Washington Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014) Importance of Fundamental

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 1 The dark matter in the Universe Dark Matter is stable, non-baryonic, nonrelavistic, and interactes gravitationally

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize. Homework 1 (not graded) X-ray Diffractometry CHE 380.45 Multiple Choice 1. One of the methods of reducing exposure to radiation is to minimize. a) distance b) humidity c) time d) speed e) shielding 2.

More information

Synchrotron radiation and catalysis. A. Martorana - X School on Synchrotron Radiation - Duino, September 16th 2009

Synchrotron radiation and catalysis. A. Martorana - X School on Synchrotron Radiation - Duino, September 16th 2009 Synchrotron radiation and catalysis A. Martorana - X School on Synchrotron Radiation - Duino, September 16th 2009 1 What is a catalyst Why synchrotron light is suitable in catalysis Some details of instrumentation

More information

Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples.

Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples. Supplementary Figure 1 Result from XRD measurements. Synchrotron radiation XRD patterns of the as-prepared gold-ceria samples. The detailed information on XRD measurement is seen in the Supplementary Methods.

More information

The role of XAFS in a Research Program: Applied Magnetism and Magnetic Materials

The role of XAFS in a Research Program: Applied Magnetism and Magnetic Materials The role of XAFS in a Research Program: Applied Magnetism and Magnetic Materials Vince Harris (and a host of others) Northeastern University Boston, MA Formally of NRL Goals of this presentation Relax,

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Seonbaek Ha Professor : Carlo U. Segre 12. 06. 2013 Department of Chemical

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information