How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

Size: px
Start display at page:

Download "How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source"

Transcription

1 How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

2 What Makes Up The Canadian Light Source? 4. Storage Ring 5. Synchrotron Light 6. Beamline 1. Electron Gun 2. Linear Accelerator 3. Booster Ring 7. Optics Hutch 8. Experimental Hutch 9. Control Station

3 An Overview The process of light production begins with the Electron Gun. A tungsten button is heated to 1000 C, causing electrons to boil off. A periodic high voltage between the cathode and anode pulls the electrons off in bunches, and causes them to accelerate towards the Linear Accelerator (LINAC).

4 The LINAC uses a series of Radio Frequency Cavities (RF Cavities). Inside these cavities are waveguides with a travelling electric field. The electrons are further bunched and accelerated by these fields to c with an energy of 250 MeV.

5 The electron bunches are sent to circulate the Booster Ring. Another RF Cavity provides a boost in energy each time the electrons orbit the ring. The boost is from a short, ultra high voltage travelling electric wave. It takes.6 seconds for the electrons to circulate the ring 1.5 million times, reaching c with an energy of 2.9 GeV. RF Cavity in the Booster Ring

6 The electrons are then sent to the storage ring where massive dipole or bending magnets, or insertion devices, cause the electrons to laterally accelerate and emit light energy. The electrons lose energy from this, therefore a Superconducting RF cavity (SRF) is used to replace the lost energy, keeping the electrons energy roughly 2.9 GeV. Bending Magnet Storage Ring SRF Cavity

7 Light Production When a charged particle accelerates, its electric field has to shift (correct) positions with it. Einstein discovered that the fastest anything, even information, can move is c. The electric field far away has no idea the charged particle has accelerated yet. This means that the electric field correction takes time to travel to the end of the electric field. This travelling electric field correction is a wave in the electric field, which is light.

8

9 Vacuum Everything from the electron gun to the beamline is under vacuum. A vacuum is an area with a pressure lower than atmospheric pressure, 760 torr. The storage rings vacuum pressure is torr. Beamline pressures vary. There are less than 10 particles per cubic centimeter in the storage ring, which is less than around the International Space Station. Vacuums are needed to reduce the number of particles in the beams path so the electrons or the light do not collide with them, and become lost.

10 Beamline The electrons are travelling in a circular path. Since light propagates rectilinearly, it comes off in a fan tangential to the ring. This fan of light is broad spectrum, from infrared to x-ray. The light passes through a port in the ring wall towards the beamlines.

11 Optical Hutch The incident light is initially diverging. To fix this, the first thing the light interacts with is a toroidal mirror. A toroidal mirror is a concave mirror cast on the side of a large torus. It is curved in both the x and y planes, which allows the mirror to focus both planes at the same time. The mirror conditions Converging Mirror the light to either converge or collimate, depending what the experiment needs. Torus Collimating Mirror Toroidal Mirror

12 Monochromator The conditioned light then passes to the Monochromator. The name is of Greek roots, Mono meaning single and Chroma meaning colour. The Monochromator is used to select the energy of light that passes through to the experiment. It contains two flat crystals and mechanical hardware to change the angle between them and the beam. Crystals

13 Energy/Wavelength selection is done by Bragg Diffraction. Light rays reflecting from different layers of a crystal travel different distances. If the difference in the distance travelled is an integer multiple (n) of the wavelength, then the waves constructively interfere, creating a monochromatic beam. All other wavelengths destructively interfere, filtering them out. Constructive Destructive nλ = 2dsin(θ)

14 The experimental hutch is where the experiment takes place. In this hutch are the detectors, sample stages, and their related electronics. Experimental Hutch Sample Vacuum Chamber Vacuum Ion Chamber To Optical Hutch Ion Chamber Sample X-rays Sample Stage KETEK Detector

15 The experimental hutch houses a vacuum sample chamber. Experiments that are air sensitive or require low energies are conducted here. Following this is a motorized sample stage for experiments that are not air sensitive or require higher energies. The stage can move the sample in and out of the beam remotely. Phosphor Card Typical Sample Sample Vacuum Chamber

16 Detectors There are two types of detectors used. The first is for Fluorescence based experiments, which measures the spectrum given off by the sample after it absorbs x-rays from the beamline. The other is for Transmission based experiments, which measures how much light the sample absorbs. Fluorescence Transmission G

17 KETEK SDD Detector The Fluorescence detector is called a KETEK Silicon Drift Detector. This detector is placed outside of the beams path, but faces the sample. This collects the light emitted by, and scattered from, the sample and surroundings. Sample Sample Vacuum Chamber KETEK Detector X-rays Vacuum Ion Chamber Sample Stage

18 The KETEK detector works similar to solar panels. Light shines on the silicon layer, knocking electrons off. The more energetic the light, the more electrons are knocked off. A voltage is set up causing the electrons to drift to the anode. The cathode position changes, moving inward along the drift rings to speed things up.

19 The detector then measures the charge on the anode and converts it to photon energy. This is then sent to a computer and the process repeats. A spectral graph is created by plotting the number of photons detected vs the energy they were detected at. The spectrum below shows the elemental composition of a sample.

20 X-ray Fluorescence, XRF, is a common technique that uses these detectors. X-ray photons are used to excite electrons in the sample from low energy states to higher ones, leaving a hole for other electrons to fill. As the other electrons fall to fill the hole, they fluoresce. The energy fluoresced depends on the energy difference between the initial and final energy states, which are unique to each element. The incident x-ray energy is fixed, usually the maximum energy available, ensuring that as many elements as possible absorb the x-rays below that energy.

21 FMB Oxford Ion Chamber The transmission detectors are called Ion Chambers. These are located along the lights path, one before the sample and two after. These detectors measure the intensity of light before and after a sample to see how much is absorbed. Ion Chamber Vacuum Ion Chamber

22 The ion chambers are filled with a gas that is ionized when light passes through. These ions are separated by a voltage and the resulting current is measured to determine the beam s intensity This is a light intensity measurement. Intensities are continuously measured as they change frequently.

23 The first chamber measures the light s intensity before the sample. This one is built into the vacuum system as it also lies before the vacuum chamber. The sample sits between the first and second chamber. The second chamber measures how much light the sample has absorbed. The third chamber is for a reference foil. The foil has known absorption features and can be used to calibrate the samples absorption features.

24 An intensity measurement is taken at a lower energy than the sample is expected to absorb. The energy is increased slightly and the process repeats. At certain critical energies, the photons have just enough energy to cause new electron transitions. This is seen by a large increase in the amount of light absorbed, called an absorption edge. This process is called X-ray Absorption Near Edge Structure, XANES.

25 The position and shape of this edge tells us the element, the oxidation state, and the chemical state being measured. The post edge features are due to the emitted photo-electron scattering off surrounding atoms back towards the central atom. This changes the absorption behavior and allows us to determine where the surrounding atoms are. Edge Post Edge Pre Edge

26 Operating Funding Partners

27 Capital Funding Partners

28 Acknowledgments David Muir who provided information about the beamline and synchrotron. Tracy Walker and Anna-Maria Boechler who provided information about the synchrotron and facility. CLS Staff who answered questions about everything. Created by Tylor Sove, IDEAS Summer Student Thank You!

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016

David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016 David Martin High Precision Beamline Alignment at the ESRF IWAA, Grenoble 3-7 October 2016 OVERVIEW The ESRF has just completed the Phase I Upgrade programme. The Phase I Upgrade programme was centered

More information

Accelerator Design and Construction Progress of TPS Project

Accelerator Design and Construction Progress of TPS Project Accelerator Design and Construction Progress of TPS Project Taiwan Light Source (TLS), a 120-m storage ring originally designed for 1.3 GeV, was commissioned and opened to users in 1993. The energy of

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission . X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. II - Synchrotron Radiation - Malcolm J. Cooper

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. II - Synchrotron Radiation - Malcolm J. Cooper SYNCHROTRON RADIATION Malcolm J. Cooper University of Warwick, Coventry, UK Keywords: Accelerator, storage ring, X-rays, insertion devices, X-ray optics, diffraction, crystallography, X-ray spectroscopy,

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

David Martin Challenges in High Precision Beamline Alignment at the ESRF FIG Working Week Christchurch New Zealand 2016

David Martin Challenges in High Precision Beamline Alignment at the ESRF FIG Working Week Christchurch New Zealand 2016 Presented at the FIG Working Week 2016, May 2-6, 2016 in Christchurch, New Zealand David Martin Challenges in High Precision Beamline Alignment at the ESRF FIG Working Week Christchurch New Zealand 2016

More information

Trial Examination VCE Physics Unit 4. Written Examination. Suggested Solutions

Trial Examination VCE Physics Unit 4. Written Examination. Suggested Solutions Trial Examination 2011 VCE Physics Unit 4 Written Examination Suggested Solutions Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the

More information

SAXS and SANS facilities and experimental practice. Clement Blanchet

SAXS and SANS facilities and experimental practice. Clement Blanchet SAXS and SANS facilities and experimental practice Clement Blanchet SAS experiment Detector X-ray or neutron Beam Sample 2 s Buffer X-rays Roengten, 1895 Electromagnetic wave The electromagnetic spectrum

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

Shell Atomic Model and Energy Levels

Shell Atomic Model and Energy Levels Shell Atomic Model and Energy Levels (higher energy, deeper excitation) - Radio waves: Not absorbed and pass through tissue un-attenuated - Microwaves : Energies of Photos enough to cause molecular rotation

More information

Shielding calculations for the design of new Beamlines at ALBA Synchrotron

Shielding calculations for the design of new Beamlines at ALBA Synchrotron Shielding calculations for the design of new Beamlines at ALBA Synchrotron A. Devienne 1, M.J. García-Fusté 1 1 Health & Safety Department, ALBA Synchrotron, Carrer de la Llum -6, 0890 Cerdanyola del Vallès,

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

9.4 From Ideas to Implementation

9.4 From Ideas to Implementation 9.4 From Ideas to Implementation Contextual outline By the beginning of the twentieth century, many of the pieces of the physics puzzle seemed to be falling into place. The wave model of light had successfully

More information

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction & Interference Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction in Nature What is Interference? The resultant

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

DO PHYSICS ONLINE 9.4 ROM IDEAS TO IMPLEMENTATION MINDMAP SUMMARIES

DO PHYSICS ONLINE 9.4 ROM IDEAS TO IMPLEMENTATION MINDMAP SUMMARIES DO PHYSICS ONLINE 9.4 ROM IDEAS TO IMPLEMENTATION MINDMAP SUMMARIES 1 13/14 ELECTRIC POTENTIAL V [V] Measure of charge imbalance + 6 V + + + + + + - 3 V + 6 V + 3 V + + + + 15 V 0 V - V - - + 6 V -14 V

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Lord of the Rings. The story of baby MAX how he learned to walk and grew up to be big and strong.

Lord of the Rings. The story of baby MAX how he learned to walk and grew up to be big and strong. 375 Lord of the Rings The story of baby MAX how he learned to walk and grew up to be big and strong. A small ring Sweden s first electron accelerator was built in Stockholm at the Royal Institute of Technology,

More information

Atomic Models. 1) Students will be able to describe the evolution of atomic models.

Atomic Models. 1) Students will be able to describe the evolution of atomic models. Atomic Models 1) Students will be able to describe the evolution of atomic models. 2) Students will be able to describe the role of experimental evidence in changing models of the atom. 3) Students will

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

Photoelectric Effect

Photoelectric Effect Photoelectric Effect The ejection of electrons from a surface by the action of light striking that surface is called the photoelectric effect. In this experiment, as you investigate the photoelectric effect,

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado Experiment 3 1 Introduction The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado The Michelson interferometer is one example of an optical interferometer.

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97 Introduction to XAFS Grant Bunker Associate Professor, Physics Illinois Institute of Technology Revised 4/11/97 2 tutorial.nb Outline Overview of Tutorial 1: Overview of XAFS 2: Basic Experimental design

More information

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Basics of Synchrotron Radiation Beamlines and Detectors Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Important properties of Synchrotron Radiation Tunability

More information

The atom cont. +Investigating EM radiation

The atom cont. +Investigating EM radiation The atom cont. +Investigating EM radiation Announcements: First midterm is 7:30pm on Sept 26, 2013 Will post a past midterm exam from 2011 today. We are covering Chapter 3 today. (Started on Wednesday)

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

OVERVIEW OF THE ADVANCED PHOTO&&~E (APS)* Marion M. White, Argonne National Laboratory, Argonne, IL, USA I. INTRODUCTION

OVERVIEW OF THE ADVANCED PHOTO&&~E (APS)* Marion M. White, Argonne National Laboratory, Argonne, IL, USA I. INTRODUCTION OVERVIEW OF THE ADVANCED PHOTO&&~E (APS)* Marion M White, Argonne National Laboratory, Argonne, IL, 60439 USA Abstract The Advanced Photon Source (APS)is a state-of-theart synchrotronlight source facility

More information

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2F THE ABSORPTION, DIFFRACTION AND EMISSION OF X- RAY RADIATION

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2F THE ABSORPTION, DIFFRACTION AND EMISSION OF X- RAY RADIATION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1: Experiment 2F THE ABSORPTION, DIFFRACTION AND EMISSION OF X- RAY RADIATION 1 AIMS 1.1 Physics These experiments are intended to give some experience

More information

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT)

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT) ATOMIC WORLD P. HKAL PAPER I 0 8 The metal Caesium has a work function of.08 ev. Given: Planck constant h = 6.63 0 34 J s, charge of an electron e =.60 0 9 C (a) (i) Calculate the longest wavelength of

More information

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 2 Wigglers and Undulators Jim Clarke ASTeC Daresbury Laboratory Summary from Lecture #1 Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

Beamlines on Indian synchrotron radiation source Indus-1

Beamlines on Indian synchrotron radiation source Indus-1 Beamlines on Indian synchrotron radiation source Indus-1 R. V. Nandedkar Centre for Advanced Technology, Indore 452 013, India In India, at the Center for Advanced Technology (CAT), Indore a 450 MeV electron

More information

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples ver. 2015/09/18 T. Ina, K. Kato, T. Uruga (JASRI), P. Fons (AIST/JASRI) 1. Introduction The bending magnet beamline, BL01B1,

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

STUDENT NUMBER Letter Figures Words PHYSICS. Written examination 2. Wednesday 14 November 2007

STUDENT NUMBER Letter Figures Words PHYSICS. Written examination 2. Wednesday 14 November 2007 Victorian CertiÞcate of Education 2007 SUPERVISOR TO ATTACH PROCESSING LABEL HERE STUDENT NUMBER Letter Figures Words PHYSICS Written examination 2 Wednesday 14 November 2007 Reading time: 11.45 am to

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Measurement of Beam Profile

Measurement of Beam Profile Measurement of Beam Profile The beam width can be changed by focusing via quadruples. Transverse matching between ascending accelerators is done by focusing. Profiles have to be controlled at many locations.

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

PHYSICS Written examination 2 Wednesday 10 November 2010

PHYSICS Written examination 2 Wednesday 10 November 2010 Victorian Certificate of Education 2010 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Figures Words STUDENT NUMBER PHYSICS Written examination 2 Wednesday 10 November 2010 Reading time: 11.45 am to 12.00

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Vacuum System of Synchrotron radiation sources

Vacuum System of Synchrotron radiation sources 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Vacuum System of Synchrotron radiation sources Prepared by: Omid Seify, Vacuum group, ILSF project Institute

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter 38. Photons Light Waves Behaving as Particles

Chapter 38. Photons Light Waves Behaving as Particles Chapter 38 Photons Light Waves Behaving as Particles 38.1 The Photoelectric Effect The photoelectric effect was first discovered by Hertz in 1887, and was explained by Einstein in 1905. The photoelectric

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

Laboratory Manual 1.0.6

Laboratory Manual 1.0.6 Laboratory Manual 1.0.6 Background What is X-ray Diffraction? X-rays scatter off of electrons, in a process of absorption and re-admission. Diffraction is the accumulative result of the x-ray scattering

More information

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors. Beam Loss Monitors When energetic beam particles penetrates matter, secondary particles are emitted: this can be e, γ, protons, neutrons, excited nuclei, fragmented nuclei... Spontaneous radiation and

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5 Chapter 24 Photonics Data throughout this chapter: e = 1.6 10 19 C; h = 6.63 10 34 Js (or 4.14 10 15 ev s); m e = 9.1 10 31 kg; c = 3.0 10 8 m s 1 Question 1 Visible light has a range of photons with wavelengths

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Planck's "quantum of action" and external photoelectric effect (Item No.: P )

Planck's quantum of action and external photoelectric effect (Item No.: P ) Planck's "quantum of action" and external photoelectric effect (Item No.: P2510502) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Modern Physics Subtopic: Quantum Physics

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Paper 2. Section B : Atomic World

Paper 2. Section B : Atomic World Paper 2 Section B : Atomic World Q.2 Multiple-choice questions A B C D 2.1 25.19 15.78 9.18 49.68 2.2 25.79 20.39 41.97 11.72 2.3 18.35 9.76 48.84 22.65 2.4 9.27 18.87 27.90 43.50 2.5 63.47 4.28 10.99

More information

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Artemis Kontogoula Supervisor: Vladyslav Libov September 7, 2017 National & Kapodistrian University of Athens, Greece Deutsches Elektronen-Synchrotron

More information

Radiation Protection At Synchrotron Radiation Facilities

Radiation Protection At Synchrotron Radiation Facilities 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Radiation Protection At Synchrotron Radiation Facilities Ehsan Salimi Shielding and Radiation Safety Group

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source P. K. Sahani 1,5, A. K. Das 2, Haridas G. 3, A. K. Sinha 4,5, B. N. Rajasekhar 2,5, T. A. Puntambekar 1 and N K Sahoo

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Koji Nakanishi, Toshiaki Ohta Abstract We have developed a compact experimental set-up for X-ray absorption

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

An Introduction to Surface Physics for Engineers and Scientists Jorge A. López Gallardo and Miguel Castro Colín

An Introduction to Surface Physics for Engineers and Scientists Jorge A. López Gallardo and Miguel Castro Colín An Introduction to Surface Physics for Engineers and Scientists Jorge A. López Gallardo and Miguel Castro Colín Chapter Two: Basic Processes This chapter will review several physical processes that involve

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Advanced Storage Photon Ring Source Upgrade Project:

Advanced Storage Photon Ring Source Upgrade Project: Advanced Storage Photon Ring Source Upgrade Project: The Shielding World s for Leading the Hard X-ray Light Source Advanced Photon Source - Upgrade Bradley J. Micklich Radiation Physicist Argonne National

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team Diagnostics at the MAX IV 3 GeV storage ring during commissioning PPT-mall 2 Åke Andersson On behalf of the MAX IV team IBIC Med 2016, linje Barcelona Outline MAX IV facility overview Linac injector mode

More information

3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer

3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer 3.17 Strukturanalyse mit Röntgenstrahlen nach Debye- Scherrer Ausarbeitung (engl.) Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Jan Schupp, Florian Wetzel Versuchsdatum:

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Questions on Instrumental Methods of Analysis

Questions on Instrumental Methods of Analysis Questions on Instrumental Methods of Analysis 1. Which one of the following techniques can be used for the detection in a liquid chromatograph? a. Ultraviolet absorbance or refractive index measurement.

More information