Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

Size: px
Start display at page:

Download "Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München"

Transcription

1 Orientifold/Flux String vacua, supersymmetry breaking and Strings at the LHC Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München

2 I) Introduction Geometry: Calabi-Yau spaces, mirror symmetry, generalized spaces, D-branes, K-theory,... Black Hole Entropies String Theory SUSY field theories Particle physics, astrophysics, cosmolgy

3 Introduction: Count the number of consistent string vacua Vast landscape with N sol = vacua! (Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003),...)

4 Introduction: Count the number of consistent string vacua Vast landscape with N sol = vacua! (Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003),...) Two (complementary) issues:

5 Introduction: Count the number of consistent string vacua Vast landscape with N sol = vacua! (Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003),...) Two (complementary) issues: Can we view into the landscape? information about other vacua?

6 Introduction: Count the number of consistent string vacua Vast landscape with N sol = vacua! (Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); Antoniadis, Bachas, Kounnas (1986); Douglas (2003),...) Two (complementary) issues: Can we view into the landscape? information about other vacua? Can we by-pass the landscape? look for green (promising) spots - model independent predictions?

7 Strategy for string phenomenology:

8 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem):

9 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem): Go to the field theory limit - decouple gravity! M Planck /M FT

10 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem): Go to the field theory limit - decouple gravity! M Planck /M FT Are there model independent predictions beyond the SM?

11 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem): Go to the field theory limit - decouple gravity! M Planck /M FT Are there model independent predictions beyond the SM? But this is not a real test of string theory in itself!

12 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem): Go to the field theory limit - decouple gravity! M Planck /M FT Are there model independent predictions beyond the SM? But this is not a real test of string theory in itself! Can we test stringyness of physics? Measure excited string states in experiment?

13 Strategy for string phenomenology: Consider (only) those vacua that realize the Standard Model (by-pass the landscape problem): Go to the field theory limit - decouple gravity! M Planck /M FT Are there model independent predictions beyond the SM? But this is not a real test of string theory in itself! Can we test stringyness of physics? Measure excited string states in experiment?

14 Outline Intersecting D-brane models (type II orientifolds) (Lecture I) Intersecting brane models and their statistics D-instantons: non-perturbative couplings Stringy signatures at LHC (Lecture II) (The LHC string hunter s companion)

15 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...)

16 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds:

17 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk).

18 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk). Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes.

19 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk). Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b

20 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk). Non-Abelian gauge bosons live as open strings on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b (Includes F-theory constructions) (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt,...)

21 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk). Non-Abelian Hierarchy gauge bosons of live dimensions as open strings! on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b (Includes F-theory constructions) (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt,...)

22 I) (Intersecting) D-brane models: (Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez, Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001);...) Consider open string compactifications with intersecting D-branes Type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional lower space time (10-dim. bulk). Non-Abelian Hierarchy gauge bosons of live dimensions as open strings! on lower dimensional world volumes π of D-branes. Chiral fermions are open strings on the intersection locus of two D-branes: N F = I ab #(π a π b ) π a π b (Includes F-theory constructions) (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt,...) ( Heterotic constructions: Talks by Faraggi, Rizos, Vaudrevange)

23 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ )

24 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: M 10 = R 3,1 M 6 -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H3 NS, Fp R, ω geom

25 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: M 10 = R 3,1 M 6 -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles plus orientifold planes: - Open string matter fields.

26 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: M 10 = R 3,1 M 6 -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles plus orientifold planes: - Open string matter fields. Strong consistency conditions: - tadpole cancellation with orientifold planes. - space-time supersymmetry (brane stability)

27 Perturbative type II orientifolds contain: (Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/ ) Closed string 6-dimensional background geometry: M 10 = R 3,1 M 6 -Torus, orbifold, Calabi-Yau space, generalized spaces with torsion,... - Background fluxes: H NS 3, F R p, ω geom Space-time filling D(4+p)-branes wrapped around internal p-cycles plus orientifold planes: - Open string matter fields. Strong consistency conditions: - tadpole cancellation with orientifold planes. - space-time supersymmetry (brane stability) (diophantic equations with finite no. of solutions!)

28 Orientifold with space-time filling D-branes: IIA: special lagrangian submanifolds: D6 on 3-cycles at angles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) with gauge bundles D3 (D5) D7 (D9)

29 Orientifold with space-time filling D-branes: IIA: special lagrangian submanifolds: D6 on 3-cycles at angles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) with gauge bundles D3 (D5) D7 (D9)! M Orientifold projection: M 10 =(R 3,1 M 6 )/(Ω σ) IR (3,1) Ω : σ : world sheet parity spatial reflection D6 O6 D6

30 Realization of the SM with G=SU(3) x SU(2) x U(1) and 3 generations of quarks and lepton: SM Soft SUSY breaking HS

31 Realization of the SM with G=SU(3) x SU(2) x U(1) and 3 generations of quarks and lepton: SM Soft SUSY breaking (b) left g HS (c) right U(3) Natural D-brane quiver of the SM: (a) baryonic l W ± q u, d e (d) leptonic U(1) L U(2) (Antoniadis, Kiritsis, Rizos, Tomaras; Ibanez, Marchesano, Rabadan; Blumenhagen, Körs, D.L. Ott,...) U(1) R

32 IIA Intersecting branes: Stacks of D6-branes, wrapped around CY 3-cycles: Basis of homology 3-cycles: α I,β I (I =0,...h 2,1 )

33 IIA Intersecting branes: Stacks of D6-branes, wrapped around CY 3-cycles: Basis of homology 3-cycles: α I,β I (I =0,...h 2,1 ) Geometrical input data:

34 IIA Intersecting branes: Stacks of D6-branes, wrapped around CY 3-cycles: Basis of homology 3-cycles: α I,β I (I =0,...h 2,1 ) Geometrical input data: number of D6-branes in each stack (a =1,...,k) N a :

35 IIA Intersecting branes: Stacks of D6-branes, wrapped around CY 3-cycles: Basis of homology 3-cycles: α I,β I (I =0,...h 2,1 ) Geometrical input data: number of D6-branes in each stack N a : (a =1,...,k) X I a,y I a : integer wrapping numbers around α I,β I cycle Π a = X I aα I + Y I a β I

36 IIA Intersecting branes: Stacks of D6-branes, wrapped around CY 3-cycles: Basis of homology 3-cycles: α I,β I (I =0,...h 2,1 ) Geometrical input data: number of D6-branes in each stack N a : (a =1,...,k) X I a,y I a : integer wrapping numbers around α I,β I cycle Π a = X I aα I + Y I Physical output data: Open string 4-dim. gauge group: G = k a=1 a β I U(N a ) 4-dim. massless fermions from open strings at intersection points: N F a,b =Π a Π b = X I ay I a b U(N) chiral matter fields b X I b Y I a

37 IIA intersecting D-branes

38 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action.

39 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action. 3 kind of consistency conditions:

40 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action. 3 kind of consistency conditions: Ramond-Ramond tadpole cancellation: k N a (Π a +Π a) = 4Π O6 a=1 (O6 = orientifold plane)

41 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action. 3 kind of consistency conditions: Ramond-Ramond tadpole cancellation: k N a (Π a +Π a) = 4Π O6 a=1 Supersymmetry condition: (O6 = orientifold plane) J Πa =0, Im(e iθ a Ω Πa )=0

42 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action. 3 kind of consistency conditions: Ramond-Ramond tadpole cancellation: k N a (Π a +Π a) = 4Π O6 a=1 Supersymmetry condition: (O6 = orientifold plane) J Πa =0, Im(e iθ a Ω Πa )=0 K-theory conditions. (A. Uranga)

43 IIA intersecting D-branes Anomalous U(1) s: U(N a )=SU(N a ) U(1) a The U(1) part is in general massive and anomalous due to B F couplings in the CS action. 3 kind of consistency conditions: Ramond-Ramond tadpole cancellation: k N a (Π a +Π a) = 4Π O6 a=1 Supersymmetry condition: (O6 = orientifold plane) J Πa =0, Im(e iθ a Ω Πa )=0 K-theory conditions. (A. Uranga) Large, but finite number of solutions. D-brane statistics! (R. Blumenhagen, F. Gmeiner, G. Honecker, D. L., M. Stein, T. Weigand; M. Douglas, W. Taylor; T. Dijkstra, L. Huiszoon, A. Schellekens)

44 (Intersecting) D-brane statistics How many orientifold models exist which come close to the (spectrum of the) MSSM? (Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/ , hep-th/ , hep-th/ ; related work: Dijkstra, Huiszoon, Schellekens, hep-th/ ; Anastasopoulos, Dijkstra, Kiritsis, Schellekens, hep-th/ ; Douglas, Taylor, hep-th/ ; Dienes, Lennek, hep-th/ ; Rosenhaus, Taylor, arxiv: ) (i) Example: M 6 = T 6 /(Z 2 Z 2 ) IIA orientifold: Systematic computer search (NP complete problem): Look for solutions of a set of diophantic equations: There exist about susy D-brane models on this orbifold (with restricted complex structure)! Finiteness of models was proven by Douglas, Taylor.

45 (Intersecting) D-brane model building Require additional further phenomenological restrictions:

46 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total

47 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total Only one in a billion models gives rise to a MSSM like vacuum!

48 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total Only one in a billion models gives rise to a MSSM like vacuum! Interesting models for large complex structure moduli (Rosenhaus, Taylor).

49 (Intersecting) D-brane model building Require additional further phenomenological restrictions: Restriction Factor gauge factor U(3) gauge factor U(2)/Sp(2) No symmetric representations Massless U(1) Y Three generations of quarks Three generations of leptons Total Only one in a billion models gives rise to a MSSM like vacuum! Interesting models for large complex structure moduli (Rosenhaus, Taylor). However always chiral, massless exotics!

50 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) (Gmeiner, Lüst, Stein, hep-th/ ) In total susy D-brane models of them possess MSSM like spectra!

51 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra! (iii) Z6 -orientifold: (Gmeiner, Lüst, Stein, hep-th/ ) (Gmeiner, Honecker, arxiv: ) Millions of standard models!

52 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) (Gmeiner, Lüst, Stein, hep-th/ ) In total susy D-brane models of them possess MSSM like spectra! (iii) Z6 -orientifold: (Gmeiner, Honecker, arxiv: ) Millions of standard models! models ABa ABb BBa BBb SM gauge group with # of generations gen.

53 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) (Gmeiner, Lüst, Stein, hep-th/ ) In total susy D-brane models of them possess MSSM like spectra! (iii) Z6 -orientifold: (Gmeiner, Honecker, arxiv: ) Millions of standard models! models SM gauge group, 3 generations with # of Higgses h

54 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra! (iii) Z6 -orientifold: (Gmeiner, Lüst, Stein, hep-th/ ) (Gmeiner, Honecker, arxiv: ) Millions of standard models! P(models) SM gauge group, 3 generations with # of chiral exotics!

55 (ii) Z6-orientifold: (exceptional, blowing-up 3-cycles!) In total susy D-brane models of them possess MSSM like spectra! (iii) Z6 -orientifold: (Gmeiner, Lüst, Stein, hep-th/ ) (Gmeiner, Honecker, arxiv: ) Millions of standard models! P(models) ISB models with no chiral exotics are possible! SM gauge group, 3 generations with # of chiral exotics!

56 Problem of realizing other GUT theories in perturbative orientifolds: SO(10) GUT: no spinor (16) representations from open strings No exceptional gauge groups from open strings. Additional problem: SU(5): Some (up or down type) Yukawa couplings are absent in perturbation theory.

57 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi)

58 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action:

59 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings)

60 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. Very often, not all moduli are stabilized.

61 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. Very often, not all moduli are stabilized. Unbroken space-time supersymmetry.

62 Non-perturbative D-instantons: (M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger; M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; N. Dorey, T. Hollowwod, V. Khoze;... Recent review: M. Bianchi, S. Kovacs, G. Rossi) Perturbative effective action: SM-sector: Contains global U(1) symmetries that forbid certain couplings (neutrino masses, Yukawa couplings) Hidden sector: Moduli stabilization by fluxes. Very often, not all moduli are stabilized. Unbroken space-time supersymmetry. Take into account non-perturbative instanton corrections to the effective action!

63 String instanton corrections:

64 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles.

65 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory).

66 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). String instantons can break axionic shift symmetries and hence global U(1) symmetries.

67 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). String instantons can break axionic shift symmetries and hence global U(1) symmetries. Can generate new moduli dependent terms in the superpotential and hence are important for the moduli stabilization and supersymmetry breaking.

68 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). String instantons can break axionic shift symmetries and hence global U(1) symmetries. Can generate new moduli dependent terms in the superpotential and hence are important for the moduli stabilization and supersymmetry breaking. Can generate new matter couplings (Majorana masses, Yukawa couplings) see in a moment.

69 String instanton corrections: String instantons arise in a geometric way from branes wrapped around internal cycles. It is possible to compute string instanton corrections from open string CFT (not only guess them from field theory). String instantons can break axionic shift symmetries and hence global U(1) symmetries. Can generate new moduli dependent terms in the superpotential and hence are important for the moduli stabilization and supersymmetry breaking. Can generate new matter couplings (Majorana masses, Yukawa couplings) see in a moment. (S. Kachru, R. Kallosh, A. Linde, S. Trivedi (2003);F. Denef, M. Douglas, B. Florea, A. Grassi, S. Kachru (2005); R. Blumenhagen, M. Cvetic, T. Weigand; D.L., S. Reffert, E. Scheidegger, W. Schulgin, S. Stieberger; Ibanez, Uranga (2006)...)

70 Geometry: Non space-time filling Euclidean D- branes:

71 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons:

72 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: exp( J/α ). Tree-level in CFT!

73 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT!

74 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT! These are non-space time filling D(p)=E(p) branes wrapped around internal (p+1)-cycles:

75 Geometry: Non space-time filling Euclidean D- branes: Two kinds of string instantons: World-sheet instantons: Space-time instantons: exp( 1/g s ) exp( J/α ). Tree-level in CFT! These are non-space time filling D(p)=E(p) branes wrapped around internal (p+1)-cycles: IIA: special lagrangian submanifolds: E2 on 3-cycles Mirror symmetry (SYZ) IIB: points, (complex lines), divisors, (CY) E(-1) (E1) E3 (E5)

76 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: )

77 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models:

78 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models: Consider two stack a and b of D6-branes: G = U(5) a U(1) b = SU(5) a U(1) a U(1) b Open strings: sector number U(5) a U(1) b reps. U(1) X (a 1,a) 3 + (1, 1) 10 (2,0) 2 (a, b) 3 5 ( 1,1) 3 2 (b 5,b) 3 1 (0, 2) 2 (a,b) 1 5 H (1,1) + 5H ( 1, 1) ( 1) + (1)

79 Non-perturbative Yukawa couplings: (R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arxiv: ) SU(5) GUT intersecting D6-brane models: Consider two stack a and b of D6-branes: G = U(5) a U(1) b = SU(5) a U(1) a U(1) b Open strings: sector number U(5) a U(1) b reps. U(1) X (a 1,a) 3 + (1, 1) 10 (2,0) 2 (a, b) 3 5 ( 1,1) 3 2 (b 5,b) 3 1 (0, 2) 2 (a,b) 1 5 H (1,1) + 5H ( 1, 1) ( 1) + (1) Abelian symmetries: U(1) a U(1) b One anomalous linear combination: global symmetry One anomaly free linear combination U(1) X

80

81 From U(1) X charges it follows that: Perturb. allowed couplings(e.g. u,c,t-quarks): 10 (2,0) 5 ( 1,1) 5 H ( 1, 1), Perturb. forbidden couplings (e.g. d,s,b-quarks): 10 (2,0) 10 (2,0) 5 H (1,1)

82 From U(1) X charges it follows that: Perturb. allowed couplings(e.g. u,c,t-quarks): 10 (2,0) 5 ( 1,1) 5 H ( 1, 1), Perturb. forbidden couplings (e.g. d,s,b-quarks): 10 (2,0) 10 (2,0) 5 H (1,1) These can be generated by E2-instantons: The instanton has to wrap a rigid 3-cycle Ξ invariant under the orientfold projection Ω σ and carrying gauge group O(1)

83 From U(1) X charges it follows that: Perturb. allowed couplings(e.g. u,c,t-quarks): 10 (2,0) 5 ( 1,1) 5 H ( 1, 1), Perturb. forbidden couplings (e.g. d,s,b-quarks): 10 (2,0) 10 (2,0) 5 H (1,1) These can be generated by E2-instantons: The instanton has to wrap a rigid 3-cycle Ξ invariant under the orientfold projection Ω σ and carrying gauge group O(1) ( Talks by Anastasopolous, Blumenhagen)

84 Non-perturbative constructions: (i) IIA orientifolds with intersecting D6-branes M-theory on 7-dim. G2 manifolds (Acharya, Atiyah, Witten,...) Gauge bosons live on 3-dimensional singularities Q3 D6-branes Chiral fermions live on 0-dimensional conical singularities (points on 7-dim manifolds) Intersections of D6-branes Local ALE fibrations over Q3 were recently constructed: Pantev, Wijnholt, arxiv:

85 (ii) IIB orientifolds with intersecting D7-branes F-theory on 8-dim. CY 4-folds (GUT models) (Beasly, Heckman, Vafa; Donagi, Wijnholt,...) Local set up: Gauge bosons live on 4-dimensional ADE-singularities D7-branes Chiral fermions live on 2-dimensional singularities Intersections of D7-branes

86 (ii) IIB orientifolds with intersecting D7-branes F-theory on 8-dim. CY 4-folds (GUT models) (Beasly, Heckman, Vafa; Donagi, Wijnholt,...) Local set up: Gauge bosons live on 4-dimensional ADE-singularities D7-branes Chiral fermions live on 2-dimensional singularities Intersections of D7-branes F-theory models contain several non-perturbative features: exceptional gauge groups matter in spinor representations non zero Yukawa coupl. (intersections of 3 matter curves)

87 (ii) IIB orientifolds with intersecting D7-branes F-theory on 8-dim. CY 4-folds (GUT models) (Beasly, Heckman, Vafa; Donagi, Wijnholt,...) Local set up: Gauge bosons live on 4-dimensional ADE-singularities D7-branes Chiral fermions live on 2-dimensional singularities Intersections of D7-branes F-theory models contain several non-perturbative features: exceptional gauge groups matter in spinor representations non zero Yukawa coupl. (intersections of 3 matter curves) Global models: Blumenhagen, Grimm, Jurke, Weigand, arxiv: , arxiv: ; Marsano, Saulina, Schafer-Nameki, arxiv: , arxiv:

88 (ii) IIB orientifolds with intersecting D7-branes F-theory on 8-dim. CY 4-folds (GUT models) (Beasly, Heckman, Vafa; Donagi, Wijnholt,...) Local set up: Gauge bosons live on 4-dimensional ADE-singularities D7-branes Chiral fermions live on 2-dimensional singularities Intersections of D7-branes F-theory models contain several non-perturbative features: exceptional gauge groups matter in spinor representations non zero Yukawa coupl. (intersections of 3 matter curves) Global models: Blumenhagen, Grimm, Jurke, Weigand, arxiv: , arxiv: ; Marsano, Saulina, Schafer-Nameki, arxiv: , arxiv: ( Talks by Blumenhagen, Klemm, Tatar, Wijnholt)

89 Outline Intersecting D-brane models (Lecture I) Stringy signatures at LHC (The LHC string hunter s companion) (Lecture II) (D. Lüst, S. Stieberger, T. Taylor, arxiv: ; L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arxiv: [hep-ph]; arxiv: [hep-ph] D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arxiv: )

90 Outline Intersecting D-brane models (Lecture I) Stringy signatures at LHC (The LHC string hunter s companion) (Lecture II) (D. Lüst, S. Stieberger, T. Taylor, arxiv: ; L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arxiv: [hep-ph]; arxiv: [hep-ph] D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arxiv: ) ( Talk by Antoniadis)

91 II) The LHC String Hunter s Companion: Recall basic set-up of type IIA/B orientifolds: Gravitons live as closed strings in 10-dimensional bulk. Non-Abelian gauge bosons live as open strings on lower dimensional D-branes. Chiral fermions are open strings on the intersection locus of two D-branes:

92 3 basic assumptions:

93 3 basic assumptions: (i) Consider orientifold compact. which realize the SM, i.e. contain the SM D-brane quiver:

94 3 basic assumptions: (a) baryonic q (i) Consider orientifold compact. which realize the SM, W i.e. contain the SM D-brane quiver: ± l (d) leptonic (b) left g u, d (c) right e U(3) U(1) U(2) U(1) R

95 3 basic assumptions: (a) baryonic q (i) Consider orientifold compact. which realize the SM, W i.e. contain the SM D-brane quiver: ± l (d) leptonic U(2) U(1) R (ii) Consider orientifold compactifications which allow for low string scale (solve hierarchy problem without SUSY) Low scale for quantum gravity & large extra dimensions. (b) left g u, d (c) right e U(3) U(1)

96 3 basic assumptions: (a) baryonic q (i) Consider orientifold compact. which realize the SM, W i.e. contain the SM D-brane quiver: ± l (d) leptonic U(2) U(1) R (ii) Consider orientifold compactifications which allow for low string scale (solve hierarchy problem without SUSY) Low scale for quantum gravity & large extra dimensions. (iii) Perturbation theory is valid, i.e. small string coupling. (b) left g u, d (c) right e U(3) U(1)

97 3 basic assumptions: (a) baryonic q (i) Consider orientifold compact. which realize the SM, W i.e. contain the SM D-brane quiver: ± l (d) leptonic U(2) U(1) R (ii) Consider orientifold compactifications which allow for low string scale (solve hierarchy problem without SUSY) Low scale for quantum gravity & large extra dimensions. (iii) Perturbation theory is valid, i.e. small string coupling. (iv) Longitudinal space along D-branes is un-warped. (Discussion of warped case: Perelstein, Spray, arxiv: ) (b) left g u, d (c) right e U(3) U(1)

98 3 basic assumptions: (a) baryonic q (i) Consider orientifold compact. which realize the SM, W i.e. contain the SM D-brane quiver: ± l (d) leptonic U(2) U(1) R (ii) Consider orientifold compactifications which allow for low string scale (solve hierarchy problem without SUSY) Low scale for quantum gravity & large extra dimensions. (iii) Perturbation theory is valid, i.e. small string coupling. (iv) Longitudinal space along D-branes is un-warped. (Discussion of warped case: Perelstein, Spray, arxiv: ) Universal predictions that are true for all points in the landscape, i.e. independent from any details of the compact space! (b) left g u, d (c) right e U(3) U(1)

99 Mass scales in D-brane models:

100 Mass scales in D-brane models: There are 3 basic mass scales in D-brane compactifications:

101 Mass scales in D-brane models: There are 3 basic mass scales in D-brane compactifications: String scale: (1) : M s = 1 α

102 Mass scales in D-brane models: There are 3 basic mass scales in D-brane compactifications: String scale: Compatification scale: (1) : M s = 1 α (2) : M 6 = 1 V 1/6 6

103 Mass scales in D-brane models: There are 3 basic mass scales in D-brane compactifications: String scale: (1) : M s = 1 α Compatification scale: (2) : M 6 = 1 V 1/6 6 Scale of wrapped D(p+3)-branes (e.g. IIB: p=0,4), (IIA: p=3): (3) : M p = 1 (V p ) 1/p, (3 ): M 6 p = V 6 = V p V 6 p 1 (V 6 p )1/(6 p)

104 There are 2 basic 4D observables:

105 There are 2 basic 4D observables: Strength of 4D gravitational interactions: (A) : M 2 Planck M 8 s V GeV

106 There are 2 basic 4D observables: Strength of 4D gravitational interactions: (A) : M 2 Planck M 8 s V GeV Strength of 4D gauge interactions: (B) : g 2 Dp M s p V p O(1) = (V p ) 1/p M s

107 There are 2 basic 4D observables: Strength of 4D gravitational interactions: (A) : M 2 Planck M 8 s V GeV Strength of 4D gauge interactions: (B) : g 2 Dp M s p V p O(1) = (V p ) 1/p M s (A) and (B): leave one free parameter. M s is a free parameter in D-brane compactifications!

108 There are 4 natural scenarios for the string scale:

109 There are 4 natural scenarios for the string scale: (o) Planck scale scenario: M s is the gravitational 4D Planck scale M s M Planck GeV Gauge coupling unification at the Planck scales needs further effects (string threshold corrections,...)

110 Alternatively relate the string scale to particles physics mass scales. (i) GUT scale scenario: M s is the 4D scale of gauge coupling unification M s M GUT GeV ( M GUT = M SM exp ) g 2 Dp (M SM) g 2 Dp (M GUT ) b p

111 Alternatively relate the string scale to particles physics mass scales. (i) GUT scale scenario: M s is the 4D scale of gauge coupling unification M s M GUT GeV ( M GUT = M SM exp ) g 2 Dp (M SM) g 2 Dp (M GUT ) b p Recent GUT string model building in F-theory and IIB orientifolds: (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt; Blumenhagen, Braun, Grimm, Weigand) D7-branes wrapped on del Pezzo surfaces GUT gauge group is broken by U(1) Y flux

112 (ii) SUSY breaking scenario: M s is the intermediate 4D scale of supersymmetry breaking (Balasubramanian, Conlon, Quevedo, Suruliz,...) M s M SUSY GeV Gravity mediation: M SUSY M SM M Planck (No natural gauge coupling unification!)

113 (iii) Low string scale scenario: (Antoniadis, Arkani-Hamed, Dimopoulos, Dvali) M s is the Standard Model (TeV) scale: M s M SM 10 3 GeV (No natural gauge coupling unification!) (Effective scale of gravity is high (i.e. gravity is weak), since the gravitons can propagate into the large 6- dim. bulk space!) Dimensionless volumes in string units, corresponding to the four scenarios: V 6 = V 6 M 6 s = M 2 Planck M 2 s =1, 10 6, 10 16, 10 32

114 There are 4 generic types of particles:

115 There are 4 generic types of particles: (i) Stringy Regge excitations: M Regge = nm s = n V M Planck, (n =1,..., ) 6 Open string excitations: completely universal (model independent), carry SM gauge quantum numbers: higher spin excitations of g,w,z,γ, q, l

116 (ii) D-brane cycle Kaluza Klein excitations: M KK = m (V p ) mm 1/p s = m M Planck (V 6 (m =1,..., ) )1/2 Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers Internal momenta excitations of g, W, Z, γ, q, l

117 (ii) D-brane cycle Kaluza Klein excitations: M KK = m (V p ) mm 1/p s = m M Planck (V 6 (m =1,..., ) )1/2 Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers Internal momenta excitations of g, W, Z, γ, q, l The string Regge excitations and the D-brane cycle KK modes are charged under the SM and have mass of order M s can they be seen at LHC?!

118 (iii) Overall volume modulus: M T = M Planck (V 6 )3/2 = 1019, 10 10, 10 5, GeV Closed string, model independent, neutral under the SM, interacts only gravitationally Problem: the very light mass causes a fifth force. Would rule out TeV string scale!

119 (iii) Overall volume modulus: M T = M Planck (V 6 )3/2 = 1019, 10 10, 10 5, GeV Closed string, model independent, neutral under the SM, interacts only gravitationally Problem: the very light mass causes a fifth force. Would rule out TeV string scale!

120 (iii) Overall volume modulus: M T = M Planck (V 6 )3/2 = 1019, 10 10, 10 5, GeV Closed string, model independent, neutral under the SM, interacts only gravitationally Problem: the very light mass causes a fifth force. Would rule out TeV string scale! But one expects a mass shift by radiative corrections: (G. Dvali, D. Lüst, work in progress) M T <Tµ µ T µ µ > M 2 Planck M 4 s M 2 Planck GeV

121 (iv) Mini black holes (string balls): These are non-perturbative states, associated to the higher dimensional gravity scale: M b.h. = M s g 2 s >> M s if g s < 1 Weakly coupled string theory: gravity effects occur much above! M s Regge excitations: M Regge M s n If g s =0.1 = n =1/g 4 s 10 4 string states before one reaches black hole!

122 Type IIB orientifolds: Realization of low string scale compatifications on Swiss Cheese Manifolds: (Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn; for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arxiv: )

123 Type IIB orientifolds: Realization of low string scale compatifications on Swiss Cheese Manifolds: (Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn; for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arxiv: ) BULK U(3) Q L Q R BLOW!UP U(2) U(1) e L e R U(1) 2 requirements: - Negative Euler number. - SM lives on D7-branes around small cycles of the CY. One needs at least one blow-up mode (resolves point like singularity).

124 Type IIB orientifolds: Realization of low string scale compatifications on Swiss Cheese Manifolds: (Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn; for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arxiv: ) BULK Moduli potential: U(3) Q L Q R BLOW!UP Kähler potential: K = K cs 2 log U(2) U(1) e L e R U(1) 2 requirements: - Negative Euler number. - SM lives on D7-branes around small cycles of the CY. One needs at least one blow-up mode (resolves point like singularity). ( V 6 + ξ 2g 3 2 s Superpotential: W = W cs + A i exp( a i t i ) Moduli stabilization Minima: Large hierarchical scales with V 6 Ms 6 = 10 16, ) (Becker,Becker, Haack, Louis)

125 In general: Consider a theory with N species of particles with mass M: (G. Dvali, arxiv: ; G. Dvali, D. Lüst, arxiv: ) Bounds from black hole decays: N < N max = M 2 P lanck M 2 M: scale of new physics (A quantum black hole can emit at most N max different particles) This bound must be satisfied in every effective string vacuum that is consistently coupled to gravity! E.g. if a scalar field in the effective potential gives mass to N particles via the Higgs effect: M = M(φ) M(φ) 2 < M 2 P lanck N Bound forbids essentially large trans-planckian vevs:

126 E.g: N = = M<10 16 M P lanck 1 T ev This bound gives also a possible explanation of the hierarchy problem: M can be seen as the fundamental scale of gravity, which is diluted by the presence on the N particle species.

127 E.g: N = = M<10 16 M P lanck 1 T ev This bound gives also a possible explanation of the hierarchy problem: M can be seen as the fundamental scale of gravity, which is diluted by the presence on the N particle species. dramatic effects at the LHC.

128 E.g: N = = M<10 16 M P lanck 1 T ev This bound gives also a possible explanation of the hierarchy problem: M can be seen as the fundamental scale of gravity, which is diluted by the presence on the N particle species. dramatic effects at the LHC. Is there a stringy realization of the large N species scenario? (G. Dvali, D. Lüst, work in progress)

129 Test of D-brane models at the LHC: gg, qq,, qg X g, γ, Z, W, q, l In string perturbation theory production of:

130 Test of D-brane models at the LHC: gg, qq,, qg X g, γ, Z, W, q, l In string perturbation theory production of: - Regge excitations of higher spin: First resonances: g q spin 0,1,2 & spin 1/2, 3/2

131 Test of D-brane models at the LHC: gg, qq,, qg X g, γ, Z, W, q, l In string perturbation theory production of: - Regge excitations of higher spin: First resonances: g q spin 0,1,2 & spin 1/2, 3/2 - Kaluza Klein (KK) (and winding) modes

132 Test of D-brane models at the LHC: gg, qq,, qg X g, γ, Z, W, q, l In string perturbation theory production of: - Regge excitations of higher spin: First resonances: g q spin 0,1,2 & spin 1/2, 3/2 - Kaluza Klein (KK) (and winding) modes (- Z gauge bosons, black holes)

133 Test of D-brane models at the LHC: gg, qq,, qg X g, γ, Z, W, q, l In string perturbation theory production of: - Regge excitations of higher spin: First resonances: g spin 0,1,2 & spin 1/2, 3/2 - Kaluza Klein (KK) (and winding) modes (- Z gauge bosons, black holes) One has to compute the parton model cross sections of SM fields into new stringy states! q

134 The string scattering amplitudes exhibit some interesting properties: Interesting mathematical structure They go beyond the N=4 Yang-Mills amplitudes: (i) The contain quarks & leptons in fundamental repr. Quark, lepton vertex operators: V q,l (z, u, k) =u α S α (z)ξ a b (z)e φ(z)/2 e ik X(z) Fermions: boundary changing (twist) operators! Striking relation between quark and gluon amplitudes! (ii) They contain stringy corrections.

135 n-point tree amplitudes with 0 or 2 open string fermions (quarks, leptons) and N or N-2 gauge bosons (gluons) are completely model independent. Information about the string Regge spectrum. KK modes are seen in scattering processes with more than 2 fermions. Information about the internal geometry. g N g N q 1 g N 1 q 1 g N 1 g KK g 5 q 2 g 4 q 2 q 4 g 3 q 3

136 Parton model cross sections of SM-fields:

137 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk

138 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk (b) left g (c) right U(3) (a) baryonic q u, d W ± l e (d) leptonic U(1) L U(2) U(1) R

139 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk These amplitudes are dominated by the following poles:

140 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: These amplitudes are dominated by the following poles: Exchange of SM fields A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk

141 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: These amplitudes are dominated by the following poles: Exchange of SM fields Exchange of string Regge resonances (Veneziano like ampl.) new contact interactions: k 1 k 2 A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk k; n A(k 1,k 2,k 3,k 4 ; α ) Γ( α s) Γ(1 α u) Γ( α s α u) k 3 = k 4 n=0 γ(n) s M 2 n α 2 α 2 ζ(2) trf 4 t s π2 6 tu (α ) V s (α )= Γ(1 s/m string 2 )Γ(1 u/m string 2 ) Γ(1 t/mstring 2 ) =1 π2 6 M 4 6 stringsu ζ(3)mstring stu + 1 α 0

142 Parton model cross sections of SM-fields: Disk amplitude n among external SM fields (q, l, g, γ,z 0,W ± ) : e.g. n=4: These amplitudes are dominated by the following poles: Exchange of SM fields Exchange of string Regge resonances (Veneziano like ampl.) new contact interactions: k 1 k 2 A(Φ 1, Φ 2, Φ 3, Φ 4 )=<V Φ 1(z 1 ) V Φ 2(z 2 ) V Φ 3(z 3 ) V Φ 4(z 4 ) > disk k; n A(k 1,k 2,k 3,k 4 ; α ) Γ( α s) Γ(1 α u) Γ( α s α u) Exchange of KK and winding modes (model dependent) k 3 = k 4 n=0 γ(n) s M 2 n α 2 α 2 ζ(2) trf 4 t s π2 6 tu (α ) V s (α )= Γ(1 s/m string 2 )Γ(1 u/m string 2 ) Γ(1 t/mstring 2 ) =1 π2 6 M 4 6 stringsu ζ(3)mstring stu + 1 α 0

143 4 gauge boson amplitudes: a z 2 z 3 A a 2 A a 3 Disk amplitude: a a z 1 A a 1 A a 4 z 4 a

144 4 gauge boson amplitudes: a z 2 z 3 A a 2 A a 3 Disk amplitude: a a z 1 A a 1 A a 4 z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! a

145 4 gauge boson amplitudes: a z 2 z 3 A a 2 A a 3 Disk amplitude: a a z 1 A a 1 A a 4 z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! Examples: a

146 4 gauge boson amplitudes: a z 2 z 3 A a 2 A a 3 Disk amplitude: a a z 1 A a 1 A a 4 z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! Examples: M(gg gg) 2 = g 4 3 (Stieberger, Taylor) M(gg gγ(z 0 )) 2 = g 4 3 Observable at LHC for M string = 3 TeV a ( 1 s t ) [ 9 u 2 4 s2 Vs 2 (α ) 1 ] 3 ( sv s(α )) 2 +(s t)+(s u) 5 ( 1 6 Q2 A s t ) u 2 dijet events ( sv s (α )+tv t (α )+uv u (α )) 2 (Anchordoqui,Goldberg, Nawata, Taylor, arxiv: )

147 4 gauge boson amplitudes: a z 2 z 3 A a 2 A a 3 Disk amplitude: a a z 1 A a 1 A a 4 z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! Examples: α 0: M(gg gg) 2 α 0 a agreement with SM! ( 1 s t u 2 ) 9 4( s 2 + t 2 + u 2 ) M(gg γ(z 0 )) 2 α 0 0

148 2 gauge boson - two fermion amplitude: z 2 A a a ψ α 3 β 3 z 3 a z 3 ψ α 3 β 3 b Note: Cullen, Perelstein, Peskin (2000) considered: e + e γγ a b A a A b z 1 z 2 z 1 A a ψ β 4 α 4 z 4 a ψ β 4 α 4 b a z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! M(qg qg) 2 = g 4 3 s 2 + u 2 t 2 [ V s (α )V u (α ) 4 9 M(qg qγ(z 0 )) 2 = 1 3 g4 3Q 2 A s 2 + u 2 ] 1 su (sv s(α )+uv u (α )) 2 dijet events sut 2 (sv s (α )+uv u (α )) 2

149 2 gauge boson - two fermion amplitude: z 2 A a a ψ α 3 β 3 z 3 a z 3 ψ α 3 β 3 b Note: Cullen, Perelstein, Peskin (2000) considered: e + e γγ a b A a A b z 1 z 2 z 1 A a ψ β 4 α 4 z 4 a ψ β 4 α 4 b a z 4 Only string Regge resonances are exchanged These amplitudes are completely model independent! α 0: agreement with SM! M(qg qg) 2 α 0 = g 4 3 s 2 + u 2 t 2 [ (s + u)2 su M(qg qγ(z 0 )) 2 α 0 = 1 3 g4 3Q 2 s 2 + u 2 A sut 2 (s + u) 2 ]

150 These stringy corrections can be seen in dijet events at LHC: (Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, Taylor, arxiv: [hep-ph]) M Regge = 2 TeV Γ Regge = GeV Widths can be computed in a model independent way! (Anchordoqui, Goldberg, Taylor, arxiv: )

151 These stringy corrections can be seen in dijet events at LHC: (Anchordoqui, Goldberg, Lüst, Nawata, Stieberger, Taylor, arxiv: [hep-ph]) M Regge = 2 TeV Γ Regge = GeV Widths can be computed in a model independent way! (Anchordoqui, Goldberg, Taylor, arxiv: )

152 (see: L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arxiv: [hep-ph]) X 3 X 4 4 fermion amplitudes: z 3 z 2 ψ δ 3 θ γ 3 3 ψ β 2 δ 2 θ 2 Exchange of Regge, KK and winding resonances. These amplitudes are more model dependent and test the internal CY geometry. Constrained by FCNC s M(qq qq) 2 = 2 9 c θ 4 θ 3 ψ δ 3 γ 3 ψ γ 4 α 4 d a ψ β 2 δ 2 θ 2 X 2 ψ α 1 β 1 θ 1 b X X 1 c z 4 θ 4 ψ γ 4 α 4 d d a ψ α 1 β 1 (Abel, Lebedev, Santiago, hep-th/ ) 1 t 2 [ (sf bb tu(α ) ) 2 + ( sf cc tu (α ) ) 2 + ( ug bc ts (α ) ) 2 + ( ug cb + ( sf cc ut (α ) ) 2 + ( tg bc us (α ) ) 2 + ( tg cb us(α ) ) 2 ] 4 27 depend on internal geometry b z 1 θ 1 z 1 u 2 [ (sf bb ut(α ) ) 2 ts(α ) ) ] s 2 tu F bb tu (α )Fut(α bb )+Ftu cc (α )Fut cc (α ) )

153 (see: L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arxiv: [hep-ph]) X 3 c X 4 θ 4 θ 3 4 fermion amplitudes: ψ δ 3 γ 3 ψ γ 4 α 4 d a ψ β 2 δ 2 θ 2 X 2 ψ α 1 β 1 z 3 z 2 ψ δ 3 θ γ 3 3 ψ β 2 δ 2 θ 2 Exchange of Regge, KK and winding resonances. These amplitudes are more model dependent and test the internal CY geometry. Constrained by FCNC s θ 1 b X X 1 c z 4 θ 4 ψ γ 4 α 4 d d a ψ α 1 β 1 (Abel, Lebedev, Santiago, hep-th/ ) b z 1 θ 1 z α 0: agreement with SM! M(qq qq) 2 α 0 4 [ s 2 + u 2 ] 9 t [ s 2 + t 2 ] 9 u s 2 tu

154 KK modes are seen in scattering processes with more than 2 fermions. A(qq qq) 2 = 2 9 (L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arxiv: [hep-ph]) Squared 4-quark amplitude with identical flavors: 1 t 2 [ (sf bb tu(α ) ) 2 + ( sf cc tu (α ) ) 2 + ( ug bc ts (α ) ) 2 + ( ug cb + ( sf cc ut (α ) ) 2 + ( tg bc us (α ) ) 2 + ( tg cb us(α ) ) 2 ] u 2 [ (sf bb ut(α ) ) 2 ts(α ) ) ] s 2 tu F bb tu (α )Fut(α bb )+Ftu cc (α )Fut cc (α ) ) Squared 4-quark amplitude with different flavors: A(qq qq ) 2 = t 2 [ (sf bb tu(α ) ) 2 + ( s Gcc tu (α ) ) 2 + ( ug bc ts (α ) ) 2 + ( ug bc ts (α ) ) 2 ]

155 Dominant contribution: F bb tu = 1 + g2 b t g 2 au + g2 b t g 2 a N p u M 2 ab G bc tu = G bc tu =1 M 2 ab =(M (b) KK )2 +(M (a) wind. )2, e M 2 ab /M 2 s M ab : KK of SU(2) branes and winding modes of SU(3) branes: N p : Degeneracy of KK-states; take N p =3 : Thickness of D-branes M ab =0.7M s

156 Dijet angular contribution by t-channel exchange: CMS detector simulation: Luminosity 1fb 1 10fb 1

157 Five point scattering amplitudes (3 jet events): (Computation of higher point amplitudes for LHC: D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arxiv: ). z 2 a a (i) 5 gluons: z 1 A a 2 A a 1 A a 3 z 3 Field theory factors: (Stieberger, Taylor (2006)) a z 5 A a 5 a A a 4 a z 4 M (5) YM = 4g3 YM A(g 1,g 2,g+ 3,g+ 4,g+ 5 )=( V (5) (α,k i ) 2iɛ(1, 2, 3, 4)P (5) (α,k i ) ) M (5) YM z 2 a a (ii) 3 gluons, 2 quarks: z 1 a A a 2 A a 1 A a 3 z 3 a N (5) YM = 4g3 YM β ψ 5 α 5 ψ α 4 β 4 z 5 z 4 b A(g 1,g+ 2,g+ 3,q 4, q+ 5 )=( V (5) (α,k i ) 2iɛ(1, 2, 3, 4)P (5) (α,k i ) ) N (5) YM

158 Five point scattering amplitudes (3 jet events): (i) 5 gluons: (Stieberger, Taylor (2006)) z 1 a a z 5 A a 5 (Computation of higher point amplitudes for LHC: D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arxiv: ). z 2 A a 2 A a 1 A a 3 a a A a 4 z 3 a z 4 Field theory factors: M (5) YM = 4g3 YM A(g 1,g 2,g+ 3,g+ 4,g+ 5 ) α 0 M (5) YM, ( V (5) = 1 + ζ(2)o(α 2 ),P (5) = ζ(2)o(α 2 ) ) (ii) 3 gluons, 2 quarks: z 1 a a β ψ 5 α 5 z 2 A a 2 a A a 1 A a 3 ψ α 4 β 4 z 3 a N (5) YM = 4g3 YM z 5 z 4 b A(g 1,g+ 2,g+ 3,q 4, q+ 5 )=( V (5) (α,k i ) 2iɛ(1, 2, 3, 4)P (5) (α,k i ) ) N (5) YM

159 Five point scattering amplitudes (3 jet events): (i) 5 gluons: (Stieberger, Taylor (2006)) z 1 a a z 5 A a 5 (Computation of higher point amplitudes for LHC: D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arxiv: ). z 2 A a 2 A a 1 A a 3 a a A a 4 z 3 a z 4 Field theory factors: M (5) YM = 4g3 YM A(g 1,g 2,g+ 3,g+ 4,g+ 5 ) α 0 M (5) YM, ( V (5) = 1 + ζ(2)o(α 2 ),P (5) = ζ(2)o(α 2 ) ) (ii) 3 gluons, 2 quarks: z 1 a a β ψ 5 α 5 z 2 A a 2 a A a 1 A a 3 ψ α 4 β 4 z 3 a N (5) YM = 4g3 YM z 5 z 4 A(g 1,g+ 2,g+ 3,q 4, q+ 5 ) α 0 N (5) b YM

160 The two kinds of amplitudes are universal: the same Regge states are exchanged: k 3 k 3 k 4 k 2 k 4 k; n k ; n k 2 k; n k 1 k 5 k 1 k 5

161 (iii)1 gluon, 4 quarks: z 5 a z 1 A a a ψ γ 5 α 5 ψ α 2 β 2 z 2 c b ψ δ4 γ 4 ψ β 3 δ 3 z 4 z 3 d (1, 2, 3, 4, 5) This amplitude has a similar structure as the 4 quark amplitude: exchange of Regge and KK modes. Factorization on the 4 quark amplitude: A a ψ α 4 β 4 ψ β 5 α 5 ψ β 3 α 3 ψ α 2 β 2 Factorization on the 2 quark - 2 gluon amplitude: ψ β 3 α 3 ψ α 4 β 4 ψ β 5 α 5 ψ α 2 β 2 A a

162 Conclusions

163 Conclusions There exists many ISB models with SM like spectra without chiral exotics.

164 Conclusions There exists many ISB models with SM like spectra without chiral exotics. One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!) String tree level, 4-point processes with 2 or 4 gluons observable at LHC?? - M string??

165 Conclusions There exists many ISB models with SM like spectra without chiral exotics. One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!) String tree level, 4-point processes with 2 or 4 gluons observable at LHC?? - M string?? Computations done at weak string coupling! Black holes are heavier than Regge states:

166 Conclusions There exists many ISB models with SM like spectra without chiral exotics. One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!) String tree level, 4-point processes with 2 or 4 gluons observable at LHC?? - M string?? Computations done at weak string coupling! Black holes are heavier than Regge states: Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: M b.h.

167 If nature choses weakly coupled strings with a string scale at a few TeV, LHC should find them!

The Landscape of String theory

The Landscape of String theory The Landscape of String theory Dieter Lüst, LMU (ASC) and MPI München The Landscape of String theory Dieter Lüst, LMU (ASC) and MPI München in collaboration with Riccardo Appreda, Ralph Blumenhagen, Gabriel

More information

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München Theory III: String Theory presented by Dieter Lüst, MPI and LMU-München The string theory group at MPI (started in 2004): The string theory group at MPI (started in 2004): Permanent members: R. Blumenhagen,

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

STRINGY SIGNATURES AT THE LHC

STRINGY SIGNATURES AT THE LHC STRINGY SIGNATURES AT THE LHC Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München STRINGY SIGNATURES AT THE LHC Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München Work in collaboration

More information

Fluxes, branes and black holes - how to find the right string vacuum?

Fluxes, branes and black holes - how to find the right string vacuum? Fluxes, branes and black holes - how to find the right string vacuum? Dieter Lüst, LMU (ASC) and MPI München in collaboration with Ralph Blumenhagen, Gabriel L. Cardoso, Florian Gmeiner, Daniel Krefl,

More information

D-brane instantons in Type II orientifolds

D-brane instantons in Type II orientifolds D-brane instantons in Type II orientifolds in collaboration with R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter Timo Weigand Department of Physics and Astronomy, University of Pennsylvania Strings 2008

More information

Supersymmetric Standard Models in String Theory

Supersymmetric Standard Models in String Theory Supersymmetric Standard Models in String Theory (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- brief summary- status (a),(b)&(c) Heterotic side [Calabi-Yau compactification]

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

Physics of Type II and Heterotic SM & GUT String Vacua

Physics of Type II and Heterotic SM & GUT String Vacua Physics of Type II and Heterotic SM & GUT String Vacua (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- summary (a)&(b) [(c)- no time] new results on SU(5) GUT

More information

F-theory and Particle Physics

F-theory and Particle Physics F-theory and Particle Physics Eran Palti (Ecole Polytechnique, Paris) Heidelberg, April 2011 Unification of fields in the UV has been a recurring theme in particle physics Forces Electric + Magnetic +

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) Stockholm, February 2008 Hierarchy Problems in String Theory: An

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Axion-Like Particles from Strings. Andreas Ringwald (DESY) Axion-Like Particles from Strings. Andreas Ringwald (DESY) Origin of Mass 2014, Odense, Denmark, May 19-22, 2014 Hints for intermediate scale axion-like particles > Number of astro and cosmo hints pointing

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Direct generation of a Majorana mass for the Neutron from exotic instantons!

Direct generation of a Majorana mass for the Neutron from exotic instantons! Direct generation of a Majorana mass for the Neutron from exotic instantons!? Andrea Addazi (Aquila, LNGS, INFN) Hot problems in particle physics, LNGS 2015 References 1) A. Addazi and M. Bianchi, arxiv:1407.2897

More information

E 6 Yukawa couplings in F-theory as D-brane instanton effects

E 6 Yukawa couplings in F-theory as D-brane instanton effects E 6 Yukawa couplings in F-theory as D-brane instanton effects Iñaki García Etxebarria based on [1612.06874] with Andrés Collinucci Motivation F-theory is a beautiful and powerful framework for string model

More information

Gauge Threshold Corrections for Local String Models

Gauge Threshold Corrections for Local String Models Gauge Threshold Corrections for Local String Models Stockholm, November 16, 2009 Based on arxiv:0901.4350 (JC), 0906.3297 (JC, Palti) Local vs Global There are many different proposals to realise Standard

More information

Some Issues in F-Theory Geometry

Some Issues in F-Theory Geometry Outline Some Issues in F-Theory Geometry Arthur Hebecker (Heidelberg) based on work with A. Braun, S. Gerigk, H. Triendl 0912.1596 A. Braun, R. Ebert, R. Valandro 0907.2691 as well as two earlier papers

More information

Discrete gauge symmetries and Open strings

Discrete gauge symmetries and Open strings Discrete gauge symmetries and Open strings Pascal Anastasopoulos work in progress with M. Cvetic, J. Halverson, R. Richter and P. Vaudrevange. Corfu - 20/09/2012 Plan of the talk Motivation Discrete gauge

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

D-BRANE MODEL BUILDING, PART I

D-BRANE MODEL BUILDING, PART I D-BRANE MODEL BUILDING, PART I Luis E. Ibáñez Instituto de Física Teórica (IFT-UAM/CSIC) Universidad Autónoma de Madrid PITP School, IAS Princeton, July 2008 L.E. Ibáñez; D-BRANE MODEL BUILDING PART I,

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Strings and Phenomenology: Chalk and Cheese?

Strings and Phenomenology: Chalk and Cheese? Strings and Phenomenology: Chalk and Cheese? Joseph P. Conlon Particle Physics Seminar, January 2009 Strings and Phenomenology: Chalk and Cheese? p. 1/3 Thanks to my collaborators: Shehu Abdussalam, Ben

More information

Discussing string extensions of the Standard Model in D brane world

Discussing string extensions of the Standard Model in D brane world NORDITA-2008-49 arxiv:0811.0179v1 [hep-ph] 2 Nov 2008 Discussing string extensions of the Standard Model in D brane world P. Di Vecchia a,b a The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

arxiv: v2 [hep-th] 24 Feb 2008

arxiv: v2 [hep-th] 24 Feb 2008 Preprint typeset in JHEP style - PAPER VERSION arxiv:0711.3214v2 [hep-th] 24 Feb 2008 A Higher Form (of) Mediation Herman Verlinde, a Lian-Tao Wang, a Martijn Wijnholt, b and Itay Yavin a a Physics Department,

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

arxiv: v1 [hep-th] 22 Oct 2017

arxiv: v1 [hep-th] 22 Oct 2017 Axions in Type IIA Superstring Theory and Dark Matter Adil Belhaj a, Salah-Eddine Ennadifi b, arxiv:1710.08030v1 [hep-th] 22 Oct 2017 a LIRST, Polydisciplinary Faculty, Sultan Moulay Slimane University

More information

Soft Supersymmetry Breaking Terms in String Compactifications

Soft Supersymmetry Breaking Terms in String Compactifications Soft Supersymmetry Breaking Terms in String Compactifications Joseph P. Conlon DAMTP, Cambridge University Soft Supersymmetry Breaking Terms in String Compactifications p. 1/4 This talk is based on hep-th/0609180

More information

Remnants. Uniqueness or environment. The string landscape. Extended MSSM quivers. String remnants

Remnants. Uniqueness or environment. The string landscape. Extended MSSM quivers. String remnants Remnants Uniqueness or environment The string landscape Extended MSSM quivers String remnants KITP (July, 01) Uniqueness or Environment Gauge interactions: determined by symmetry (but groups, representations,

More information

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008 : : University of California, Santa Barbara String Phenomenology 2008 University of Pennsylvania 31 May 2008 engineering has been a very successful approach to studying string vacua, and has been essential

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U. F- 理論におけるフラックスコンパクト化 Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) 2018/1/29@Kyoto Sangyo U. Outline Introduction Flux compactification in type

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

New Physics from Type IIA Quivers

New Physics from Type IIA Quivers New Physics from Type IIA Quivers The string vacuum Tadpoles and extended MSSM quivers New matter and Z s Axigluons from type IIa quivers M. Cvetič, J. Halverson, PL: Implications of String Constraints

More information

SUPERSYMMETRIC STANDARD MODELS ON D-BRANES

SUPERSYMMETRIC STANDARD MODELS ON D-BRANES SUSX-TH-00-017 RHCPP 00-03T hep-th/0011289 October 2000 SUPERSYMMETRIC STANDARD MODELS ON D-BRANES arxiv:hep-th/0011289v3 28 Jan 2001 D.BAILIN 1, G. V. KRANIOTIS 2 and A. LOVE Centre for Theoretical Physics,

More information

Instantonic effects in N=1 local models from magnetized branes

Instantonic effects in N=1 local models from magnetized branes Instantonic effects in N=1 local models from magnetized branes Marco Billò Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino L.M.U. München - A.S.C. for Theoretical Physics 6 December

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano In collaboration with Pablo G. Cámara Motivation Two popular

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

New Toric Swiss Cheese Solutions

New Toric Swiss Cheese Solutions String Phenomenology 2017 (Based on arxiv:1706.09070 [hep-th]) Northeastern University 1/31 Outline Motivation 1 Motivation 2 CY Geometry Large Volume Scenario 3 Explicit Toric 4 2/31 Abundance of Moduli

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

The effective field theory of axion monodromy

The effective field theory of axion monodromy The effective field theory of axion monodromy Albion Lawrence, Brandeis University arxiv:1101.0026 with Nemanja Kaloper (UC Davis) and Lorenzo Sorbo (U Mass Amherst) arxiv:1105.3740 with Sergei Dubovsky

More information

Quarks and a unified theory of Nature fundamental forces

Quarks and a unified theory of Nature fundamental forces November 4, 2014 20:10 World Scientific Review Volume - 9.75in x 6.5in quarks50 page 1 Chapter 1 Quarks and a unified theory of Nature fundamental forces I. Antoniadis Albert Einstein Center for Fundamental

More information

Status and Perspectives in String Theory

Status and Perspectives in String Theory Status and Perspectives in String Theory Dieter Lüst, MPP and LMU-München MPP: 100 Year Anniversary, October 12th, 2017 1 Outline: String theory in a nutshell The string theory landscape Some general lessons

More information

Physics Beyond the Standard Model at the LHC

Physics Beyond the Standard Model at the LHC Physics Beyond the Standard Model at the LHC G G Ross, Edinburgh 7th February 2007 The Standard Model as an Effective Field Theory Beyond the Standard Model The LHC as a probe of BSM physics The Standard

More information

String Compactifications and low-energy SUSY: The last attempts?

String Compactifications and low-energy SUSY: The last attempts? String Compactifications and low-energy SUSY: The last attempts? F. Quevedo, ICTP/Cambridge Strings 2015, Bangalore, June 2015 Collaborations with (linear combinations of): L. Aparicio, M. Cicoli, B Dutta,

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

Pablo G. Cámara. with L. E. Ibáñez and F. Marchesano, arxiv: [hep-th].

Pablo G. Cámara. with L. E. Ibáñez and F. Marchesano, arxiv: [hep-th]. RR photons Pablo G. Cámara with L. E. Ibáñez and F. Marchesano, arxiv:1106.0060 [hep-th]. Cornell University, 31 August 2011 1. Motivation String theory compactifications with a semi-realistic spectrum

More information

Quantum Orientifold Effective Actions

Quantum Orientifold Effective Actions Quantum Orientifold Effective Actions Marcus Berg Karlstad University, Sweden M.B., Haack, Kang, arxiv:1112.5156 M.B., Haack, Kang, Sjörs 12... Cambridge, June 3 2012 Why quantum effective action (one-loop)?

More information

Branes in Flux Backgrounds and Dualities

Branes in Flux Backgrounds and Dualities Workshop on recent developments in string effective actions and D-instantons Max-Planck-Institute fur Physik, Munich Branes in Flux Backgrounds and Dualities Giovanni Villadoro Harvard University based

More information

N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies

N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies N=2 Supergravity D-terms, Cosmic Strings and Brane Cosmologies Antoine Van Proeyen K.U. Leuven Paris, 30 years of Supergravity, 20 October 2006 Supergravity for string cosmology Since a few years there

More information

String Phenomenology

String Phenomenology String Phenomenology Hans Peter Nilles Physikalisches Institut Universität Bonn String Phenomenology, DESY, Hamburg, April 2012 p. 1/53 Strategy String models as a top-down approach to particle physics

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

Strings and Particle Physics

Strings and Particle Physics Strings and Particle Physics Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Strings and Particle Physics, SUSY07 p.1/33 Questions What can we learn from strings for particle physics?

More information

GUTs, Remnants, and the String Landscape. Jim Halverson, Northeastern University PPC 2017

GUTs, Remnants, and the String Landscape. Jim Halverson, Northeastern University PPC 2017 GUTs, Remnants, and the String Landscape Jim Halverson, Northeastern University PPC 2017 Outline and Questions A smaller unification: GUTs. String Remnants. What does string theory often give you even

More information

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich F-theory effective physics via M-theory Thomas W. Grimm Max Planck Institute for Physics (Werner-Heisenberg-Institut) Munich Ahrenshoop conference, July 2014 1 Introduction In recent years there has been

More information

On the Phenomenology of Four Dimensional Gepner Models

On the Phenomenology of Four Dimensional Gepner Models On the Phenomenology of Four Dimensional Gepner Models Mirian Tsulaia (Vienna University of Technology) Work in progress with Elias Kiritsis (University of Crete) Liverpool, March 27 29, 2008 String Phenomenology

More information

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli Per Berglund University of New Hampshire Based on arxiv: 1012:xxxx with Balasubramanian and hep-th/040854 Balasubramanian,

More information

Strings, Exotics, and the 750 GeV Diphoton Excess

Strings, Exotics, and the 750 GeV Diphoton Excess Strings, Exotics, and the 750 GeV Diphoton Excess Events / 0 GeV 4 ATLAS Preliminary Data Background-only fit Spin-0 Selection s = 1 TeV,. fb The ATLAS and CMS results 1 Phenomenology and theory Data -

More information

Open Office (Linux) A String Manifesto. Marcus Berg CoPS. M.B., Haack, Pajer '07 M.B., Haack, Körs '05, '04

Open Office (Linux) A String Manifesto. Marcus Berg CoPS. M.B., Haack, Pajer '07 M.B., Haack, Körs '05, '04 Open Office (Linux) A String Manifesto Marcus Berg CoPS M.B., Haack, Pajer '07 M.B., Haack, Körs '05, '04 Open Office (Linux) A String Manifesto Marcus Berg CoPS Summary of current state of affairs Statement

More information

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University Towards Realistic Models! in String Theory! with D-branes Noriaki Kitazawa! Tokyo Metropolitan University Plan of Lectures. Basic idea to construct realistic models! - a brief review of string world-sheet

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Heterotic Standard Models

Heterotic Standard Models 19 August 2008 Strings 08 @ CERN The High Country region of the string landscape Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies String landscape is huge, but

More information

Fixing all moduli in F-theory and type II strings

Fixing all moduli in F-theory and type II strings Fixing all moduli in F-theory and type II strings 0504058 Per Berglund, P.M. [0501139 D. Lüst, P.M., S. Reffert, S. Stieberger] 1 - Flux compactifications are important in many constructions of string

More information

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling Anomalies and Remnant Symmetries in Heterotic Constructions Christoph Lüdeling bctp and PI, University of Bonn String Pheno 12, Cambridge CL, Fabian Ruehle, Clemens Wieck PRD 85 [arxiv:1203.5789] and work

More information

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Candidates for Inflation in Type IIB/F-theory Flux Compactifications Candidates for Inflation in Type IIB/F-theory Flux Compactifications Irene Valenzuela IFT UAM/CSIC Madrid Geometry and Physics of F-Theory, Munich 2015 Garcia-Etxebarria,Grimm,Valenzuela [hep-th/1412.5537]

More information

Non-Geometric Calabi- Yau Backgrounds

Non-Geometric Calabi- Yau Backgrounds Non-Geometric Calabi- Yau Backgrounds CH, Israel and Sarti 1710.00853 A Dabolkar and CH, 2002 Duality Symmetries Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging

More information

Issues in Type IIA Uplifting

Issues in Type IIA Uplifting Preprint typeset in JHEP style - HYPER VERSION hep-th/0612057 SU-ITP-2006-34 SLAC-PUB-12251 December 7, 2006 Issues in Type IIA Uplifting Renata Kallosh a and Masoud Soroush a,b a Department of Physics,

More information

Theory and phenomenology of hidden U(1)s from string compactifications

Theory and phenomenology of hidden U(1)s from string compactifications Theory and phenomenology of hidden U(1)s from string compactifications Andreas Ringwald DESY Corfu Summer Institute Workshop on Cosmology and Strings, Sept. 6-13, 2009, Corfu, GR Theory and phenomenology

More information

Geography on Heterotic Orbifolds

Geography on Heterotic Orbifolds Geography on Heterotic Orbifolds Hans Peter Nilles Physikalisches Institut, Universität Bonn and CERN, Geneva Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th/0504117

More information

Anomalous discrete symmetries in D-brane models

Anomalous discrete symmetries in D-brane models Anomalous discrete symmetries in D-brane models Shohei Uemura Maskawa Institute for Science and Culture, Kyoto Sangyo University based on a work in progress with Tatsuo Kobayashi (Hokkaido University),

More information

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci

Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci Flux vacua in String Theory, generalized calibrations and supersymmetry breaking Luca Martucci Workshop on complex geometry and supersymmetry, IPMU January 4-9 2009 Plan of this talk Generalized calibrations

More information

The LARGE Volume Scenario: a status report

The LARGE Volume Scenario: a status report Stockholm, June 6th 2011 Talk Structure Moduli Stabilisation and Scales Variations The LARGE Volume Scenario The LARGE Volume Scenario (LVS) comes from considering alpha corrections to IIB flux compactifications.

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

A derivation of the Standard Model. Based on Nucl.Phys. B883 (2014) with B. Gato Rivera

A derivation of the Standard Model. Based on Nucl.Phys. B883 (2014) with B. Gato Rivera A derivation of the Standard Model Based on Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera High Energy Weighted Ensemble The Standard Model Anthropic Features Low Energy High Energy Unique Theory The

More information

of Local Moduli in Local Models

of Local Moduli in Local Models Scattering, Sequestering and Sort-Of Sequestering of Local Moduli in Local Models String Pheno, Madison, August 22nd 2011, Based on arxiv:1109.xxxx JC, L. Witkowski Acknowledgements Talk is based on arxiv:1109.xxxx

More information

G 2 manifolds and mirror symmetry

G 2 manifolds and mirror symmetry G 2 manifolds and mirror symmetry Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics First Annual Meeting, New York, 9/14/2017 Andreas Braun University of Oxford based on [1602.03521]

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ Intro to Geometry and Topology via G 2 10.07.2014 Physics and G 2 -manifolds Bobby Samir Acharya King s College London. µf µν = j ν dϕ = d ϕ = 0 and ICTP Trieste Ψ(1 γ 5 )Ψ The Rich Physics-Mathematics

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

String cosmology and the index of the Dirac operator

String cosmology and the index of the Dirac operator String cosmology and the index of the Dirac operator Renata Kallosh Stanford STRINGS 2005 Toronto, July 12 Outline String Cosmology, Flux Compactification,, Stabilization of Moduli, Metastable de Sitter

More information

Geometry of particle physics

Geometry of particle physics c 2009 International Press Adv. Theor. Math. Phys. 13 (2009) 947 990 Geometry of particle physics Martijn Wijnholt Max Planck Institute (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm,

More information

Particles and Strings Probing the Structure of Matter and Space-Time

Particles and Strings Probing the Structure of Matter and Space-Time Particles and Strings Probing the Structure of Matter and Space-Time University Hamburg DPG-Jahrestagung, Berlin, March 2005 2 Physics in the 20 th century Quantum Theory (QT) Planck, Bohr, Heisenberg,...

More information

SUSY Breaking, Composite Higgs and Hidden Gravity

SUSY Breaking, Composite Higgs and Hidden Gravity SUSY Breaking, Composite Higgs and Hidden Gravity Ryuichiro Kitano (Tohoku U.) Talk at ICEPP meeting, April 1-3, 2009, Tokyo, Japan What's Higgs? Elementary particle? Something else? 1/ H Composite, technicolor,

More information

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ ) Hidden Sector Baryogenesis Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/0608188) and w/ B.D and Louis Leblond (hepth/0703278) Basic Issue low-energy interactions seem to preserve baryon

More information

A Derivation of the Standard Model. Beatriz Gato-Rivera, Bert Schellekens

A Derivation of the Standard Model. Beatriz Gato-Rivera, Bert Schellekens A Derivation of the Standard Model Beatriz Gato-Rivera, Bert Schellekens Nucl.Phys. B883 (2014) 529-580 Nijmegen, 9-3-2015 Towards (not including the number of families) discrete structure of the A Derivation

More information

Strings and the Cosmos

Strings and the Cosmos Strings and the Cosmos Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics University of Science and Technology, China May 27th, 2005 String Theory as a Grand Unifying Theory 60 s: theory

More information

Stringy instanton calculus

Stringy instanton calculus Stringy instanton calculus Marco Billò D.F.T., Univ. of Turin Leuven-Bruxelles, 25-11-2009 Marco Billò ( D.F.T., Univ. of Turin ) Stringy instanton calculus Leuven-Bruxelles, 25-11-2009 1 / 44 Introduction

More information

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B.

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B. A Derivation of the Standard Model ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera A Derivation of the Standard Model discrete structure of

More information

TASI lectures on String Compactification, Model Building, and Fluxes

TASI lectures on String Compactification, Model Building, and Fluxes CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de Física Teórica, C-XVI

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Brane world scenarios

Brane world scenarios PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 2 journal of February 2003 physics pp. 183 188 Brane world scenarios DILEEP P JATKAR Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information