The Landscape of String theory

Size: px
Start display at page:

Download "The Landscape of String theory"

Transcription

1 The Landscape of String theory Dieter Lüst, LMU (ASC) and MPI München

2 The Landscape of String theory Dieter Lüst, LMU (ASC) and MPI München in collaboration with Riccardo Appreda, Ralph Blumenhagen, Gabriel L. Cardoso, Mirjam Cvetic, Johanna Erdmenger, Florian Gmeiner, Viviane Grass, Michael Haack, Daniel Krefl, Gabriele Honecker, Costas Kounnas, Jan Perz, Marios Petropoulos, Susanne Reffert, Robert Richter, Christoph Sieg, Maren Stein, Stephan Stieberger Antoine van Proeyen, Dimitri Tsimpis, Timo Weigand and Marco Zagermann

3 I) Introduction Geometry: Calabi-Yau spaces, mirror symmetry, generalized spaces, D-branes, K-theory,... Black Hole Entropies String Theory SUSY field theories Particle physics, astrophysics, cosmolgy

4 String theory: Describes the interactions and the spectrum of 1-dimensional extended (closed & open) strings.

5 String theory: Describes the interactions and the spectrum of 1-dimensional extended (closed & open) strings. High energies (E O(M Planck ), D = 10) : Theory of Quantum Gravity (quantized space-time?)

6 String theory: Describes the interactions and the spectrum of 1-dimensional extended (closed & open) strings. High energies (E O(M Planck ), D = 10) : Theory of Quantum Gravity (quantized space-time?) Intermediate energies (E O(TeV), D = 4(6?)) : Perturbative (supersymmetric?) Standard Model (by compactification) with 3 quark families.

7 String theory: Describes the interactions and the spectrum of 1-dimensional extended (closed & open) strings. High energies (E O(M Planck ), D = 10) : Theory of Quantum Gravity (quantized space-time?) Intermediate energies (E O(TeV), D = 4(6?)) : Perturbative (supersymmetric?) Standard Model (by compactification) with 3 quark families. Low energies (E O(GeV), D = 4(5?)) Can string theory provide some non-perturbative informations for QCD?

8 Count the number of consistent string solutions Vast landscape with N sol = discrete vacua! (Lerche, Lüst, Schellekens (1986), Douglas (2003))

9 Count the number of consistent string solutions Vast landscape with N sol = discrete vacua! (Lerche, Lüst, Schellekens (1986), Douglas (2003)) Two strategies to find something interesting:

10 Count the number of consistent string solutions Vast landscape with N sol = discrete vacua! (Lerche, Lüst, Schellekens (1986), Douglas (2003)) Two strategies to find something interesting: Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics (perhaps some anthropic point of view is necessary?)

11 Count the number of consistent string solutions Vast landscape with N sol = discrete vacua! (Lerche, Lüst, Schellekens (1986), Douglas (2003)) Two strategies to find something interesting: Explore all mathematically consistent possibilities: top down approach (quite hard), string statistics (perhaps some anthropic point of view is necessary?) Do not look randomly - look for green (promising) spots in the landscape model building, bottom up approach.

12 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

13 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls (Review: D. Lüst, arxiv:0707:2305)

14 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls (Review: D. Lüst, arxiv:0707:2305)

15 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32))

16 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32)) N = 1 supersymmetric compactification to 4 dimensions:

17 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32)) N = 1 supersymmetric compactification to 4 dimensions: (i) Choice of internal 6-dimensial manifold M 6 : Calabi-Yau space, orbifold

18 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32)) N = 1 supersymmetric compactification to 4 dimensions: (i) Choice of internal 6-dimensial manifold M 6 : Calabi-Yau space, orbifold (ii) Choice of stable vector bundle V = H over M 6 : SUSY: F ab = F tadpoles: c 2 (V ) = 0 ab = g ab F ab = 0;

19 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32)) N = 1 supersymmetric compactification to 4 dimensions: (i) Choice of internal 6-dimensial manifold M 6 : Calabi-Yau space, orbifold (ii) Choice of stable vector bundle V = H over M 6 : SUSY: F ab = F tadpoles: c 2 (V ) = 0 ab = g ab F ab = 0; 4D gauge group G 4 : G 10 H G 4

20 III) Heterotic String Compactifications: 10 dimensions: gauge group G 10 = E 8 E 8, (SO(32)) N = 1 supersymmetric compactification to 4 dimensions: (i) Choice of internal 6-dimensial manifold M 6 : Calabi-Yau space, orbifold (ii) Choice of stable vector bundle V = H over M 6 : SUSY: F ab = F tadpoles: c 2 (V ) = 0 ab = g ab F ab = 0; 4D gauge group G 4 : G 10 H G 4 4D chiral matter fields: N F = c 3 (V )

21 Heterotic CY Compactifications

22 Heterotic CY Compactifications (i) (elliptically fibred) CY with H being a simple group: (Friedman, Morgan, Witten (1997); Andreas, Curio, Klemm (1999); Donagi, Ovrut, Pantev, Waldram (2000);...)

23 Heterotic CY Compactifications (i) (elliptically fibred) CY with H being a simple group: (Friedman, Morgan, Witten (1997); Andreas, Curio, Klemm (1999); Donagi, Ovrut, Pantev, Waldram (2000);...) GUT Models: H = SU(4) = G 4 = SO(10) H = SU(5) = G 4 = SU(5) No adjoint Higgs: need discrete Wilson line to break G 4 to SU(3) SU(2) U(1)

24 Heterotic CY Compactifications (i) (elliptically fibred) CY with H being a simple group: (Friedman, Morgan, Witten (1997); Andreas, Curio, Klemm (1999); Donagi, Ovrut, Pantev, Waldram (2000);...) GUT Models: H = SU(4) = G 4 = SO(10) H = SU(5) = G 4 = SU(5) No adjoint Higgs: need discrete Wilson line to break G 4 to SU(3) SU(2) U(1) (ii) (elliptically fibred) CY with H being a non-simple group: (Blumenhagen, Honecker, Weigand (2005);...)

25 Heterotic CY Compactifications (i) (elliptically fibred) CY with H being a simple group: (Friedman, Morgan, Witten (1997); Andreas, Curio, Klemm (1999); Donagi, Ovrut, Pantev, Waldram (2000);...) GUT Models: No adjoint Higgs: need discrete Wilson line to break G 4 to Flipped SU(5): H = SU(4) = G 4 = SO(10) H = SU(5) = G 4 = SU(5) SU(3) SU(2) U(1) (ii) (elliptically fibred) CY with H being a non-simple group: (Blumenhagen, Honecker, Weigand (2005);...) H = SU(4) U(1) = G 4 = SU(5) U(1) SM: H = SU(5) U(1) = G 4 = SU(3) SU(2) U(1)

26 Resume: heterotic strings:

27 Resume: heterotic strings: Heterotic CY compactifications are mathematically interesting, but also complicated.

28 Resume: heterotic strings: Heterotic CY compactifications are mathematically interesting, but also complicated. 3 generation CY models without exotic partices can be constructed. (Braun, He, Ovrut, Pantev (2005); Bouchard, Donagi (2005))

29 Resume: heterotic strings: Heterotic CY compactifications are mathematically interesting, but also complicated. 3 generation CY models without exotic partices can be constructed. (Braun, He, Ovrut, Pantev (2005); Bouchard, Donagi (2005)) Nice SO(10) GUT models from orbifolds. (Kobayashi, Raby, Zhang (2004);,... Buchmüller, Hamaguchi, Lebedev, Ratz (2005); Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange (2006);...)

30 Resume: heterotic strings: Heterotic CY compactifications are mathematically interesting, but also complicated. 3 generation CY models without exotic partices can be constructed. (Braun, He, Ovrut, Pantev (2005); Bouchard, Donagi (2005)) Nice SO(10) GUT models from orbifolds. (Kobayashi, Raby, Zhang (2004);,... Buchmüller, Hamaguchi, Lebedev, Ratz (2005); Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange (2006);...) Moduli stabilization (bundle moduli!) with H-flux is difficult. (Strominger (1985), Becker, Becker, Dasguta, Green (2003); Curio, Cardoso, Dall Agata, Lüst, Krause (2003/04/05); Braun, He, Ovrut (2006))

31 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

32 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

33 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...)

34 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Now consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

35 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Now consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: They exhibit several new features:

36 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Now consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: They exhibit several new features: Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes.

37 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Now consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: They exhibit several new features: Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b

38 IV) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Now consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: They exhibit several new features: Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b Can be combined with background fluxes moduli stabilization (GKP) and ds-vacua (KKLT)

39 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ )

40 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom

41 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles: - Open string matter fields.

42 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles: - Open string matter fields. Strong consistency conditions: - tadpole cancellation with orientifold planes. - space-time supersymmetry (brane stability)

43 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles: - Open string matter fields. (diophantic Strong consistency conditions: equations with - tadpole cancellation with orientifold planes. finite no. of - space-time supersymmetry (brane stability) solutions!)

44 Space-time filling D-branes:

45 Space-time filling D-branes: Geometrical, large radius regime: IIA: special lagrangian submanifolds: D6 on 3-cycles at angles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) with gauge bundles: D3 (D5) D7 (D9)

46 Space-time filling D-branes: Geometrical, large radius regime: IIA: special lagrangian submanifolds: D6 on 3-cycles at angles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) with gauge bundles: D3 (D5) D7 (D9)! M IR (3,1) D6 O6 D6

47 Space-time filling D-branes: Geometrical, large radius regime: IIA: special lagrangian submanifolds: D6 on 3-cycles at angles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) with gauge bundles: D3 (D5) D7 (D9) SM Soft SUSY breaking HS

48 (Intersecting) D-brane statistics How many orientifold models exist which come close to the (spectrum of the) MSSM? (Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/ , hep-th/ , hep-th/ ; related work: Dijkstra, Huiszoon, Schellekens, hep-th/ ; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/ ; Douglas, Taylor, hep-th/ ; Dienes, Lennek, hep-th/ )

49 (Intersecting) D-brane statistics How many orientifold models exist which come close to the (spectrum of the) MSSM? (Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/ , hep-th/ , hep-th/ ; related work: Dijkstra, Huiszoon, Schellekens, hep-th/ ; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/ ; Douglas, Taylor, hep-th/ ; Dienes, Lennek, hep-th/ ) Example: M 6 = T 6 /(Z 2 Z 2 ) IIA orientifold:

50 (Intersecting) D-brane statistics How many orientifold models exist which come close to the (spectrum of the) MSSM? (Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/ , hep-th/ , hep-th/ ; related work: Dijkstra, Huiszoon, Schellekens, hep-th/ ; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/ ; Douglas, Taylor, hep-th/ ; Dienes, Lennek, hep-th/ ) Example: M 6 = T 6 /(Z 2 Z 2 ) IIA orientifold: Systematic computer search (NP complete problem): Look for solutions of a set of diophantic equations:

51 (Intersecting) D-brane statistics How many orientifold models exist which come close to the (spectrum of the) MSSM? (Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/ , hep-th/ , hep-th/ ; related work: Dijkstra, Huiszoon, Schellekens, hep-th/ ; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/ ; Douglas, Taylor, hep-th/ ; Dienes, Lennek, hep-th/ ) Example: M 6 = T 6 /(Z 2 Z 2 ) IIA orientifold: Systematic computer search (NP complete problem): Look for solutions of a set of diophantic equations: There exist about susy D-brane models on this orbifold (with restricted complex structure)! (Finiteness of models was recently proven by D.T.)

52 (Intersecting) D-brane model building Require additional further phenomenological restrictions:

53 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total

54 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total Only one in a billion models gives rise to a MSSM like vacuum!

55 More results: D-brane statistics: (Gmeiner, Stein, hep-th/ ; Gmeiner, Lüst, Stein, ; Gmeiner, Honecker, arxiv: )

56 More results: D-brane statistics: (Gmeiner, Stein, hep-th/ ; Gmeiner, Lüst, Stein, ; Gmeiner, Honecker, arxiv: ) (i) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra!

57 More results: D-brane statistics: (Gmeiner, Stein, hep-th/ ; Gmeiner, Lüst, Stein, ; Gmeiner, Honecker, arxiv: ) (i) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra! (ii) Similar results are obtained for SU(5) GUT models.

58 More results: D-brane statistics: (Gmeiner, Stein, hep-th/ ; Gmeiner, Lüst, Stein, ; Gmeiner, Honecker, arxiv: ) (i) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra! (ii) Similar results are obtained for SU(5) GUT models. Explicit D-brane constructions: there exist many models that come close to the MSSM. Problem of exotic particles! (Chen, Li, Mayes, Nanopoulos, hep-th/ ; Chen, Li, Nanopoulos, hep-th/ ; Blumenhagen, Plauschinn, hep-th/ ; Bailin, Love, hep-th/ ; Blumenhagen, Cvetic, Marchesano, Shiu, hepth/ ; Marchesano, Shiu, hep-th/ ; Honecker, Ott, hep-th/ ;...)

59 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

60 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

61 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi)

62 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action:

63 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings)

64 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. (Gukov, Vafa, Witten (2000); Taylor, Vafa; Mayr; (2000) Curio, Lüst, Klemm, Theisen (2000); Giddings, Kachru, Polchinski (2002) Lüst, Reffert, Stieberger (2004); Lüst, Tsimpis (2004); Derendinger, Petropoulos, Kounnas, Zwirner (2004); DeWolfe, Giryavets, Kachru, Taylor (2005); Camara, Font, Ibanez (2005); Villadoro, Zwirner (2007);...) Very often, not all moduli are stabilized.

65 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. (Gukov, Vafa, Witten (2000); Taylor, Vafa; Mayr; (2000) Curio, Lüst, Klemm, Theisen (2000); Giddings, Kachru, Polchinski (2002) Lüst, Reffert, Stieberger (2004); Lüst, Tsimpis (2004); Derendinger, Petropoulos, Kounnas, Zwirner (2004); DeWolfe, Giryavets, Kachru, Taylor (2005); Camara, Font, Ibanez (2005); Villadoro, Zwirner (2007);...) Very often, not all moduli are stabilized. Unbroken space-time supersymmetry.

66 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. (Gukov, Vafa, Witten (2000); Taylor, Vafa; Mayr; (2000) Curio, Lüst, Klemm, Theisen (2000); Giddings, Kachru, Polchinski (2002) Lüst, Reffert, Stieberger (2004); Lüst, Tsimpis (2004); Derendinger, Petropoulos, Kounnas, Zwirner (2004); DeWolfe, Giryavets, Kachru, Taylor (2005); Camara, Font, Ibanez (2005); Villadoro, Zwirner (2007);...) Very often, not all moduli are stabilized. Unbroken space-time supersymmetry. Take into account non-perturbative instanton corrections to the effective action!

67 String instanton corrections:

68 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles.

69 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). (R. Blumenhagen, M. Cvetic, T. Weigand, hep-th/ )

70 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). (R. Blumenhagen, M. Cvetic, T. Weigand, hep-th/ ) String instantons can break axionic shift symmetries and hence global U(1) symmetries.

71 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). (R. Blumenhagen, M. Cvetic, T. Weigand, hep-th/ ) String instantons can break axionic shift symmetries and hence global U(1) symmetries. Can generate new moduli dependent terms in the superpotential and hence are important for the moduli stabilization. (S. Kachru, R. Kallosh, A. Linde, S. Trivedi (2003);F. Denef, M. Douglas, B. Florea, A. Grassi, S. Kachru (2005); D.L., S. Reffert, E. Scheidegger, W. Schulgin, S. Stieberger(2006))

72 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). (R. Blumenhagen, M. Cvetic, T. Weigand, hep-th/ ) String instantons can break axionic shift symmetries and hence global U(1) symmetries. Can generate new moduli dependent terms in the superpotential and hence are important for the moduli stabilization. (S. Kachru, R. Kallosh, A. Linde, S. Trivedi (2003);F. Denef, M. Douglas, B. Florea, A. Grassi, S. Kachru (2005); D.L., S. Reffert, E. Scheidegger, W. Schulgin, S. Stieberger(2006)) Can generate new matter couplings (Majorana masses, Yukawa couplings) see in a moment.

73 Geometry: Non space-time filling Euclidean D- branes:

74 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons:

75 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: exp( J/α ). Tree-level in CFT

76 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT

77 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT These are non-space time filling D(p)=E(p) branes wrapped around internal (p+1)-cycles:

78 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT These are non-space time filling D(p)=E(p) branes wrapped around internal (p+1)-cycles: IIA: special lagrangian submanifolds: E2 on 3-cycles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) E(-1) (E1) E3 (E5)

79 Open string instanton CFT: (R. Blumenhagen, M. Cvetic, T. Weigand)

80 Open string instanton CFT: (R. Blumenhagen, M. Cvetic, T. Weigand) Zero mode fields: massless open strings on E(p)-branes or at intersection of E(p) and D(p )-branes.

81 Open string instanton CFT: (R. Blumenhagen, M. Cvetic, T. Weigand) Zero mode fields: massless open strings on E(p)-branes or at intersection of E(p) and D(p )-branes. Compute open string amplitudes between matter fields and zero mode fields.

82 Open string instanton CFT: (R. Blumenhagen, M. Cvetic, T. Weigand) Zero mode fields: massless open strings on E(p)-branes or at intersection of E(p) and D(p )-branes. Compute open string amplitudes between matter fields and zero mode fields. Finally, one has to integrate over all bosonic and fermionic zero modes localised on E(p)-branes

83 Open string instanton CFT: (R. Blumenhagen, M. Cvetic, T. Weigand) Zero mode fields: massless open strings on E(p)-branes or at intersection of E(p) and D(p )-branes. Compute open string amplitudes between matter fields and zero mode fields. Finally, one has to integrate over all bosonic and fermionic zero modes localised on E(p)-branes Not all instantons can contribute to the effective action: - F-terms: E(p)-brane is half-bps: need two fermionic zero modes θ i - D-terms: E(p)-brane breaks all 4 supersymmetries: need four fermionic zero modes θ i, θ i

84 E(2)-instantons in IIA: In the following we will consider the contribution of a E(2)- instanton to the superpotential in type IIA orientfolds.

85 E(2)-instantons in IIA: In the following we will consider the contribution of a E(2)- instanton to the superpotential in type IIA orientfolds. The E(2)-brane is wrapping a 3-cycle Instanton action: W np e S E = exp ( 2π l 3 s ( 1 g s Ξ Ξ Re(Ω) i of the CY-space. Ξ C 3 )) ) e U Ξ

86 E(2)-instantons in IIA: In the following we will consider the contribution of a E(2)- instanton to the superpotential in type IIA orientfolds. The E(2)-brane is wrapping a 3-cycle Instanton action: W np e S E = exp ( 2π l 3 s ( 1 g s Ξ Ξ Re(Ω) i of the CY-space. Ξ C 3 )) ) e U Ξ In general the instanton action W np is not U(1) a gauge invariant (shifts in C 3 ): C 3 C 3 + N a Q aξ, Q aξ = I[Π a Ξ] Ξ Ξ

87 E(2)-instantons in IIA: In the following we will consider the contribution of a E(2)- instanton to the superpotential in type IIA orientfolds. The E(2)-brane is wrapping a 3-cycle Instanton action: W np e S E = exp ( 2π l 3 s ( 1 g s Ξ Ξ Re(Ω) i of the CY-space. Ξ C 3 )) ) e U Ξ In general the instanton action W np is not U(1) a gauge invariant (shifts in C 3 ): C 3 C 3 + N a Q aξ, Q aξ = I[Π a Ξ] Ξ W np Ξ must contain charged matter fields: W np Φ a e S E (U(1) selection rules will follow from fermionic zero modes.)

88 There are two possible cases:

89 There are two possible cases: E2 is wrapping a 3-cycle different from the gauge group 3-cycle, i.e. E2-brane describes a genuine string instanton.

90 There are two possible cases: E2 is wrapping a 3-cycle different from the gauge group 3-cycle, i.e. E2-brane describes a genuine string instanton. E2 is wrapping the same 3-cycle as the gauge group 3-cycle, i.e. Ξ = Π a E2-brane corresponds to a gauge instanton. additional bosonic zero modes 4N c b, b, b, b.

91 There are two possible cases: E2 is wrapping a 3-cycle different from New the matter gauge group 3-cycle, i.e. couplings E2-brane describes a genuine string instanton. E2 is wrapping the same 3-cycle as the gauge group 3-cycle, i.e. Ξ = Π a E2-brane corresponds to a gauge instanton. additional bosonic zero modes 4N c b, b, b, b.

92 There are two possible cases: E2 is wrapping a 3-cycle different from New the matter gauge group 3-cycle, i.e. couplings E2-brane describes a genuine string instanton. E2 is wrapping the same 3-cycle as the gauge group 3-cycle, i.e. Ξ = Π a E2-brane corresponds to a gauge instanton. additional bosonic zero modes 4N c b, b, b, b. Compute the 1-instanton Veneziano-Yankielowicz/ Affleck-Dine-Seiberg (VY/ADS) superpotential from string theory. (N. Akerblom, R. Blumenhagen, D.L., E. Plauschinn, M. Schmidt-Sommerfeld)

93

94 W n.p. = VY/ADS non-perturbative superpotential: = ( ) 1 det[ Φ ab Φ ab ] exp f a,tree + f a,1 loop (M) ( ) 1 C(T ) exp f a,tree (S, U) det[ Φ ab Φ ab ] SU(N c ), N f = N c

95 W n.p. = VY/ADS non-perturbative superpotential: = ( ) 1 det[ Φ ab Φ ab ] exp f a,tree + f a,1 loop (M) ( ) 1 C(T ) exp f a,tree (S, U) det[ Φ ab Φ ab ] SU(N c ), N f = N c

96 W n.p. = VY/ADS non-perturbative superpotential: = ( ) 1 det[ Φ ab Φ ab ] exp f a,tree + f a,1 loop (M) ( ) 1 C(T ) exp f a,tree (S, U) det[ Φ ab Φ ab ] SU(N c ), N f = N c From integration over bosonic zero modes, ADHM constraints.

97 W n.p. = VY/ADS non-perturbative superpotential: = ( ) 1 det[ Φ ab Φ ab ] exp f a,tree + f a,1 loop (M) ( ) 1 C(T ) exp f a,tree (S, U) det[ Φ ab Φ ab ] We also computed the ADS superpotential for SO(N c ), N f = N c 3 and USp(2N c ), N c = N f SU(N c ), N f = N c

98 W n.p. = VY/ADS non-perturbative superpotential: = ( ) 1 det[ Φ ab Φ ab ] exp f a,tree + f a,1 loop (M) ( ) 1 C(T ) exp f a,tree (S, U) det[ Φ ab Φ ab ] We also computed the ADS superpotential for SO(N c ), N f = N c 3 and USp(2N c ), N c = N f SU(N c ), N f = N c Possible generalizations: SU(N c ), N f N c 1, due to gaugino condensation? Non-rigid cycles (b 1 (Ξ) 0)? This corresponds to adjoint chiral fields in gauge theory, which must get a mass by fluxes.

99 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: )

100 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models:

101 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models: Consider two stack a and b of D6-branes: G = U(5) a U(1) b = SU(5) a U(1) a U(1) b Open strings: sector number U(5) a U(1) b reps. U(1) X (a 1, a) 3 + (1, 1) 10 (2,0) 2 (a, b) 3 5 ( 1,1) 3 2 (b 5, b) 3 1 (0, 2) 2 (a, b) 1 5 H (1,1) + 5H ( 1, 1) ( 1) + (1)

102 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models: Consider two stack a and b of D6-branes: G = U(5) a U(1) b = SU(5) a U(1) a U(1) b Open strings: sector number U(5) a U(1) b reps. U(1) X (a 1, a) 3 + (1, 1) 10 (2,0) 2 (a, b) 3 5 ( 1,1) 3 2 (b 5, b) 3 1 (0, 2) 2 (a, b) 1 5 H (1,1) + 5H ( 1, 1) ( 1) + (1) Abelian symmetries: U(1) a U(1) b One anomalous linear combination: global symmetry One anomaly free linear combination U(1) X

103 Two different cases: U(1) X massive: Georgi-Glashow model U(1) X massless: flipped SU(5) model

104 Two different cases: U(1) X massive: Georgi-Glashow model U(1) X massless: flipped SU(5) model From U(1) X charges it follows that: Perturb. allowed couplings(e.g. u,c,t-quarks): 10 (2,0) 5 ( 1,1) 5 H ( 1, 1), Perturb. forbidden couplings (e.g. d,s,b-quarks): 10 (2,0) 10 (2,0) 5 H (1,1)

105 Two different cases: U(1) X massive: Georgi-Glashow model U(1) X massless: flipped SU(5) model From U(1) X charges it follows that: Perturb. allowed couplings(e.g. u,c,t-quarks): 10 (2,0) 5 ( 1,1) 5 H ( 1, 1), Perturb. forbidden couplings (e.g. d,s,b-quarks): 10 (2,0) 10 (2,0) 5 H (1,1) These can be generated by E2-instantons: The instanton has to wrap a rigid 3-cycle Ξ invariant under the orientfold projection Ω σ and carrying gauge group O(1)

106 U(1) X charge of Yukawa coupling: one needs 6 fermionic zero modes: Instanton intersection numbers: [Ξ Π a ] + = [Ξ Π b ] + = 0, [Ξ Π a ] = [Ξ Π b ] = 1 E2 D6 a E2 D6 a E2 D6 b 10! 1 3 [5]! [5] # $! 2 [5] 10 4! [5] 5 H " [!1] 5! [5] D6 a D6 a D6 a

107 U(1) X charge of Yukawa coupling: one needs 6 fermionic zero modes: Instanton intersection numbers: [Ξ Π a ] + = [Ξ Π b ] + = 0, [Ξ Π a ] = [Ξ Π b ] = 1 E2 D6 a E2 D6 a E2 D6 b 10! 1 3 [5]! [5] # $! 2 [5] 10 4! [5] 5 H " [!1] 5! [5] Instanton action: Yukawa coupling: D6 a D6 a ( exp( S inst ) = exp Cα 10 D6 a ) 10 α λ [ij] i λ j + C 5 5 m λ m ν W Y = Y αβ H ɛ ijklm 10 α ij 10 β kl 5H m e S E2 e Z

108 Two features of non-perturbative Yukawa coupling:

109 Two features of non-perturbative Yukawa coupling: (i) depend on complex structure moduli: Suppression factor Vol E2 /Vol D6 = (R E2 /R D6 ) 3 with R D6 = 7 2 R E2 one gets exp ( S E2 )

110 Two features of non-perturbative Yukawa coupling: (i) depend on complex structure moduli: Suppression factor Vol E2 /Vol D6 = (R E2 /R D6 ) 3 with R D6 = 7 2 R E2 one gets exp ( S E2 ) (ii) Yukawa coupling factorizes into Y αβ H = Y α Y β Unit rank mass matrix!

111 Two features of non-perturbative Yukawa coupling: (i) depend on complex structure moduli: Suppression factor Vol E2 /Vol D6 = (R E2 /R D6 ) 3 with R D6 = 7 2 R E2 one gets exp ( S E2 ) (ii) Yukawa coupling factorizes into Y αβ H = Y α Y β Unit rank mass matrix! E2-instantons also relevant for doublet-triplet splitting, Majorana masses, masses for exotic states,... (Ibanez, Uranga, hep-th/ ; Cvetic, Richer, Weigand, hep-th/ ; Ibanez, Schellekens, Uranga, arxiv: ; Antusch, Ibanez, Macri, arxiv: ; Bianchi, Kiritsis, arxiv: ; Bianchi, Fucito, Morales, arxiv: )

112 String model buiding: What do we like to learn?

113 String model buiding: What do we like to learn? Where is the fundamental string scale?

114 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking?

115 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions?

116 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape?

117 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape? Plan for the next years:

118 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape? Plan for the next years: Bottom-up approach: Work upstairs from experimatal data.

119 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape? Plan for the next years: Bottom-up approach: Work upstairs from experimatal data. Top-down approach: Develop high scale theory from mathematical consistency.

120 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape? Plan for the next years: Bottom-up approach: Work upstairs from experimatal data. Top-down approach: Success? Develop high scale theory from mathematical consistency.

121 String model buiding: What do we like to learn? Where is the fundamental string scale? Where is the scale of supersymmetry breaking? Where is the scale of the extra dimensions? Where are we in the landscape? Plan for the next years: Bottom-up approach: Work upstairs from experimatal data. Top-down approach: Success? Develop high scale theory from mathematical consistency. (How good is the chain between fundamental theory and the data?)

122 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

123 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

124 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305)

125 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique!

126 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique! Compactification

127 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique! Compactification There exist a huge number of lower dim. groundstates:

128 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique! Compactification There exist a huge number of lower dim. groundstates: Many possibilities for different particle physics models!

129 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique! Compactification There exist a huge number of lower dim. groundstates: Many possibilities for different particle physics models! Many possibilities for different cosmological models!

130 String landscape problem (Weinberg, Bousso, Polchinski, Susskind, Linde, Schellekens,...) (Review: D. Lüst, arxiv:0707:2305) Superstring theory in 10 dimensions is (almost) unique! Compactification There exist a huge number of lower dim. groundstates: Many possibilities for different particle physics models! Many possibilities for different cosmological models! How to make any prediction in string theory, i.e. how to determine the correct string vacuum state?

131 Moduli: The landscape problem is closely related to the moduli problem:

132 Moduli: The landscape problem is closely related to the moduli problem: String compactifications contain many massless moduli fields with flat potential: (Geometrical) background parameters of the compactification.

133 Moduli: The landscape problem is closely related to the moduli problem: String compactifications contain many massless moduli fields with flat potential: (Geometrical) background parameters of the compactification. However undetermined moduli result in uncalculable couplings (and new forces)!

134 Moduli stabilization: Moduli can be stabilized, i.e. fixed by creating a (static) potential for them:

135 Moduli stabilization: Moduli can be stabilized, i.e. fixed by creating a (static) potential for them: Tree level: background fluxes

136 Moduli stabilization: Moduli can be stabilized, i.e. fixed by creating a (static) potential for them: Tree level: background fluxes Non-perturbatively: string instantons

137 Moduli stabilization: Moduli can be stabilized, i.e. fixed by creating a (static) potential for them: Tree level: background fluxes Non-perturbatively: string instantons In this way one can obtain a discrete set of vacua with either negative cosological constant, Λ < 0 (AdS vacua) zero cosmological constant, Λ = 0 (Minkowski vacua) positive cosmological constant, Λ > 0 (ds vacua) and various possibilities for gauge and matter fields

138 Effective moduli potential:

139 Effective moduli potential: Flat moduli potential before turning on fluxes and nonperturbative effects: V (φ) V (φ) 0 φ

140 Effective moduli potential:

141 Effective moduli potential: Non-flat moduli potential after turning on fluxes and nonperturbative effects: V (φ) φ

142 Effective moduli potential: Non-flat moduli potential after turning on fluxes and nonperturbative effects: V (φ) ds-vacuum φ

143 Effective moduli potential: Non-flat moduli potential after turning on fluxes and nonperturbative effects: V (φ) ds-vacuum AdSvacuum φ

144 Effective moduli potential: Non-flat moduli potential after turning on fluxes and nonperturbative effects: V (φ) ds-vacuum Minkowski vacuum AdSvacuum φ

145 Two possible solutions of the landscape problem:

146 Two possible solutions of the landscape problem: String statistics (Anthropic answer): determine the fraction of vacua with good phenomenological properties: (Λ/M P lanck ) , G = SU(3) SU(2) U(1)

147 Two possible solutions of the landscape problem: String statistics (Anthropic answer): determine the fraction of vacua with good phenomenological properties: (Λ/M P lanck ) , G = SU(3) SU(2) U(1) Entropy of string vacua (Entropic answer): determine a wave function (probability function) in moduli space, and see if is peaked, i.e. has maxima with good phenomenological properties. ψ 2 ψ(φ)

148 Wave function: Two possible ways to compute the wave function:

149 Wave function: Two possible ways to compute the wave function: (i) Computation of transition amplitudes: V (φ) (Hartle, Hawking, Coleman, De Luccia, Linde, Vilenkin,...) φ

150 Wave function: Two possible ways to compute the wave function: (i) Computation of transition amplitudes: V (φ) Tunneling: (Hartle, Hawking, Coleman, De Luccia, Linde, Vilenkin,...) ( Γ M P exp 24π2 MP 4 ) Λ(φ) ψ(φ) 2 e Λ(φ) φ

151 Wave function: Two possible ways to compute the wave function: (i) Computation of transition amplitudes: V (φ) (Hartle, Hawking, Coleman, De Luccia, Linde, Vilenkin,...) Thermal fluctuation: Γ M P e E T H φ T H = Λ(φ) M P

152 Wave function: Two possible ways to compute the wave function: (i) Computation of transition amplitudes: V (φ) (Hartle, Hawking, Coleman, De Luccia, Linde, Vilenkin,...) Thermal fluctuation: Γ M P e E T H φ T H = Λ(φ) M P (ii) Stringy computation of the entropy of string vacua: ψ(φ) 2 = e S string(φ)

153 How to define an entropy for string vacua?

154 How to define an entropy for string vacua? Similar problem in quantum gravity:

155 How to define an entropy for string vacua? Similar problem in quantum gravity: Compute the statistical entropy of black holes and compare it with the Bekenstein/Hawking entropy:

156 How to define an entropy for string vacua? Similar problem in quantum gravity: Compute the statistical entropy of black holes and compare it with the Bekenstein/Hawking entropy: S bh (p, q) = A horizon 4

157 How to define an entropy for string vacua? Similar problem in quantum gravity: Compute the statistical entropy of black holes and compare it with the Bekenstein/Hawking entropy: S bh (p, q) = A horizon 4 There exist many black hole solutions with different electric and magnetic charges!

158 How to define an entropy for string vacua? Similar problem in quantum gravity: Compute the statistical entropy of black holes and compare it with the Bekenstein/Hawking entropy: S bh (p, q) = A horizon 4 There exist many black hole solutions with different electric and magnetic charges! Which one has the largest possible entropy?

159 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence:

160 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes:

161 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies:

162 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q)

163 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q) (ii) Microscopic stringy entropy of wrapped D-branes: S brane (p, q)

164 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q) (ii) Microscopic stringy entropy of wrapped D-branes: S brane (p, q) (iii) Flux vacuum: S flux (φ)?

165 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q) (ii) Microscopic stringy entropy of wrapped D-branes: S brane (p, q) (iii) Flux vacuum: S flux (φ)? Conjecture: S thermo (p, q) = S brane (p, q) = S flux (φ)

166 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q) (ii) Microscopic stringy entropy of wrapped D-branes: S brane (p, q) (iii) Flux vacuum: S flux (φ)? Conjecture: S thermo (p, q) = S brane (p, q) = S flux (φ) (Strominger, Vafa)

167 Conjecture: (Ooguri, Vafa, Verline, hep-th/ ) Black hole (flux) landscape correspondence: Probability distribution for AdS flux vacua in 2 dimensions is the same as the entropy of certain charged (4D) supersymmetric black holes: 3 kinds of entropies: (i) Thermodynamic black hole entropy: S thermo (p, q) (ii) Microscopic stringy entropy of wrapped D-branes: S brane (p, q) (iii) Flux vacuum: S flux (φ)?? Conjecture: S thermo (p, q) = S brane (p, q) = S flux (φ) (Strominger, Vafa)

168 Entropy of string (flux) vacua: use the correspondence between flux potentials and attractors of supersymmetric charged black holes coupled to scalars:

169 Entropy of string (flux) vacua: use the correspondence between flux potentials and attractors of supersymmetric charged black holes coupled to scalars: Replace the fluxes by their correspond D-branes.

170 Entropy of string (flux) vacua: use the correspondence between flux potentials and attractors of supersymmetric charged black holes coupled to scalars: Replace the fluxes by their correspond D-branes. Black hole BPS (SUSY) conditions: (attractor mechanism) A z (r) A A z =z (p I Hor, q I) z A i1 DZ p,q (φ) = 0 φ = φ(p, q), S(p, q) = S(φ(p, q)) z A i2 r =0 Hor r

171 Entropy of string (flux) vacua: use the correspondence between flux potentials and attractors of supersymmetric charged black holes coupled to scalars: Replace the fluxes by their correspond D-branes. Black hole BPS (SUSY) conditions: (attractor mechanism) A z (r) A A z =z (p I Hor, q I) z A i1 DZ p,q (φ) = 0 φ = φ(p, q), S(p, q) = S(φ(p, q)) z A i2 Conjecture: S(φ(p, q)) is entropy function in the flux landscape. r =0 Hor r

172 Entropy of string (flux) vacua: use the correspondence between flux potentials and attractors of supersymmetric charged black holes coupled to scalars: Replace the fluxes by their correspond D-branes. Black hole BPS (SUSY) conditions: (attractor mechanism) A z (r) A A z =z (p I Hor, q I) z A i1 DZ p,q (φ) = 0 φ = φ(p, q), S(p, q) = S(φ(p, q)) z A i2 Conjecture: S(φ(p, q)) is entropy function in the flux landscape. r =0 Hor r (The black hole BPS conditions are very similar to the flux SUSY conditions, replacing the central charge Z by the superpotential W!)

173 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY )

174 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY ) These flux vacua correspond to supersymmetric charged black holes with electric/magnetic charges and p I : q I

175 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY ) These flux vacua correspond to supersymmetric charged black holes with electric/magnetic charges and p I : 3-branes around 3-cycles 5-form fluxes through 5-cycles q I

176 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY ) These flux vacua correspond to supersymmetric charged black holes with electric/magnetic charges and p I : 3-branes around 3-cycles 5-form fluxes through 5-cycles B.h. charges p and q Fluxes p and q q I

177 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY ) These flux vacua correspond to supersymmetric charged black holes with electric/magnetic charges and p I : 3-branes around 3-cycles 5-form fluxes through 5-cycles B.h. charges p and q Fluxes p and q q I Entropy Cosmol. constant S(φ) Λ(φ)

178 Consider IIB on and through q I Example: S 2 CY with Ramond 5-form fluxes p I S 2 α I (β I ) (α I, β I CY ) These flux vacua correspond to supersymmetric charged black holes with electric/magnetic charges and p I : 3-branes around 3-cycles 5-form fluxes through 5-cycles B.h. charges p and q Fluxes p and q q I Entropy Cosmol. constant S(φ) Near horizon geometry Vacuum geometry Λ(φ) AdS 2 S 2 CY

179 Application: entropy maximization (Cardoso, Lüst, Perz, hep-th/ ; related work: Gukov, Saraikin, Vafa, hep-th/ ; Fiol, hep-th/ ; Belluci, Ferrara, Marrani, hep-th/

180 Application: entropy maximization (Cardoso, Lüst, Perz, hep-th/ ; related work: Gukov, Saraikin, Vafa, hep-th/ ; Fiol, hep-th/ ; Belluci, Ferrara, Marrani, hep-th/ Consider N = 2 flux vacua at the Calabi-Yau conifold point in the moduli space, where additional states become massless:

181 Application: entropy maximization (Cardoso, Lüst, Perz, hep-th/ ; related work: Gukov, Saraikin, Vafa, hep-th/ ; Fiol, hep-th/ ; Belluci, Ferrara, Marrani, hep-th/ Consider N = 2 flux vacua at the Calabi-Yau conifold point in the moduli space, where additional states become massless: ( ) S(φ) = π const. β 2π φ2 2β π φ2 log φ

182 Application: entropy maximization (Cardoso, Lüst, Perz, hep-th/ ; related work: Gukov, Saraikin, Vafa, hep-th/ ; Fiol, hep-th/ ; Belluci, Ferrara, Marrani, hep-th/ Consider N = 2 flux vacua at the Calabi-Yau conifold point in the moduli space, where additional states become massless: ( ) For S(φ) = π β < 0 (β > 0) const. β 2π φ2 2β π φ2 log φ a maximum (minimum) at : φ = 0 we get that the entropy exhibits

183 Application: entropy maximization (Cardoso, Lüst, Perz, hep-th/ ; related work: Gukov, Saraikin, Vafa, hep-th/ ; Fiol, hep-th/ ; Belluci, Ferrara, Marrani, hep-th/ Consider N = 2 flux vacua at the Calabi-Yau conifold point in the moduli space, where additional states become massless: ( ) For S(φ) = π β < 0 (β > 0) const. β 2π φ2 2β π φ2 log φ a maximum (minimum) at : φ = 0 we get that the entropy exhibits Following the entropic principle infrared free theories seem to be preferred!

184 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls

185 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 flux vacua and black holes AdS 4 flux vacua and domain walls by C. Kounnas, D. Lüst, M. Petropoulos, D. Tsimpis, arxiv:

186 Outline Heterotic string compactifications Type II orientifolds models Intersecting brane models and their statistics D-instantons: non-perturbative couplings The string landscape: fluxes and branes AdS 2 AdS 4 flux vacua and black holes flux vacua and domain walls by C. Kounnas, D. Lüst, M. Petropoulos, D. Tsimpis, arxiv: (Related work: Cowdall, Lu, Pope, Stelle, Townsend, hep-th/ ; Boonstra, Peeters, Skenderis, hep-th/ ; Behrndt, Cardoso, Lüst, hep-th/ ; Ceresole, Dall Agata, Kallosh, Van Proeyen, hep-th/ ; Behrndt, Cvetic, hep-th/ ; Lüst, Tsimpis, hep-th/ ; Ceresole, Dall Agata, Giryavets, Kallosh, Linde, hep-th/ ;...)

187 Q: Can one associate an entropy for 4D AdS 4 flux vacua?

188 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources).

189 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes.

190 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D.

191 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D. Two requirements:

192 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D. Two requirements: Domain wall interpolates between and, AdS 4 R 4

193 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D. Two requirements: Domain wall interpolates between and, All moduli are fixed to finite values on AdS 4 R 4 AdS 4 horizon.

194 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D. Two requirements: Domain wall interpolates between and, All moduli are fixed to finite values on AdS 4 R 4 AdS 4 Is there an attractor mechanism for domain walls? horizon.

195 Q: Can one associate an entropy for 4D AdS 4 flux vacua? 1st. step: Replace fluxes by their corresponding branes (sources). 2nd step: Compute stringy entropy of branes. AdS 4 : Like a domain wall in 4D (co-dimension one object): Consider branes that fill 2 spatial dimensions in 4D. Two requirements: Domain wall interpolates between and, All moduli are fixed to finite values on AdS 4 R 4 AdS 4 Is there an attractor mechanism for domain walls? horizon.

196 AdS 4 flux vacua with all moduli fixed:

197 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes:

198 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes: Normally, only complex structure moduli are fixed!

199 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes: Normally, only complex structure moduli are fixed! To fix all Kähler moduli one needs:

200 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes: Normally, only complex structure moduli are fixed! To fix all Kähler moduli one needs: D3-instantons wrapped around 4-cycles,

201 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes: Normally, only complex structure moduli are fixed! To fix all Kähler moduli one needs: D3-instantons wrapped around 4-cycles, geometrical (metric) fluxes,

202 AdS 4 flux vacua with all moduli fixed: Type IIB with tree level 3-form fluxes: Normally, only complex structure moduli are fixed! To fix all Kähler moduli one needs: D3-instantons wrapped around 4-cycles, geometrical (metric) fluxes, consider compactifications without Kähler moduli (see later)

203 Tree level type IIA flux vacua:

204 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: )

205 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: ) Consider compactifcation on CY space Y with Hodge numbers h 2,1 h1,1

206 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: ) Consider compactifcation on CY space Y with Hodge numbers h 2,1 h1,1 Superpotential: W IIA = W H + W F + W geom

207 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: ) Consider compactifcation on CY space Y with Hodge numbers h 2,1 h1,1 Superpotential: W IIA = W H + W F + W geom W F (T ) = e J c F R = Y 1 m 0 (J c J c J c ) Y Y ( F R 2 J c J c ) + Y F R 4 J c + = i m 0 F 0 (T ) m i F i (T ) + iẽ i T i + ẽ 0. (i = 1,..., h 1,1 ) Y F R 6 0-form R-flux (massive IIA SUGRA) 2-form R-flux 4-form R-flux 6-form R-flux

208 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: ) Consider compactifcation on CY space Y with Hodge numbers h 2,1 h1,1 Superpotential: W IIA = W H + W F + W geom W F (T ) = e J c F R = Y 1 m 0 (J c J c J c ) Y Y ( F R 2 J c J c ) + Y F R 4 J c + = i m 0 F 0 (T ) m i F i (T ) + iẽ i T i + ẽ 0. (i = 1,..., h 1,1 ) Y F R 6 0-form R-flux (massive IIA SUGRA) W H (S, U) = Y 2-form R-flux 4-form R-flux 6-form R-flux 3-form NS-flux Ω c H 3 = iã 0 S + i c m U m, (m = 1,..., h 2,1 )

209 Tree level type IIA flux vacua: (Curio, Klemm, Lüst, Theisen, hep-th/ ; Derendinger, Kounnas, Petropoulos, Zwirner, hep-th/ ; Villadoro, Zwirner, hep-th/ ; De Wolfe, Giryavets, Kachru, Taylor, hep-th/ ; Camara, Font, Ibanez, hep-th/ ; Villadoro, Zwirner, arxiv: ) Consider compactifcation on CY space Y with Hodge numbers h 2,1 h1,1 Superpotential: W IIA = W H + W F + W geom W F (T ) = e J c F R = Y 1 m 0 (J c J c J c ) Y Y ( F R 2 J c J c ) + Y F R 4 J c + = i m 0 F 0 (T ) m i F i (T ) + iẽ i T i + ẽ 0. (i = 1,..., h 1,1 ) Y F R 6 0-form R-flux (massive IIA SUGRA) 2-form R-flux 4-form R-flux 6-form R-flux 3-form NS-flux W H (S, U) = Ω c H 3 = iã 0 S + i c m U m, (m = 1,..., h 2,1 ) Y Metric fluxes (twisted W geom (S, T, U) = i Ω c dj = ã i ST i d tori) im T i U m, Y

210 The fluxes induce a C7 tadpole: Ñ flux = (C7 df 2 + C 7 (ã 0 H 3 + d F 2 ) ) = h 1,1 I=0 ã I m I. D6-brane charge, need D6-branes, O6-planes.

211 IIA flux solution with all moduli fixed:

212 IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 ( h 1,1 = h 2,1 = 3)

213 IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 Prepotential: F = T 1 T 2 T 3 ( h 1,1 = h 2,1 = 3)

214 IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 Prepotential: F = T 1 T 2 T 3 Kähler potential: K = log(s + S) ( h 1,1 = h 2,1 = 3) 3 (T i + T 3 i ) (U m + Ūm) i=1 m=1

215 IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 Prepotential: F = T 1 T 2 T 3 Kähler potential: K = log(s + S) Flux superpotential: ( h 1,1 = h 2,1 = 3) 3 (T i + T 3 i ) (U m + Ūm) i=1 m=1 W IIA = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S + i c m U m. (no geometrical fluxes)

216 IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 Prepotential: F = T 1 T 2 T 3 Kähler potential: K = log(s + S) Flux superpotential: ( h 1,1 = h 2,1 = 3) 3 (T i + T 3 i ) (U m + Ūm) i=1 m=1 W IIA = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S + i c m U m. SUSY solution: (no geometrical fluxes) DW IIA = 0 AdS 4 vacuum.

217 γ i T i = IIA flux solution with all moduli fixed: Compactification on 6D torus: Y = T 2 1 T 2 2 T 2 3 Prepotential: F = T 1 T 2 T 3 Kähler potential: K = log(s + S) Flux superpotential: SUSY solution: DW IIA = 0 5 γ 1 γ 2 γ 3 3 m 2 0 AdS 4 3 (T i + T i ) vacuum., S = 2 γ i T i, c m U m = 2 γ i T i. 3 m 0 ã 0 3 m 0 (γ i = m 0 ẽ i ) ( h 1,1 = h 2,1 = 3) W IIA = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S + i c m U m. i=1 3 (U m + Ūm) m=1 (no geometrical fluxes)

218 T-dual type IIB description:

219 T-dual type IIB description: c m 0 : (NS 3-form fluxes in IIA) Need geometric (metric) fluxes on the IIB side.

220 T-dual type IIB description: c m 0 : (NS 3-form fluxes in IIA) Need geometric (metric) fluxes on the IIB side. Simple situation: IIA: No complex structure moduli: h2,1 = 0 : W IIA = W F + W H = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S

221 T-dual type IIB description: c m 0 : (NS 3-form fluxes in IIA) Need geometric (metric) fluxes on the IIB side. Simple situation: IIA: No complex structure moduli: h2,1 = 0 : W IIA = W F + W H = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S IIB: No Kähler moduli: (LG description) Then all IIB moduli can be fixed by 3-form flux superpotential: W IIB = X Ω ( F R 3 + SH NS 3 (Becker, Becker, Vafa, Walcher, hep-th/ ) ) = iei U i + im 0 U 1 U 2 U 3 + ia 0 S

222 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall.

223 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall. Internal space: Brane flux dictionary:

224 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall. Internal space: Brane flux dictionary: (i) Ramond flux: Fn R flux through Σ n D(2+6-n)-brane wrapped around Σ 6 n

225 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall. Internal space: Brane flux dictionary: (i) Ramond flux: Fn R flux through Σ n D(2+6-n)-brane wrapped around Σ 6 n (ii) NS 3-form flux H 3 through Σ 3 Σ 3 NS5-brane wrapped around

226 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall. Internal space: Brane flux dictionary: (i) Ramond flux: Fn R flux through Σ n D(2+6-n)-brane wrapped around Σ 6 n (ii) NS 3-form flux H 3 through Σ 3 Σ 3 NS5-brane wrapped around (iii) Geometrical flux Kaluza-Klein (KK) monopole

227 Replace fluxes by (2+p)-dim. branes: 2 common directions in uncompatified space AdS 4 domain wall. Internal space: Brane flux dictionary: (i) Ramond flux: Fn R flux through Σ n D(2+6-n)-brane wrapped around Σ 6 n (ii) NS 3-form flux H 3 through Σ 3 Σ 3 NS5-brane wrapped around (iii) Geometrical flux Kaluza-Klein (KK) monopole T-duality

228 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n ɛ.

229 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). ɛ.

230 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) ɛ.

231 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) Properties of our solutions: ɛ.

232 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) Properties of our solutions: Branes are smeared in transverse direction. ɛ.

233 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) Properties of our solutions: Branes are smeared in transverse direction. Near horizon geometry is AdS 4 ɛ.

234 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) Properties of our solutions: Branes are smeared in transverse direction. Near horizon geometry is AdS 4 Moduli are stabilized at horizon (attractor behavior) ɛ.

235 SUSY conditions (calibrated sources): ( ) 0 = µ H µp + eφ 16 n F nγ µ P n ɛ, ( ) 0 = Φ HP + eφ 8 n ( 1)n (5 n)f n P n Bianchi identities: df + H F = Q j, d F H F = Q α(j). Theorem: Supersymmetric brane configurations that satisfy Bianchi id. will automatically satisfy the dilaton and Einstein eq. of motion. (Koerber, Tsimpis, arxiv: )) Properties of our solutions: Branes are smeared in transverse direction. Near horizon geometry is AdS 4 Moduli are stabilized at horizon (attractor behavior) Non-vanishing C7 tadpole, same as for fluxes ɛ.

236 IIA Examples: (i) Not all moduli are stabilized: Ramond 4-form flux superpotential: W IIA = J = iẽ i T i DW IIA = 0 Y F R 4 S and U-fields are not fixed!

237 IIA Examples: (i) Not all moduli are stabilized: Ramond 4-form flux superpotential: W IIA = J = iẽ i T i DW IIA = 0 Y F R 4 S and U-fields are not fixed! The corresponding sources are intersecting D4-branes: ξ 0 ξ 1 ξ 2 y 1 y 2 y 3 x 1 x 2 x 3 x 4 D4 D4

238 ds 2 10 = 1 η µν dξ µ dξ ν + H 1 H 2 δ ij dy i dy j H2 + H1 H 2 H 1 2 (dx a ) 2 + a=1 H1 e 2φ = H 1 H 2, F x3 x 4 y i y j = δkl ε ijk y lh 1, F x1 x 2 y i y j = δkl ε ijk y lh 2, where 10 D metric and dilaton: H 2 4 (dx a ) 2 a=3 4πH α = 1 + c α y + d α 2y 2, α = 1, 2

239 ds 2 10 = 10 D metric and dilaton: 1 η µν dξ µ dξ ν + H 1 H 2 δ ij dy i dy j H2 + H1 H 2 H 1 2 (dx a ) 2 + a=1 H1 e 2φ = H 1 H 2, F x3 x 4 y i y j = δkl ε ijk y lh 1, F x1 x 2 y i y j = δkl ε ijk y lh 2, H 2 4 (dx a ) 2 where 4πH α = 1 + c α y + d α 2y 2, α = 1, 2 H are not harmonic in overall transverse directions. Smeared sources: j α := 2 H α = c α δ 3 (y) d α 4πy 4 a=3

240 ds 2 10 = 10 D metric and dilaton: 1 η µν dξ µ dξ ν + H 1 H 2 δ ij dy i dy j H2 + H1 H 2 H 1 2 (dx a ) 2 + a=1 H1 e 2φ = H 1 H 2, F x3 x 4 y i y j = δkl ε ijk y lh 1, F x1 x 2 y i y j = δkl ε ijk y lh 2, H 2 4 (dx a ) 2 where 4πH α = 1 + c α y + d α 2y 2, α = 1, 2 H are not harmonic in overall transverse directions. Smeared sources: j α := 2 H α = c α δ 3 (y) d α Near horizon limit y 0 : a=3 4πy 4 Metric of ds 2 NH = y 2 D1 D 2 η µν dξ µ dξ ν + D 1 D 2 dy 2 AdS 4 S 2 T 4 + D2 D 1 y 2 + D 1 D 2 dω (dx a ) 2 D1 4 + (dx a ) 2 a=1 D 2 a=3

241 ds 2 10 = 1 η µν dξ µ dξ ν + H 1 H 2 δ ij dy i dy j H2 + H1 H 2 H 1 2 (dx a ) 2 + a=1 H1 e 2φ = H 1 H 2, F x3 x 4 y i y j = δkl ε ijk y lh 1, F x1 x 2 y i y j = δkl ε ijk y lh 2, H 2 4 (dx a ) 2 where 4πH α = 1 + c α y + d α 2y 2, α = 1, 2 H are not harmonic in overall transverse directions. Smeared sources: j α := 2 H α = c α δ 3 (y) d α Metric of String coupling 10 D metric and dilaton: Near horizon limit y 0 : ds 2 NH = y 2 D1 D 2 η µν dξ µ dξ ν + D 1 D 2 dy 2 AdS 4 S 2 T 4 g s = e φ 0 + D2 D 1 a=3 4πy 4 y 2 + D 1 D 2 dω (dx a ) 2 D1 4 + (dx a ) 2 a=1 D 2 Runaway behavior a=3

242 (ii) All moduli are stabilized:

243 (ii) All moduli are stabilized: W IIA = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S + i c m U m DW IIA = 0 All moduli are stabilized!

244 (ii) All moduli are stabilized: W IIA = iẽ i T i + i m 0 T 1 T 2 T 3 + iã 0 S + i c m U m DW IIA = 0 All moduli are stabilized! The corresponding sources are intersecting D4, NS5 and D8-branes: ξ 0 ξ 1 ξ 2 y x 1 x 2 x 3 x 4 x 5 x 6 D4 D4 D4 NS5 NS5 NS5 NS5 D8

245 ds 2 10 = Explicit form of the solution: e 2φ = { ( 3 H D8 α=1 HD4 α ) ( 4 H D4 2 HD4 3 H D4 α=1 HNS5 α {H NS5 1 HD8 3 H NS5 )} 1 2 η µν dξ µ dξ ν {H D8 ( 3 α=1 HD4 α 4 (dx 1 ) 2 + H NS5 ) } 1 2 dy 2 1 H NS5 2 (dx 2 ) 2 } H1 D4HD4 3 {H NS5 H2 D4HD8 2 H3 NS5 (dx 3 ) 2 + H1 NS5 H4 NS5 (dx 4 ) 2 } H1 D4HD4 2 {H NS5 H3 D4HD8 2 H4 NS5 (dx 5 ) 2 + H1 NS5 H3 NS5 (dx 6 ) 2 }; ( 4 ) ( 3 ) 1 2 ( ) H D8 5 2 ; α=1 HNS5 α α=1 HD4 α H x2 x 4 x 6 H x1 x 3 x 6 F x3 x 4 x 5 x 6 = yh NS5 1 = yh NS5 3 ( H D8 ) 1 ; Hx2 x 3 x 5 = yh NS5 ( H D8 ) 1 ; Hx1 x 4 x 5 = yh NS5 4 = yh D4 1 ; F x1 x 2 x 5 x 6 = yh D4 2 ; 2 ( H D8 ) 1 ; ( H D8 ) 1 ; F x1 x 2 x 3 x 4 ( = 4 yh3 D4 ; F = y H D8 α=1 HNS5 α ) 1.

246 Properties of this solution:

247 Properties of this solution: Smeared (thick) branes: H D4 α = { ( c D4 α y{1 1 y 2 y 0 )}, y < y cd4 α y 0, y y 0

248 Properties of this solution: Smeared (thick) branes: H D4 α = { ( c D4 α y{1 1 y 2 y 0 )}, y < y cd4 α y 0, y y 0 Near horizon limit y 0 : AdS 4 T 6

249 Properties of this solution: Smeared (thick) branes: H D4 α = { ( c D4 α y{1 1 y 2 y 0 )}, y < y cd4 α y 0, y y 0 Near horizon limit y 0 : AdS 4 T 6 For y : R 3,1 T 6

250 Properties of this solution: Smeared (thick) branes: H D4 α = { ( c D4 α y{1 1 y 2 y 0 )}, y < y cd4 α y 0, y y 0 Near horizon limit y 0 : AdS 4 T 6 For y : R 3,1 T 6 All moduli take finite, fixed values at horizon, agree with those from minimizing the flux superpotential.

251 Properties of this solution: Smeared (thick) branes: H D4 α = { ( c D4 α y{1 1 y 2 y 0 )}, y < y cd4 α y 0, y y 0 Near horizon limit y 0 : AdS 4 T 6 For y : R 3,1 T 6 All moduli take finite, fixed values at horizon, agree with those from minimizing the flux superpotential. Non-vanising tadpole: need (smeared) D6-branes and O6-plane.

252 T-dual type II B description:

253 T-duality in T-dual type II B description: x 1 direction: W IIB = i(ẽ 1 U 1 + c 2 U 2 + c 3 U 3 + c 1 T 1 + ẽ 2 T 2 + ẽ 3 T 3 + m 0 U 1 T 2 T 3 + ã 0 S) This includes geometrical fluxes.

254 T-duality in T-dual type II B description: x 1 direction: W IIB = i(ẽ 1 U 1 + c 2 U 2 + c 3 U 3 + c 1 T 1 + ẽ 2 T 2 + ẽ 3 T 3 + m 0 U 1 T 2 T 3 + ã 0 S) This includes geometrical fluxes. Corresponding branes: ξ 0 ξ 1 ξ 2 y x 1 x 2 x 3 x 4 x 5 x 6 D3 D5 D5 D7 NS5 NS5 KK KK

255 T-duality in T-dual type II B description: x 1 direction: W IIB = i(ẽ 1 U 1 + c 2 U 2 + c 3 U 3 + c 1 T 1 + ẽ 2 T 2 + ẽ 3 T 3 + m 0 U 1 T 2 T 3 + ã 0 S) This includes geometrical fluxes. Corresponding branes: ξ 0 ξ 1 ξ 2 y x 1 x 2 x 3 x 4 x 5 x 6 D3 D5 D5 D7 NS5 NS5 KK KK Near horizon: AdS 4 N, (Nilmanifold)

256 Resume: We found new supersymmetric brane solutions that correspond to AdS 4 flux vacua.

257 Resume: We found new supersymmetric brane solutions that correspond to AdS 4 flux vacua. Open problems:

258 Resume: We found new supersymmetric brane solutions that correspond to AdS 4 flux vacua. Open problems: Entropy count of brane configurations.

259 Resume: We found new supersymmetric brane solutions that correspond to AdS 4 flux vacua. Open problems: Entropy count of brane configurations. Uplift to ds and its brane description.

260 Resume: We found new supersymmetric brane solutions that correspond to AdS 4 flux vacua. Open problems: Entropy count of brane configurations. Uplift to ds and its brane description. Characterization of brane configurations via generalized geometry.

261 Conclusions 3rd RTN-workshop,Valencia

262 Conclusions How does the string landscape really look like? 3rd RTN-workshop,Valencia

263 Conclusions How does the string landscape really look like? 3rd RTN-workshop,Valencia

264 Conclusions How does the string landscape really look like? Thank you for organizing this conference! 3rd RTN-workshop,Valencia

Fluxes, branes and black holes - how to find the right string vacuum?

Fluxes, branes and black holes - how to find the right string vacuum? Fluxes, branes and black holes - how to find the right string vacuum? Dieter Lüst, LMU (ASC) and MPI München in collaboration with Ralph Blumenhagen, Gabriel L. Cardoso, Florian Gmeiner, Daniel Krefl,

More information

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München Theory III: String Theory presented by Dieter Lüst, MPI and LMU-München The string theory group at MPI (started in 2004): The string theory group at MPI (started in 2004): Permanent members: R. Blumenhagen,

More information

Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München I) Introduction Geometry: Calabi-Yau spaces, mirror symmetry, generalized

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

D-brane instantons in Type II orientifolds

D-brane instantons in Type II orientifolds D-brane instantons in Type II orientifolds in collaboration with R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter Timo Weigand Department of Physics and Astronomy, University of Pennsylvania Strings 2008

More information

N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies

N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies Antoine Van Proeyen K.U. Leuven Paris, 30 years of Supergravity, 20 October 2006 Supergravity for string cosmology Since a few years there

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Supersymmetric Standard Models in String Theory

Supersymmetric Standard Models in String Theory Supersymmetric Standard Models in String Theory (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- brief summary- status (a),(b)&(c) Heterotic side [Calabi-Yau compactification]

More information

Physics of Type II and Heterotic SM & GUT String Vacua

Physics of Type II and Heterotic SM & GUT String Vacua Physics of Type II and Heterotic SM & GUT String Vacua (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- summary (a)&(b) [(c)- no time] new results on SU(5) GUT

More information

Strings and Particle Physics

Strings and Particle Physics Strings and Particle Physics Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Strings and Particle Physics, SUSY07 p.1/33 Questions What can we learn from strings for particle physics?

More information

Branes in Flux Backgrounds and Dualities

Branes in Flux Backgrounds and Dualities Workshop on recent developments in string effective actions and D-instantons Max-Planck-Institute fur Physik, Munich Branes in Flux Backgrounds and Dualities Giovanni Villadoro Harvard University based

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

Fixing all moduli in F-theory and type II strings

Fixing all moduli in F-theory and type II strings Fixing all moduli in F-theory and type II strings 0504058 Per Berglund, P.M. [0501139 D. Lüst, P.M., S. Reffert, S. Stieberger] 1 - Flux compactifications are important in many constructions of string

More information

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Per Berglund University of New Hampshire Based on arxiv: 1012:xxxx with Balasubramanian and hep-th/040854 Balasubramanian,

More information

String Phenomenology

String Phenomenology String Phenomenology Hans Peter Nilles Physikalisches Institut Universität Bonn String Phenomenology, DESY, Hamburg, April 2012 p. 1/53 Strategy String models as a top-down approach to particle physics

More information

On the Phenomenology of Four Dimensional Gepner Models

On the Phenomenology of Four Dimensional Gepner Models On the Phenomenology of Four Dimensional Gepner Models Mirian Tsulaia (Vienna University of Technology) Work in progress with Elias Kiritsis (University of Crete) Liverpool, March 27 29, 2008 String Phenomenology

More information

Geography on Heterotic Orbifolds

Geography on Heterotic Orbifolds Geography on Heterotic Orbifolds Hans Peter Nilles Physikalisches Institut, Universität Bonn and CERN, Geneva Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th/0504117

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano In collaboration with Pablo G. Cámara Motivation Two popular

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Instantonic effects in N=1 local models from magnetized branes

Instantonic effects in N=1 local models from magnetized branes Instantonic effects in N=1 local models from magnetized branes Marco Billò Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino L.M.U. München - A.S.C. for Theoretical Physics 6 December

More information

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U. F- 理論におけるフラックスコンパクト化 Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) 2018/1/29@Kyoto Sangyo U. Outline Introduction Flux compactification in type

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

Heterotic Standard Models

Heterotic Standard Models 19 August 2008 Strings 08 @ CERN The High Country region of the string landscape Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies String landscape is huge, but

More information

Fixing All Moduli for M-Theory on K3 x K3

Fixing All Moduli for M-Theory on K3 x K3 Fixing All Moduli for M-Theory on K3 x K3 Renata Kallosh Stanford Superstring Phenomenology 2005, Munich June 16 Aspinwall, R. K. hep-th/0506014 R.K., Kashani-Poor, Tomasiello, hep-th/0503138 Bergshoeff,

More information

Discussing string extensions of the Standard Model in D brane world

Discussing string extensions of the Standard Model in D brane world NORDITA-2008-49 arxiv:0811.0179v1 [hep-ph] 2 Nov 2008 Discussing string extensions of the Standard Model in D brane world P. Di Vecchia a,b a The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen

More information

Issues in Type IIA Uplifting

Issues in Type IIA Uplifting Preprint typeset in JHEP style - HYPER VERSION hep-th/0612057 SU-ITP-2006-34 SLAC-PUB-12251 December 7, 2006 Issues in Type IIA Uplifting Renata Kallosh a and Masoud Soroush a,b a Department of Physics,

More information

Some Issues in F-Theory Geometry

Some Issues in F-Theory Geometry Outline Some Issues in F-Theory Geometry Arthur Hebecker (Heidelberg) based on work with A. Braun, S. Gerigk, H. Triendl 0912.1596 A. Braun, R. Ebert, R. Valandro 0907.2691 as well as two earlier papers

More information

Exploring the SO(32) Heterotic String

Exploring the SO(32) Heterotic String Exploring the SO Heterotic String Hans Peter Nilles a, Saúl Ramos-Sánchez a, Patrick Vaudrevange a, Akın Wingerter b arxiv:hep-th/06006v Apr 006 a Physikalisches Institut, Universität Bonn Nussallee, D-55

More information

F-theory and Particle Physics

F-theory and Particle Physics F-theory and Particle Physics Eran Palti (Ecole Polytechnique, Paris) Heidelberg, April 2011 Unification of fields in the UV has been a recurring theme in particle physics Forces Electric + Magnetic +

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University Towards Realistic Models! in String Theory! with D-branes Noriaki Kitazawa! Tokyo Metropolitan University Plan of Lectures. Basic idea to construct realistic models! - a brief review of string world-sheet

More information

Eternal Inflation in Stringy Landscape. and A-word. Andrei Linde

Eternal Inflation in Stringy Landscape. and A-word. Andrei Linde Eternal Inflation in Stringy Landscape and A-word A Andrei Linde Inflationary Multiverse For a long time, people believed in the cosmological principle, which asserted that the universe is everywhere the

More information

Counting black hole microstates as open string flux vacua

Counting black hole microstates as open string flux vacua Counting black hole microstates as open string flux vacua Frederik Denef KITP, November 23, 2005 F. Denef and G. Moore, to appear Outline Setting and formulation of the problem Black hole microstates and

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

D-BRANE MODEL BUILDING, PART I

D-BRANE MODEL BUILDING, PART I D-BRANE MODEL BUILDING, PART I Luis E. Ibáñez Instituto de Física Teórica (IFT-UAM/CSIC) Universidad Autónoma de Madrid PITP School, IAS Princeton, July 2008 L.E. Ibáñez; D-BRANE MODEL BUILDING PART I,

More information

arxiv: v2 [hep-th] 14 Jun 2016

arxiv: v2 [hep-th] 14 Jun 2016 Single-step de Sitter vacua from non-perturbative effects with matter arxiv:1511.07841v2 [hep-th] 14 Jun 2016 Adolfo Guarino and Gianluca Inverso Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv:

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv: Orientiholes Γ 2 Γ 1 Γ 0 Γ 1 Γ 2 Frederik Denef, Mboyo Esole and Megha Padi, arxiv:0901.2540 Outline Motivation and basic idea Review of N = 2 black hole bound states Type IIA orientiholes Motivation and

More information

E 6 Yukawa couplings in F-theory as D-brane instanton effects

E 6 Yukawa couplings in F-theory as D-brane instanton effects E 6 Yukawa couplings in F-theory as D-brane instanton effects Iñaki García Etxebarria based on [1612.06874] with Andrés Collinucci Motivation F-theory is a beautiful and powerful framework for string model

More information

Basic Results in Vacuum Statistics

Basic Results in Vacuum Statistics Basic Results in Vacuum Statistics Michael R. Douglas Rutgers and I.H.E.S. Strings 2004, Paris Abstract Based on hep-th/0303194, hep-th/0405279 and hep-th/0307049 with Sujay Ashok math.cv/0402326 with

More information

N=1 Dualities of SO and USp Gauge Theories and T-Duality of String Theory

N=1 Dualities of SO and USp Gauge Theories and T-Duality of String Theory HUTP 97/A00 hep-th/97005 N= Dualities of SO and USp Gauge Theories and T-Duality of String Theory Cumrun Vafa and Barton Zwiebach 2 Lyman Laboratory of Physics, Harvard University Cambridge, MA 0238, USA

More information

Lecture Notes on D-brane Models with Fluxes

Lecture Notes on D-brane Models with Fluxes Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München, GERMANY E-mail: blumenha@mppmu.mpg.de This is a set of lecture notes for the RTN Winter School on Strings, Supergravity and Gauge Theories,

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Dualities and Topological Strings

Dualities and Topological Strings Dualities and Topological Strings Strings 2006, Beijing - RD, C. Vafa, E.Verlinde, hep-th/0602087 - work in progress w/ C. Vafa & C. Beasley, L. Hollands Robbert Dijkgraaf University of Amsterdam Topological

More information

String cosmology and the index of the Dirac operator

String cosmology and the index of the Dirac operator String cosmology and the index of the Dirac operator Renata Kallosh Stanford STRINGS 2005 Toronto, July 12 Outline String Cosmology, Flux Compactification,, Stabilization of Moduli, Metastable de Sitter

More information

Non-Abelian Brane Worlds: The Heterotic String Story

Non-Abelian Brane Worlds: The Heterotic String Story MPP-2005-114 arxiv:hep-th/0510049v2 13 Oct 2005 Non-Abelian Brane Worlds: The Heterotic String Story Ralph Blumenhagen, Gabriele Honecker and Timo Weigand Max-Planck-Institut für Physik, Föhringer Ring

More information

GUTs, Remnants, and the String Landscape. Jim Halverson, Northeastern University PPC 2017

GUTs, Remnants, and the String Landscape. Jim Halverson, Northeastern University PPC 2017 GUTs, Remnants, and the String Landscape Jim Halverson, Northeastern University PPC 2017 Outline and Questions A smaller unification: GUTs. String Remnants. What does string theory often give you even

More information

Direct generation of a Majorana mass for the Neutron from exotic instantons!

Direct generation of a Majorana mass for the Neutron from exotic instantons! Direct generation of a Majorana mass for the Neutron from exotic instantons!? Andrea Addazi (Aquila, LNGS, INFN) Hot problems in particle physics, LNGS 2015 References 1) A. Addazi and M. Bianchi, arxiv:1407.2897

More information

Inflation in heterotic supergravity models with torsion

Inflation in heterotic supergravity models with torsion Inflation in heterotic supergravity models with torsion Stephen Angus IBS-CTPU, Daejeon in collaboration with Cyril Matti (City Univ., London) and Eirik Eik Svanes (LPTHE, Paris) (work in progress) String

More information

Status and Perspectives in String Theory

Status and Perspectives in String Theory Status and Perspectives in String Theory Dieter Lüst, MPP and LMU-München MPP: 100 Year Anniversary, October 12th, 2017 1 Outline: String theory in a nutshell The string theory landscape Some general lessons

More information

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008 : : University of California, Santa Barbara String Phenomenology 2008 University of Pennsylvania 31 May 2008 engineering has been a very successful approach to studying string vacua, and has been essential

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

SUPERSYMMETRIC STANDARD MODELS ON D-BRANES

SUPERSYMMETRIC STANDARD MODELS ON D-BRANES SUSX-TH-00-017 RHCPP 00-03T hep-th/0011289 October 2000 SUPERSYMMETRIC STANDARD MODELS ON D-BRANES arxiv:hep-th/0011289v3 28 Jan 2001 D.BAILIN 1, G. V. KRANIOTIS 2 and A. LOVE Centre for Theoretical Physics,

More information

arxiv: v1 [hep-th] 6 Mar 2014

arxiv: v1 [hep-th] 6 Mar 2014 LMU-ASC 05/14 TUM-HEP 932/14 Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics Hans Peter Nilles a and Patrick K.S. Vaudrevange b arxiv:1403.1597v1 [hep-th] 6 Mar 2014

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Discrete gauge symmetries and Open strings

Discrete gauge symmetries and Open strings Discrete gauge symmetries and Open strings Pascal Anastasopoulos work in progress with M. Cvetic, J. Halverson, R. Richter and P. Vaudrevange. Corfu - 20/09/2012 Plan of the talk Motivation Discrete gauge

More information

Flux Compactification and SUSY Phenomenology

Flux Compactification and SUSY Phenomenology Flux Compactification and SUSY Phenomenology Komaba07 On occasion of Prof. Yoneya s 60 th birthday Masahiro Yamaguchi Tohoku University Talk Plan Introduction : Flux compactification and KKLT set-up Naturalness

More information

arxiv: v1 [hep-th] 22 Oct 2017

arxiv: v1 [hep-th] 22 Oct 2017 Axions in Type IIA Superstring Theory and Dark Matter Adil Belhaj a, Salah-Eddine Ennadifi b, arxiv:1710.08030v1 [hep-th] 22 Oct 2017 a LIRST, Polydisciplinary Faculty, Sultan Moulay Slimane University

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

The effective field theory of axion monodromy

The effective field theory of axion monodromy The effective field theory of axion monodromy Albion Lawrence, Brandeis University arxiv:1101.0026 with Nemanja Kaloper (UC Davis) and Lorenzo Sorbo (U Mass Amherst) arxiv:1105.3740 with Sergei Dubovsky

More information

Strings, Exceptional Groups and Grand Unification

Strings, Exceptional Groups and Grand Unification Strings, Exceptional Groups and Grand Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Strings, Exceptional Groups and Grand Unification, Planck11, Lisbon, June 2011 p. 1/39 Outline

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

Symmetries and Naturalness in String Theory

Symmetries and Naturalness in String Theory Talk at Harvard Workshop Stringy Reflections on the LHC Department of Physics University of California, Santa Cruz Work with G. Festuccia, E. Gorbatov, A. Morisse, Z. Sun, S. Thomas, K. Van den Broek.

More information

Heterotic type IIA duality with fluxes and moduli stabilization

Heterotic type IIA duality with fluxes and moduli stabilization Heterotic type IIA duality with fluxes and moduli stabilization Andrei Micu Physikalisches Institut der Universität Bonn Based on hep-th/0608171 and hep-th/0701173 in collaboration with Jan Louis, Eran

More information

Strings and Black Holes

Strings and Black Holes Strings and Black Holes Erik Verlinde Institute for Theoretical Physics University of Amsterdam General Relativity R Rg GT µν µν = 8π µν Gravity = geometry Einstein: geometry => physics Strings: physics

More information

arxiv:hep-th/ v3 11 Oct 2004

arxiv:hep-th/ v3 11 Oct 2004 UPR-1068-T, hep-th/0403061 Supersymmetric Pati-Salam Models from Intersecting D6-branes: A Road to the Standard Model Mirjam Cvetič, 1 Tianjun Li, 2 and Tao Liu 1 1 Department of Physics and Astronomy,

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Topological String Theory

Topological String Theory Topological String Theory Hirosi Ooguri (Caltech) Strings 2005, Toronto, Canada If String Theory is an answer, what is the question? What is String Theory? If Topological String Theory is an answer, what

More information

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Axion-Like Particles from Strings. Andreas Ringwald (DESY) Axion-Like Particles from Strings. Andreas Ringwald (DESY) Origin of Mass 2014, Odense, Denmark, May 19-22, 2014 Hints for intermediate scale axion-like particles > Number of astro and cosmo hints pointing

More information

Strings and the Cosmos

Strings and the Cosmos Strings and the Cosmos Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics University of Science and Technology, China May 27th, 2005 String Theory as a Grand Unifying Theory 60 s: theory

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

String Phenomenology. Tatsuo Kobayashi

String Phenomenology. Tatsuo Kobayashi String Phenomenology Tatsuo Kobayashi 1.Introduction. Heterotic models 3. D-brane models 4. Effective theory (gauge/yukawa couplings) 5. Moduli stabilization and SUSY breaking 6. Summary 1. Introduction

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

Entropy of asymptotically flat black holes in gauged supergravit

Entropy of asymptotically flat black holes in gauged supergravit Entropy of asymptotically flat black holes in gauged supergravity with Nava Gaddam, Alessandra Gnecchi (Utrecht), Oscar Varela (Harvard) - work in progress. BPS Black Holes BPS Black holes in flat space

More information

Remnants. Uniqueness or environment. The string landscape. Extended MSSM quivers. String remnants

Remnants. Uniqueness or environment. The string landscape. Extended MSSM quivers. String remnants Remnants Uniqueness or environment The string landscape Extended MSSM quivers String remnants KITP (July, 01) Uniqueness or Environment Gauge interactions: determined by symmetry (but groups, representations,

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci Flux vacua in String Theory, generalized calibrations and supersymmetry breaking Luca Martucci Workshop on complex geometry and supersymmetry, IPMU January 4-9 2009 Plan of this talk Generalized calibrations

More information

Novel potentials for string axion inflation

Novel potentials for string axion inflation Novel potentials for string axion inflation 1. Introduction Tatsuo Kobayashi. Threshold corrections: Dedekind eta function 3. Quantum corrected period vector 4. Summary Abe, T.K., Otsuka, arxiv:1411.4768

More information

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009 String Theory A general overview & current hot topics Benjamin Jurke 4d model building Non-perturbative aspects Optional: Vafa s F-theory GUT model building Würzburg January 8th, 2009 Compactification

More information

Moduli stabilization and supersymmetry breaking for string phenomenology

Moduli stabilization and supersymmetry breaking for string phenomenology Moduli stabilization and supersymmetry breaking for string phenomenology Tetsutaro Higaki (DESY) Based on works with Hiroyuki Abe, Ryuichiro Kitano, Tatsuo Kobayashi, Yuji Omura and Osamu Seto Why moduli?

More information

Stringy instanton calculus

Stringy instanton calculus Stringy instanton calculus Marco Billò D.F.T., Univ. of Turin Leuven-Bruxelles, 25-11-2009 Marco Billò ( D.F.T., Univ. of Turin ) Stringy instanton calculus Leuven-Bruxelles, 25-11-2009 1 / 44 Introduction

More information

On Flux Quantization in F-Theory

On Flux Quantization in F-Theory On Flux Quantization in F-Theory Raffaele Savelli MPI - Munich Bad Honnef, March 2011 Based on work with A. Collinucci, arxiv: 1011.6388 Motivations Motivations The recent attempts to find UV-completions

More information

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Candidates for Inflation in Type IIB/F-theory Flux Compactifications Candidates for Inflation in Type IIB/F-theory Flux Compactifications Irene Valenzuela IFT UAM/CSIC Madrid Geometry and Physics of F-Theory, Munich 2015 Garcia-Etxebarria,Grimm,Valenzuela [hep-th/1412.5537]

More information

Retrofitting and the µ Problem

Retrofitting and the µ Problem SU-ITP-09/23 SLAC-PUB-13655 Retrofitting and the µ Problem Daniel Green and Timo Weigand SLAC and Department of Physics, Stanford University, CA 94305-4060, USA drgreen@stanford.edu, timo@slac.stanford.edu

More information

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling Anomalies and Remnant Symmetries in Heterotic Constructions Christoph Lüdeling bctp and PI, University of Bonn String Pheno 12, Cambridge CL, Fabian Ruehle, Clemens Wieck PRD 85 [arxiv:1203.5789] and work

More information

A derivation of the Standard Model. Based on Nucl.Phys. B883 (2014) with B. Gato Rivera

A derivation of the Standard Model. Based on Nucl.Phys. B883 (2014) with B. Gato Rivera A derivation of the Standard Model Based on Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera High Energy Weighted Ensemble The Standard Model Anthropic Features Low Energy High Energy Unique Theory The

More information

Coupling Selection Rules in Heterotic Orbifold Compactifications

Coupling Selection Rules in Heterotic Orbifold Compactifications Coupling Selection Rules in Heterotic Orbifold Compactifications Susha L. Parameswaran Leibniz Universität Hannover JHEP 1205 (2012) 008 with Tatsuo Kobayashi, Saúl Ramos-Sánchez & Ivonne Zavala see also

More information

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS Alon E. Faraggi AEF, 990 s (top quark mass, CKM, MSSM w Cleaver and Nanopoulos) AEF, C. Kounnas, J. Rizos, 003-009 AEF, PLB00, work in progress with Angelantonj,

More information

Non-Geometric Calabi- Yau Backgrounds

Non-Geometric Calabi- Yau Backgrounds Non-Geometric Calabi- Yau Backgrounds CH, Israel and Sarti 1710.00853 A Dabolkar and CH, 2002 Duality Symmetries Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

G 2 manifolds and mirror symmetry

G 2 manifolds and mirror symmetry G 2 manifolds and mirror symmetry Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics First Annual Meeting, New York, 9/14/2017 Andreas Braun University of Oxford based on [1602.03521]

More information

New Phenomena in 2d String Theory

New Phenomena in 2d String Theory New Phenomena in 2d String Theory Nathan Seiberg Rutgers 2005 N.S. hep-th/0502156 J.L. Davis, F. Larsen, N.S. hep-th/0505081, and to appear J. Maldacena, N.S. hep-th/0506141 1 Low Dimensional String Theories

More information

Yet Another Alternative to Compactification

Yet Another Alternative to Compactification Okayama Institute for Quantum Physics: June 26, 2009 Yet Another Alternative to Compactification Heterotic five-branes explain why three generations in Nature arxiv: 0905.2185 [hep-th] Tetsuji KIMURA (KEK)

More information

Theory and phenomenology of hidden U(1)s from string compactifications

Theory and phenomenology of hidden U(1)s from string compactifications Theory and phenomenology of hidden U(1)s from string compactifications Andreas Ringwald DESY Corfu Summer Institute Workshop on Cosmology and Strings, Sept. 6-13, 2009, Corfu, GR Theory and phenomenology

More information