High-Resolution Soft X-ray RIXS Beamline

Size: px
Start display at page:

Download "High-Resolution Soft X-ray RIXS Beamline"

Transcription

1 High-Resolution Soft X-ray RIXS Beamline Di-Jing Huang Jan 15, 2009

2 Science D. J. Huang (NSRRC), RIXS spectroscopy C. T. Chen (NSRRC), AGS-AGM design and RIXS spectroscopy S-W. Cheong (Rutgers University), material synthesis F. C. Chou (National Taiwan University), material synthesis C. L. Dong (NSRRC), ), RIXS spectroscopy A. Fujimori (University of Tokyo), RIXS spectroscopy C. Y. Mou (National Tsing Hua University), theory L. H. Tjeng (Cologne University), RIXS spectroscopy M. K. Wu (Scademia Sinica), material synthesis Beamline Design & Construction S. C. Chung(NSRRC), coordinator H. S. Fung (NSRRC), design of beamline & spectrometer W. B. Wu(NSRRC), beamline construction C. S. Lee (NSRRC), mechanical drawing.. 2

3 Outline Overview of Scientific Scope Design of the AGM-AGS Beamline Commissioning Results of the AGM-AGS with TLS Reply to SAC comments 3

4 Outline Overview of Scientific Scope Design of the AGM-AGS Beamline Commissioning Results of the AGM-AGS with TLS Reply to SAC comments 4

5 Energy Scale of Low-energy Excitations in Complex Materials ev 3 Mott/CT gaps 2 dd Excitations Orbitons Multimagnons Pseudogaps Magnons/Spin-flips Superconducting gap 5

6 a b Low-energy excitations interactions Resonant Inelastic X-ray Scattering (RIXS) a n b Charge, orbital, and spin 6

7 RIXS in the soft X-ray regime is powerful spectroscopy tool! 7

8 RIXS in the soft X-ray regime is powerful spectroscopy tool! Collective Magnetic Excitations in the Spin Ladder Sr 14 Cu 24 O 41 Measured Using High-Resolution Resonant Inelastic X-Ray Scattering J. Schlappa et al., Phys. Rev. Lett. 103, (2009) 8

9 RIXS in the soft X-ray regime is powerful spectroscopy tool! 9

10 Rare earth f-systems (mixed valence, heavy fermions, Kondo problem ) Classic examples S.M. Butorin, PRL 77 (1996) ;Theory by Kotani M. Magnuson et al., PRB 63, (2001) ;Theory by Kotani Crystal field excitation of YbN: RIXS Intermediate state 3d 5/2 4f 14 4f 13 Γ 7 Γ 8 Γ 6 81 mev 33 mev 0 mev Kondo excitation in Yb 3d RIXS of YbInCu4 3d 5/2 4f 14 c k A. Kotani, Workshop on soft-x-ray scattering (Oct. 2009) 4f 14 +4f 13 c Low excited states k B T K ~ 40 mev 10 Singlet bound state

11 RIXS is also a versatile photon-in/photon-out probe Considerations of in situ studies with RIXS- -Need an environmental cell (Liquid cell & gas cell) -Thin membrane (100nm Si 3 N 4 or carbon window) Solid sample Liquid cell In Window In Wet sample out out O-ring Transmission (%) Courtesy of J.-H. Guo (ALS) Fe 2p (82%) O 1s (66%) C_100nm; SiC_100nm Si_100nm; SiN_100nm C 1s (46%) Al_100nm Energy (ev) 100nm Si 3 N 4, ~4 µl liquid volume, Wet sample Liquid in In Window In Window Gas cell In Window out out Liquid flow Liquid out Reaction area Sample out Gas flow 66% Vacuum pressure < 1 x 10-9 Torr Gas Reaction area Sample

12 Static liquid cell From concept Photon-in Photon-out To reality liquid Nanoparticle suspension FPM O-ring Co Nanoparticles with Ligand Molecules 100 nm thick SiN membrane (Cell designed by Uppsala, Sweden & ALS) Co nanocrystals grwoth mechanism Nanocrystals interact more strongly with solvent molecules in the initial stages of growth, while at a later stage, the interaction is dominated by the oleic acid surfactant. HongjianLiu, et al., NanoLetters 7, 1919 (2007) Surfactant: Oleic Acid, C 18 H 34 O 2 [CH 3 (CH 2 ) 7 CH:CH(CH 2 ) 7 CO 2 H] Solvent: Dichlorobenzene, C 6 H 4 Cl 2 12

13 Flow liquid cell Static liquid cell: (only one 1b 1 feature) J.-H. Guo et al., PRL 89, (2002) M. Odelius et al., PRL 94, (2005) Isotope and temperature effects in Liquid water O. Fuchs, et al., PRL 100, (2008) Isotope effect Temperature effect 1b 1 1b 1 1b 1 Only one broad 1b 1 feature at lower energy resolution for liquid water. Three occupied molecular orbitals: 1b 2, 3a 1 and 1b 1 1b 1 turns into 1b 1 peak has dependence on phase and temperature 1b 1 : Intact water molecular 1b 1 : Ultrafast molecular dissociation. The splitting of 1b 1 has not been predicted by any theoretical simulation model! 13

14 Outline Overview of Scientific Scope Design of the AGM-AGS Beamline Commissioning Results of the AGM-AGS with TLS Reply to SAC comments 14

15 A Conventional SGM Beamline for IXS Measurements High performance Simple optical layout Refocusing Mirror Varied-Line-Space (VLS) Grating V. Focusing Mirror Entrance Slit H. Focusing Mirror Source Sample Movable Exit slit to eliminate the defocus aberration Grating Detector Major optical aberrations: defocus & comma aberrations 15

16 Invited talk, 8 th SRI, 2003 H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). 16

17 Optical Concept of the AGM-AGS Beamline Energy Compensation Principle Entrance slit H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). sample hω + ε Active Grating hω ε 17

18 Optical Concept of the AGM-AGS Beamline Energy Compensation Principle Entrance slit H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). sample hω + ε hω ε Active Grating 18

19 Optical Concept of the AGM-AGS Beamline Entrance slit Energy Compensation Principle H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). CCD sample hω ± ε hω + ε hω + ε hω± ε Active Grating (monochromator) AGM hω ε hω ε ε, << hω Active Grating (spectrometer) AGS 19

20 Source A Active VLS Grating grating profile 2 3 ( w) aw aw ξ = B α β Grove density of VLS n( w) = n0 + nw 1 +L w A VLS grating can focus photons onto a nearly vertical plane, satisfying much better the condition of energy compensation. Grating equation sinβ sinα = kn0λ 20

21 Optical design of the AGM-AGS RIXS beamline Active Grating: Position of the exit slit fixed Coma aberration eliminated Slit V. Focusing Mirror H. Focusing Mirror EPU AGM Sample AGS CCD 21

22 Simulation with varied-line-spacing grating 1000 ev For resolving power =10000 E=93 mev at Cu L 3, and 53 mev, at O K-edge. (e.g. SLS ADRESS) A resolving power of can be achieved with a perfect grating. H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). 22

23 Simulated Energy Loss Spectrum with VLS Gratings H. S. Fung et al. AIP Conf. Proc. 705, 655 (2004). Relative Intensity mev mev 84 mev 0.2 Limited to a small range of energy-loss window Energy Loss (ev) The AGS grating is optimized for 1.5 ev energy loss. r 1 = 3.5 m r 2 = 2.5 m n 0 = 1200 /mm n 1 = 0.8 /mm 2 E in = 800 ev ε = 8 ev 23

24 Requirement of the Energy Compensation Principle Grating equation sinβ sinα = kn0λ Only the values of r 2 and n 0 are required to be the same for AGM and AGS. r 2 M AGM r 1 M Slit V. Focusing Mirror H. Focusing Mirror EPU n( w) = n0 + nw 1 +L Sample r 2 S AGS r 1 S CCD The values of n 1 for AGM and AGS can be independently fine tuned. 24

25 Expected AGM-AGS System 900 ev Zero slope error of grating C:\NSRRC_Project\TPS_EPU\Case_V\ray_tracing\AGS_fix_R(n1=-22)\900eV\resolt(n1=-22) E c =900 ev E=+/ ev Entrance slit opening: 2 µm n 0 = 1200 grooves/mm AGM_n 1 = 0.88 grooves/mm 2 AGS_n 1 = grooves/mm 2 19 mev (FWHM) C:\NSRRC_Project\TPS_EPU\Case_V\ray_tracing\AGS_fix_R(n1=-22)\900eV\resolt(n1=-22) 17 mev (FWHM) 17 mev (FWHM) Energy Loss (ev) Energy Loss (ev) 25

26 Expected AGM-AGS System 900 ev Slope error of grating: 0.25 mrad (RMS) E c =900 ev E=+/ ev Entrance slit opening: 2 µm n 0 = 1200 grooves/mm AGM_n 1 = 0.88 grooves/mm 2 AGS_n 1 = grooves/mm 2 Gratings slope error: 0.25 µrad(rms) 40 mev (FWHM) mev(fwhm) m e V W H Energy Loss (ev) Energy Loss (ev) 26

27 Expected AGM-AGS System 500 ev Zero slope error of grating E c = 500 ev, E=+/ ev Entrance slit opening: 2 µm n 0 = 600 grooves/mm AGM_n 1 = 0.37 grooves/mm 2 AGS_n 1 = grooves/mm mev (FWHM) 8 m e V (F W H M) Energy Loss (ev) 10 mev (FWHM) Energy Loss (ev) 27

28 Expected AGM-AGS System 500 ev Slope error of grating: 0.25 mrad (RMS) E c = 500 ev, E=+/ ev n 0 = 600 grooves/mm AGM_n 1 = 0.37 grooves/mm 2 AGS_n 1 = grooves/mm 2 Gratings slope error: 0.25 µrad (RMS) m e V (F W H M) mev (FWHM) Energy Loss (ev) Energy Loss (ev) 28

29 Would be the World-Best RIXS Setup in Soft X-Ray Range Ultra-high energy 900 ev: E/DE 40,000 (0.1-mrad slope error), sample = /sec (900 ev) Sample Beam size ~ 54 mm (H) 20,000 (0.25-mrad slope error) AGM r 2 =2.5 r 1 = 3.5 AGS Grating efficiency =0.1 Slit R = 0.5 V. Focusing Mirror in units of m Vertical beam size < 2 the entrance slit (demagnification=10) Flux = BW, 900 ev R = 0.65 H. Focusing Mirror EPU Source size 10 mm (V) 165 mm (H) CCD 29

30 In Comparison with the ADRESS beamline 800 l/mm: 1.3x10 13 ph/s in a bandwidth, E/ΔE= l/mm: 1.7x10 12 ph/s in a bandwidth, E/ΔE= l/mm: 2.4x10 11 ph/s in a bandwidth, E/ΔE=20000 courtesy of T. Schmitt 30

31 Outline Overview of Scientific Scope Design of the AGM-AGS Beamline Commissioning Results of the AGM-AGS with TLS Reply to SAC comments 31

32 ±40 32

33 Sample chamber AGM-AGS Inelastic Scattering Setup Monochromator Entrance slit Spectrometer Sample chamber CCD detector 33

34 RIXS of NiO Aperture (mm) Energy Compensation Principle Total energy resolution FWHM=270 mev elastic peak aperture Energy Loss (ev) 0 34

35 RIXS of NiO Ψ 3d F G Ψ 2 p H x 2 I J K Energy Loss (ev) 0 Ghiringhelli et al. J. Phys.: Condens. Matter (2005)

36 G. Ghiringhelliet al., PRL (2009) 1 E g 3 T 1g e g t 2g e g 3 T 2g NiO dd excitations 3 T 2g t 2g Counts e g T 1g 1 d 8 E g + 3 T 1g t2g 3 A 2g Energy Loss (ev) 36

37 Quantum Multiferroic LiCu 2 O 2 O 2- Cu 2+ Li 1+ Cu 1+ Cu 2+ : d 9 + d 10 L d xy hole Cu + : d 10 + d 9 4s 1 + d 10 4s 1 L d z hole S. W. Huang et al., RL(2008) XAS (001) θ C. L. Chen et al., PRB(2008) 37

38 XAS E ^ c Total energy resolution FWHM=210 mev Aperture = 100 mm 38

39 Outline Overview of Scientific Scope Design of the AGM-AGS Beamline Commissioning Results of the AGM-AGS with TLS Reply to SAC comments 39

40 Comments of SAC review in 2009 Proposal #5 has the potential to be world leading and includes a complete team with expertise in x-ray science, materials, and theory. The scope can be broadened to include the components of proposal #4 which includes excellently trained, young scientists. Reply: Scientific Subjects Strongly correlated compounds: transition-metal oxides Heavy-fermion compounds: rare-earth materials liquids New member: C. L. Dong (NSRRC) PhD students - S. W. Huang (National Chiao-Tung University) - Huang (National Tsing Hua University) - Lai (National Tsing HuaUniversity)

41 Hasa RIXS spectrum been smeared out by using the energy compensation principle? Within the liftetimebroadening of XAS, RIXS obtained by using the conventional method is insensitive to the incident photon energy. G. Ghiringhelliet al., PRL (2009)

42 Acknowledgement T. Schmitt, V. N. Strocov, J. Friso van der Veen G. Ghiringhelli 42

43 Thank you!

Optical design and performance of the ESRF soft X-ray beamline. Kurt Kummer*, Nick Brookes ESRF

Optical design and performance of the ESRF soft X-ray beamline. Kurt Kummer*, Nick Brookes ESRF Optical design and performance of the ESRF soft X-ray beamline Kurt Kummer*, Nick Brookes ESRF *kurt.kummer@esrf.fr ID32 - THE NEW ESRF SOFT X-RAY BEAMLINE Soft X-ray beamline for polarisation dependent

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni XAS, XMCD, XES, RIXS, ResXPS: introduzione alle spettroscopie risonanti * Dipartimento di Fisica - Politecnico

More information

V.N. Strocov and T. Schmitt

V.N. Strocov and T. Schmitt High-resolution soft-x-ray beamline ADRESS at Swiss Light Source for resonant X-ray scattering and angle-resolved photoelectron spectroscopies V.N. Strocov and T. Schmitt Swiss Light Source, Paul Scherrer

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets H. Nojiri, IMR Tohoku Univ., Sendai Japan http:spin100.imr.tohoku.ac.jp

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Activity Report

Activity Report ctivity Report 2005-2006 Edited by U. Johansson,. Nyberg, R. Nyholm, H. Ullman Preface The present MX-lab ctivity Report summarizes the activities at MX-lab for the period July 2005 to December 2006.

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte What is RIXS? Resonant Inelastic X-ray Scattering Synchrotron

More information

GEANT4 simulation about the laboratory astrophysics in Taiwan

GEANT4 simulation about the laboratory astrophysics in Taiwan C.H. Wang (NUU) 2006/12/12 @ Tsukuba 1 GEANT4 simulation about the laboratory astrophysics in Taiwan Shower Profiles with an 1.5 GeV Electron Beam on Metal Prof. C.H. Wang Department of Electro-Optical

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Self-doping processes between planes and chains in the metalto-superconductor

Self-doping processes between planes and chains in the metalto-superconductor Self-doping processes between planes and chains in the metalto-superconductor transition of YBa 2 Cu 3 O 6.9 M. Magnuson 1, T. Schmitt 2 V.N. Strocov 2, J. Schlappa 2,3, A. S. Kalabukhov 4 and L.-C. Duda

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy

Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy Two-electron photo-excited atomic processes near inner-shell threshold studied by RIXS spectroscopy Matjaž Kavčič J. Stefan Institute, Ljubljana, Slovenia K. Bučar F. Gasser M. Kavčič A. Mihelič M. Štuhec

More information

Femtosecond X-Ray Experiments

Femtosecond X-Ray Experiments Femtosecond X-Ray Experiments Christian Bressler FXE Hamburg, January 25, 2017 FXE Workshop Dec 2016: Users overall very happy with implemented components 2 Scientific Instrument FXE The FXE scientific

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

X-ray Optics needs for 3 rd and 4 th generation Light Source. Mourad Idir BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES

X-ray Optics needs for 3 rd and 4 th generation Light Source. Mourad Idir BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES X-ray Optics needs for 3 rd and 4 th generation Light Source Mourad Idir midir@bnl.gov BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES OUTLINE 3 rd and 4 th generation Light source Optics needs NSLS II Example

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Basics of Synchrotron Radiation Beamlines and Detectors Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Important properties of Synchrotron Radiation Tunability

More information

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth Ultrafast Single-Shot X-Ray Emission Spectrometer Design Katherine Spoth O ce of Science, Science Undergraduate Laboratory Internship (SULI) State University of New York at Bu alo SLAC National Accelerator

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Koji Nakanishi, Toshiaki Ohta Abstract We have developed a compact experimental set-up for X-ray absorption

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97 Introduction to XAFS Grant Bunker Associate Professor, Physics Illinois Institute of Technology Revised 4/11/97 2 tutorial.nb Outline Overview of Tutorial 1: Overview of XAFS 2: Basic Experimental design

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July 5-7 Greg Elliott, University of Puget Sound The Zeeman effect offers a striking visual demonstration of a quantum

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

The Second Half Year 2017 PAL-XFEL Call for Proposals

The Second Half Year 2017 PAL-XFEL Call for Proposals The Second Half Year 2017 PAL-XFEL Call for Proposals Summary Information for Submitting Proposals We encourage scientists from all over the world to submit applications for beam time proposal to utilize

More information

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Outline Review: momentum space and why we want to go there Looking at data: simple metal Formalism: 3 step model

More information

Resonant soft x-ray Raman scattering of NiO

Resonant soft x-ray Raman scattering of NiO Resonant soft x-ray Raman scattering of NiO Martin Magnuson, Sergei Butorin, Akane Agui and Joseph Nordgren Post Print N.B.: When citing this work, cite the original article. Original Publication: Martin

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder Angle Resolved Photoemission Spectroscopy Dan Dessau University of Colorado, Boulder Dessau@Colorado.edu Photoemission Spectroscopy sample hn Energy High K.E. Low B.E. e - analyzer E F e- hν Density of

More information

Lecture 12 Multiplet splitting

Lecture 12 Multiplet splitting Lecture 12 Multiplet splitting Multiplet splitting Atomic various L and S terms Both valence and core levels Rare earths Transition metals Paramagnetic free molecules Consider 3s level emission from Mn2+

More information

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities Katherine Spoth Office of Science, Science Undergraduate Laboratory Internship (SULI) State University

More information

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY Yvonne Bergmann, Klaus Ott Helmholtz- Zentrum Berlin BESSY II Radiation Protection Department yvonne.bergmann@helmholtz-berlin.de

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy

Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy Investigation of Ti2AlC and TiC by soft x-ray emission spectroscopy Martin Magnuson Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Martin

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3 superlattices Kejin Zhou 1, Milan Radovic 2,1, Justine Schlappa 1, Vladimir Strocov 1, Ruggero Frison 3, Joel Mesot 1,2, Luc

More information

The Chemical Control of Superconductivity in Bi 2 Sr 2 (Ca 1 x Y x )Cu 2 O 8+±

The Chemical Control of Superconductivity in Bi 2 Sr 2 (Ca 1 x Y x )Cu 2 O 8+± CHINESE JOURNAL OF PHYSICS VOL. 38, NO. 2-II APRIL 2000 The Chemical Control of Superconductivity in Bi 2 Sr 2 (Ca 1 x Y x )Cu 2 O 8+± R. S. Liu 1, I. J. Hsu 1, J. M. Chen 2, and R. G. Liu 2 1 Department

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

Modern Methods in Heterogeneous Catalysis Research

Modern Methods in Heterogeneous Catalysis Research Modern Methods in Heterogeneous Catalysis Research Axel Knop-Gericke, January 09, 2004 In situ X-ray photoelectron spectroscopy (XPS) In situ near edge X-ray absorption fine structure (NEXAFS) in the soft

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

Introduction to Synchrotron Radiation and Beamlines

Introduction to Synchrotron Radiation and Beamlines Introduction to Synchrotron Radiation and Beamlines David Attwood University of California, Berkeley http://ast.coe.berkeley.edu/sxr2009 http://ast.coe.berkeley.edu/srms 1 The short wavelength region of

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

QS School Summary

QS School Summary 2018 NSF/DOE/AFOSR Quantum Science Summer School June 22, 2018 QS 3 2018 School Summary Kyle Shen (Cornell) Some Thank yous! A Big Thanks to Caroline Brockner!!! Also to our fantastic speakers! Kavli Institute

More information

SOFT X-RAY MATERIAL INSTRUMENT (SXR)

SOFT X-RAY MATERIAL INSTRUMENT (SXR) SOFT X--RAY MATERIAL INSTRUMENT ((SXR)) SUMMARY OF THE TECHNICAL DESIGN DRAFT 3-3-09 This document is derived from the SXR Technical Design Report, July 2008, prepared for the LCLS by the SXR consortium.

More information

Advanced Spectroscopies of Modern Quantum Materials

Advanced Spectroscopies of Modern Quantum Materials Advanced Spectroscopies of Modern Quantum Materials The part about Advanced spectroscopies Some course goals: Better understand the link between experiment and the microscopic world of quantum materials.

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

= nm. = nm. = nm

= nm. = nm. = nm Chemistry 60 Analytical Spectroscopy PROBLEM SET 5: Due 03/0/08 1. At a recent birthday party, a young friend (elementary school) noticed that multicolored rings form across the surface of soap bubbles.

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Electronic structure investigation of CoO by means of soft X-ray scattering

Electronic structure investigation of CoO by means of soft X-ray scattering Electronic structure investigation of CoO by means of soft X-ray scattering M. Magnuson, S. M. Butorin, J.-H. Guo and J. Nordgren Department of Physics, Uppsala University, P. O. Box 530, S-751 21 Uppsala,

More information

KEK isotope separation system for β-decay spectroscopy of r-process nuclei

KEK isotope separation system for β-decay spectroscopy of r-process nuclei 2 nd Workshop on Inelastic Reaction Isotope Separator for Heavy Elements Nov. 19, 2010 KEK isotope separation system for β-decay spectroscopy of r-process nuclei Y.X. Watanabe, RNB group (KEK) 1. Outline

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) Cheiron School 014 Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) 1 Atomic Number Absorption Edges in the Soft X-ray Region M edge L edge K edge. Li Absorption-edge Energy (ev) Studies using

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin High-precision studies in fundamental physics with slow neutrons Oliver Zimmer Institut Laue Langevin ILL, 20 September 2016 Topics The impossible particle and its properties Search for an electric dipole

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES Proceedings of IBIC212, Tsukuba, Japan MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES A. Mochihashi, M. Masaki, S. Takano, K. Tamura, H. Ohkuma,

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Multiplet effects in Resonant X-ray Emission

Multiplet effects in Resonant X-ray Emission Multiplet effects in Resonant X-ray Emission Frank M.F. de Groot Department of Inorganic Chemistry and Catalysis, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, the Netherlands. Abstract. After

More information

PLS-II s STXM and its application activities

PLS-II s STXM and its application activities 1 PLS-II s STXM and its application activities Hyun-Joon Shin Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea shj001@postech.ac.kr Two accelerators for x-rays...

More information

X-Ray Diagnostics Commissioning at the LCLS

X-Ray Diagnostics Commissioning at the LCLS X-Ray Diagnostics Commissioning at the LCLS - Selected Studies - J. Welch, SLAC National Accelerator Laboratory Aug. 3-27, 2010 Commissioning Studies Microbunching Instability Laser Heater tune-up Gas

More information

Structural Characterization of Giant Magnetoresistance Multilayers with New Grazing Incidence X-ray Fluorescence

Structural Characterization of Giant Magnetoresistance Multilayers with New Grazing Incidence X-ray Fluorescence Structural Characterization of Giant Magnetoresistance Multilayers with New Grazing Incidence X-ray Fluorescence vnaoki Awaji (Manuscript received December 13, 21) We have developed a grazing incidence

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

Ternary blend polymer solar cells with enhanced power conversion efficiency

Ternary blend polymer solar cells with enhanced power conversion efficiency Ternary blend polymer solar cells with enhanced power conversion efficiency Luyao Lu 1, Tao Xu 1, Wei Chen 2,3, Erik S. Landry 2,3, Luping Yu 1 * 1. Department of Chemistry and The James Franck Institute,

More information

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source What Makes Up The Canadian Light Source? 4. Storage Ring 5. Synchrotron Light 6. Beamline 1. Electron Gun 2. Linear Accelerator

More information