( ) = 9.03 lb m. mass of H lb m. O = lb m. = lb m. Determine density of aqueous KOH solu5on in lb m /gal. =

Size: px
Start display at page:

Download "( ) = 9.03 lb m. mass of H lb m. O = lb m. = lb m. Determine density of aqueous KOH solu5on in lb m /gal. ="

Transcription

1 To detere the ass frac5ons of KOH and HO we need the ass of each coponent and the total ass of the solu5on. We are given the ass of pure KOH in 1 gallon of solu5on is lb of KOH. We are also given the Specific Gravity of the en5re solu5on (KOH + HO) To be Plan 1. calculate total ass of solu5on using specific gravity.. Detere ass of water by subtrac5ng KOH ass fro solu5on ass 3. Calculate ass frac5ons Detere density of aqueous KOH solu5on in /gal SG ρ ρ = = ρ ρref ρ aquesous KOH = SGρ water = lb water ft 3 = ft 3 Detere total ass of aqueous KOH solu5on in ρ = ass volue ass = ρv = lb ft 3 ft 3 1 gal gal ( ) = 9.03 ass fraction KOH = KOH 9.03 = KOH ass of H O = = 8.17 ass fraction H O = 8.17 H O 9.03 = H O

2 Extra Credit Coponent ass KOH KOH lb 56 KOH/ ole = lb - oles 8.17 H O H O 8.17 lb 18 H O/ ole = lb - oles Total oles = ( ) - oles = 0.47 ole fraction KOH = 0.015lb - oles 0.47 oles = ole KOH ole ole fraction H O = lb - oles 0.47 oles = lb - ole H O ole

3 The F in the unit of T is a teperature. The calculation is best done in two steps. Step 1: Substitute for T( F) and siplify the resulting equation: t(f) 3 t( o C) = 1.8 t( o F) 3 t( o F) 3 ρ = ρ = ( 0.556t( o F) 17.78) ( 0.556t( o F) 17.78) ρ = t t Step : Define a new variable ρ in ters of /ft 3 ρ = ρ' ft 3 1kg ft 3 =16.0ρ' ρ'= ( ) t t ρ'= 6.8x t t

4 Makeup Proble The F in the unit of T is a teperature. The calculation is best done in two steps. Step 1: Substitute for T( F) and siplify the resulting equation: t(f) 3 t( o C) = 1.8 t( o F) 3 t( o F) 3 ρ = ρ = ( 0.556t( o F) 17.78) ( 0.556t( o F) 17.78) ρ = t t Step : Define a new variable ρ in ters of /ft 3 ρ = ρ' ft 3 1kg ft 3 =16.0ρ' ρ'= ( ) t t ρ'= 6.8x t t

5 P 1 = P P 3 = P 4 P 4 = P at + ρ oil gh oil P 1 P P 3 = P + ρ Hg gh hg + ρ air gh air = P 1 + ρ water gh water P 3 P 4 = P 1 + ρ water gh water P = P 3 ρ Hg gh hg ρ air gh air = ( P 3 ρ Hg gh hg ρ air gh ) air + ρ water gh water = ( P at + ρ oil gh oil ρ Hg gh hg ρ air gh ) air + ρ water gh water = P at kg 9.81 s ( ) kg kg 9.81 s s 0.15 ( ) ( ) kg = P at + ( Pa) ( Pa) ( 3.8 Pa) + ( Pa) =101,35 Pa 1,66 Pa = 89,059 Pa Lower then atosphere pressure s 0.45 ( )

6 This proble cae fro Module 4, Prac5ce Proble # Inlet Wet pulp 40 wt% water 60 wt% pulp W = 00 kg/ Dryer Outlet O = kg Dried pulp/ x wt% water y wt% pulp E = kg Evaporated H 0/ 70% of original water Plan: Calculate the Aount of water reoved by drying Perfor overall aterial balance Assue: the exi5ng dried pulp contains soe water since not all of the water is evaporated H O evaporated = 0.70 kg H O evaporated 00 kg H O entering dryer H O evaporated = 56 kg H O evaporated 60 kg wet pulp 0.40 kg H O kg wet pulp = 3,360 kg H O evaporated Overall Mass Balance Input Output + Genera5on Consup5on = Accuula5on Input = Output W = E + O 00 kg wet pulp = 56 kg H O evaporated + O O = = 8,640

7 Makeup Exa Inlet Wet pulp 50 wt% water 50 wt% pulp W = 00 kg/ Dryer Outlet O = kg Dried pulp/ x wt% water y wt% pulp E = kg Evaporated H 0/ 60% of original water Plan: Calculate the Aount of water reoved by drying Perfor overall aterial balance Assue: the exi5ng dried pulp contains soe water since not all of the water is evaporated H O evaporated = 0.60 kg H O evaporated 00 kg H O entering dryer H O evaporated = 60 kg H O evaporated 60 kg wet pulp 0.50 kg H O kg wet pulp = 3,600 kg H O evaporated Overall Mass Balance Input Output + Genera5on Consup5on = Accuula5on Input = Output W = E + O 00 kg wet pulp = 60 kg H O evaporated + O O = = 8,400

8 No, not with these units Need to ul5ply by g c f = D ( ΔP ) f = D ( ΔP ) ρv z = ft 3 ft lb f ft ft s = ft lb f ft s = lb f s ft ρv z = lb f s ft * ft /s = diensionless lb f This proble cae fro Module, Prac5ce Proble #9

9 Input Output + Genera3on Consup3on = Accuula3on Input aterial (ass) that enters tough the syste boundaries Genera5on aterial produced by reac5on within the syste Output Material that leaves tough the syste boundaries Consup5on Material that is consued by reac5on within the syste Accuula5on aterial that builds up in the syste Input Output + Genera5on = Accuula5on IOGA Genera5on this ter is posi5ve if aterial is produced within the syste and nega5ve if aterial is being consued within the syste.

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m. ME 300 Therodynaics II Exa 2 Noveber 3, 202 8:00 p.. 9:00 p.. Nae: Solution Section (Circle One): Sojka Naik :30 a.. :30 p.. Instructions: This is a closed book/notes exa. You ay use a calculator. You

More information

Daniel López Gaxiola 1 Student View Jason M. Keith

Daniel López Gaxiola 1 Student View Jason M. Keith Suppleental Material for Transport Process and Separation Process Principles Chapter Principles of Moentu Transfer and Overall Balances In fuel cells, the fuel is usually in gas or liquid phase. Thus,

More information

Pressure measurements

Pressure measurements Next Previous 8/6/01 Chapter six + seven Pressure and Flow easureents Laith Batarseh Hoe End Basic concepts Pressure is represented as a force per unit area Absolute pressure refers to the absolute value

More information

Chapter 4: Temperature

Chapter 4: Temperature Chapter 4: Teperature Objectives: 1. Define what teperature is. 2. Explain the difference between absolute and relative teperature. 3. Know the reference points for the teperature scales. 4. Convert a

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

) = slugs/ft 3. ) = lb ft/s. ) = ft/s

) = slugs/ft 3. ) = lb ft/s. ) = ft/s 1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Che340 hysical Cheistry for Biocheists Exa 3 Apr 5, 0 Your Nae _ I affir that I have never given nor received aid on this exaination. I understand that cheating in the exa will result in a grade F for

More information

Business. Professional application due Nov 17

Business. Professional application due Nov 17 Business Professional application due Nov 17 Need to estiate what elective courses you will take Mark how you fulfilled Math & Cheistry Major and Total GPA Fill out fors and spreadsheet Then eet with your

More information

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street Distillation The Continuous Colun Gavin Duffy School of Electrical Engineering DIT Kevin Street Learning Outcoes After this lecture you should be able to.. Describe how continuous distillation works List

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

Preface to the Instructor

Preface to the Instructor Preface to the Instructor With the exception of soe open-ended probles, this Instructor s Solutions Manual contains a solution to each of the nuerical probles in the textbook An Introduction to Mechanical

More information

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation uidity paraeters Saturation (equilibriu) vapor pressure Condensation balances evaporation Miing ratio & specific huidity Mass ratio of water vapor and air and water content and wet air. Dew point & frost

More information

Chapter 1 Systems of Measurement

Chapter 1 Systems of Measurement Chapter Systes of Measureent Conceptual Probles * Deterine the Concept he fundaental physical quantities in the SI syste include ass, length, and tie. Force, being the product of ass and acceleration,

More information

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol olar ass,, of the unknown gas: n 10.00 g 0.088037 ol 113.16057 g/ ol olar ass,, of the epirical forula C 4 H 9 : 4 9 C4H9 C H 4 12.01 g/ol 9 1.01 g/ol 57.13 g/ol Ratio of olar asses: 113.16057 g/ol 1.9807

More information

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1 to: Units and Calculations Hoework Proble Set Cheistry 145, Chapter 1 Give the nae and abbreviation of the SI Unit for: a Length eter b Mass kilogra kg c Tie second s d Electric Current ap A e Teperature

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

Tables of data and equations are on the last pages of the exam.

Tables of data and equations are on the last pages of the exam. Nae 4 August 2005 CHM 112 Final Exa (150 pts total) Tables of data and equations are on the last pages of the exa. (1.) Methanol (CH 3 OH) is anufactured by the reaction of carbon onoxide with hydrogen

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

I. Concepts and Definitions. I. Concepts and Definitions

I. Concepts and Definitions. I. Concepts and Definitions F. Properties of a syste (we use the to calculate changes in energy) 1. A property is a characteristic of a syste that can be given a nuerical value without considering the history of the syste. Exaples

More information

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx 6 Hydraulic Properties The soil hydraulic properties are of utost iportance for a large variety of soil processes and in particular for soil water flow. The two ost coon hydraulic properties are the soil

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32 Departent of Mechanical Engineering ME 322 Mechanical Engineering Therodnaics Ideal Gas Mixtures II Lecture 32 The Gibbs Phase Rule The nuber of independent, intensive properties required to fix the state

More information

Dynamics of Bass Reflex Loudspeaker Systems (3)

Dynamics of Bass Reflex Loudspeaker Systems (3) MCAP5E Dynaics of Bass Refle Loudspeaker Systes (3) Deriving Equations of Motion of Bass Refle Speaker Systes 3. Deriving Equations of Motion Shigeru Suzuki Released in May 5th, 8 in Japanese Released

More information

PROBLEM SOLUTIONS. g, recognizing that 2 is a dimensionless. 1.1 Substituting dimensions into the given equation T 2. constant, we have.

PROBLEM SOLUTIONS. g, recognizing that 2 is a dimensionless. 1.1 Substituting dimensions into the given equation T 2. constant, we have. PROBLEM SOLUTIONS 1.1 Substituting diensions into the given equation T g, recognizing that is a diensionless constant, we have T g L or T T T LT Thus, the diensions are consistent. 1. (a) Fro x = Bt, we

More information

Calculations Manual 5-1

Calculations Manual 5-1 Calculations Manual 5-1 Although you ay be anxious to begin building your rocket, soe iportant decisions need to be ade about launch conditions that can help ensure a ore accurate launch. Reeber: the goal

More information

Archimedes Principle

Archimedes Principle Archiedes Principle Ojectives- 1- To easure gauge pressure. 2- To veriy Archiedes' Principle. 3- To use this principle to deterine the density o an unknown liquid deterine the density o an irregular solid

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Heat Capacity: measures the ability of the substance to pick up heat

Heat Capacity: measures the ability of the substance to pick up heat Calorietry: easures flow of heat across boundaries Heat Capacity: easures the ability of the substance to pick up heat Heat capacity under constant pressure, C p euals the aount of heat reuired to raise

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

Class 3 8/31/10. Friday, August 27 th. Mass & Volume Flow Rate Chemical Composition

Class 3 8/31/10. Friday, August 27 th. Mass & Volume Flow Rate Chemical Composition Class 3 Friday, August 27 th Which of the following cannot be linearized? (P is in mm Hg and T is in degrees Celsius, m, a, b and c are constants). The concentrations of [H 2 ], [Br 2 ], and [H 2 O] are

More information

Chapter 4: Hypothesis of Diffusion-Limited Growth

Chapter 4: Hypothesis of Diffusion-Limited Growth Suary This section derives a useful equation to predict quantu dot size evolution under typical organoetallic synthesis conditions that are used to achieve narrow size distributions. Assuing diffusion-controlled

More information

MECHANICS of FLUIDS INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY FOURTH EDITION. MERLE C. POTTER Michigan State University DAVID C.

MECHANICS of FLUIDS INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY FOURTH EDITION. MERLE C. POTTER Michigan State University DAVID C. INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY MECHANICS of FLUIDS FOURTH EDITION MERLE C. POTTER Michigan State University DAVID C. WIGGERT Michigan State University BASSEM RAMADAN Kettering University Contents

More information

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ME 5 Tutoril, Week# Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5 C enters cooling toer ith ss flo rte of 5000 kg/s. A stre of cooled ter is returned

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine 6.5, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynaics of Turbopup Systes: The Shuttle Engine Dynaics of the Space Shuttle Main Engine Oxidizer Pressurization Subsystes Selected Sub-Model

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

We last left off by talking about how the area under a force vs. time curve is impulse.

We last left off by talking about how the area under a force vs. time curve is impulse. Lecture 11 Ipulse and Moentu We last left off by talking about how the area under a force vs. tie curve is ipulse. Recall that for our golf ball we had a strongly peaked force curve: F F avg t You have

More information

2002 University of Porto, Faculty of Engineering (FEUP)

2002 University of Porto, Faculty of Engineering (FEUP) Holberg H, Ahtila P. Drying phenoenon in a fixed bed under the bio fuel ulti stage drying. In: Oliveira A, Afonso C, Riffat S, editors. Proceedings of the st International Conference on Sustainable Energy

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C? Section 12.2 The Ideal Gas Law Solutions for Practice Probles Student Edition page 556 21. Practice Proble (page 556) What is the volue of 5.65 ol of heliu gas at a pressure of 98 kpa and a teperature

More information

Application of Basic Thermodynamics to Compressor Cycle Analysis

Application of Basic Thermodynamics to Compressor Cycle Analysis Purdue University Purdue e-pubs International Copressor Engineering Conference School of Mechanical Engineering 1974 Application of Basic Therodynaics to Copressor Cycle Analysis R. G. Kent Allis Chalers

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

Temperature and Thermodynamics, Part II. Topics to be Covered

Temperature and Thermodynamics, Part II. Topics to be Covered Teperature and Therodynaics, Part II Topics to be Covered Profiles of Teperature in the Boundary Layer Potential teperature Adiabatic Lapse Rate Theral Stratification 1/8/17 Why are We Interested in Theral

More information

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance Cheistry 45 Physial Cheistry I Exa I Given Info: R 8.35 J ol - K - Van Der Waals Constants k b.38 x 0-3 J K - Substane a b P T (J. 3 /ole ) ( 3 /ole) (MPa) (K) Air 0.358 3.64x0-5 3.77 33 K Carbon Dioxide

More information

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle. ENSC 61 Tutorial, eek#8 Ga Refrigeration Cycle A refrigeration yte ug a the workg fluid, conit of an ideal Brayton cycle run revere with a teperature and preure at the let of the copreor of 37C and 100

More information

points Points <40. Results of. Final Exam. Grade C D,F C B

points Points <40. Results of. Final Exam. Grade C D,F C B Results of inal Exa 5 6 7 8 9 points Grade C D, Points A 9- + 85-89 7-8 C + 6-69 -59 < # of students Proble (che. equilibriu) Consider the following reaction: CO(g) + H O(g) CO (g) + H (g) In equilibriu

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

CHEM 305 Solutions for assignment #2

CHEM 305 Solutions for assignment #2 CHEM 05 Solutions for assignent #. (a) Starting fro C C show that C C Substitute the result into the original expression for C C : C C (b) Using the result fro (a), evaluate C C for an ideal gas. a. Both

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

2.9 Feedback and Feedforward Control

2.9 Feedback and Feedforward Control 2.9 Feedback and Feedforward Control M. F. HORDESKI (985) B. G. LIPTÁK (995) F. G. SHINSKEY (970, 2005) Feedback control is the action of oving a anipulated variable in response to a deviation or error

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces

Elastic Force: A Force Balance: Elastic & Gravitational Force: Force Example: Determining Spring Constant. Some Other Forces Energy Balance, Units & Proble Solving: Mechanical Energy Balance ABET Course Outcoes: 1. solve and docuent the solution of probles involving eleents or configurations not previously encountered (e) (e.g.

More information

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations.

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations. he Lecture Notes, Dept. of heical Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updated /) Eaple pplications of systes of linear equations Included in this hand-out are five eaples of probles

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance.

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance. Chapter 9 1. Put F 1 along the x axis. Add the three y-coponents (which total 0) and solve for the y- coponent of F 3. Now add the x-coponents of all three vectors (which total 0) and solve for the x-coponent

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa 1 Circle your instructor s last nae Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division (9:0): Choi Division

More information

Dimensions and Units

Dimensions and Units Civil Engineering Hydraulics Mechanics of Fluids and Modeling Diensions and Units You already know how iportant using the correct diensions can be in the analysis of a proble in fluid echanics If you don

More information

Physics with Health Science Applications Ch. 3 pg. 56

Physics with Health Science Applications Ch. 3 pg. 56 Physics with Health Science Applications Ch. 3 pg. 56 Questions 3.4 The plane is accelerating forward. The seat is connected to the plane and is accelerated forward. The back of the seat applies a forward

More information

Farid Samara 1, Dominic Groulx 1 and Pascal H. Biwole 2 1

Farid Samara 1, Dominic Groulx 1 and Pascal H. Biwole 2 1 Farid Saara 1, Doinic Groulx 1 and Pascal H. Biwole 2 1 Departent of Mechanical Engineering, Dalhousie University 2 Departent of Matheatics and Interactions, Université of Nice Sophia-Antipolis Excerpt

More information

Modelling of the Through-air Bonding Process

Modelling of the Through-air Bonding Process Modelling of the Through-air Bonding Process M. Hossain 1, M. Acar, Ph.D. 2, W. Malalasekera 2 1 School of Engineering, The Robert Gordon University, Aberdeen, UNITED KINDOM 2 Mechanical and Manufacturing

More information

CFD SIMULATION OF PRESSURE LOSS IN HVDC TRANSFORMER WINDING

CFD SIMULATION OF PRESSURE LOSS IN HVDC TRANSFORMER WINDING Journal of Energy VOLUME 63 2014 journal hoepage: http://journalofenergy.co/ Ralf Wittaack Sieens AG, Nürnberg, Gerany Ralf.Wittaack@Sieens.co CFD SIMULATION OF PRESSURE LOSS IN HVDC TRANSFORMER WINDING

More information

NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS

NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS Dr. J. Micael Doster Departent of Nuclear Engineering Nort Carolina State University Raleig, NC Copyrigted POER CYCLES Te analysis of Terodynaic Cycles is based alost

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

Discussion Examples Chapter 13: Oscillations About Equilibrium

Discussion Examples Chapter 13: Oscillations About Equilibrium Discussion Exaples Chapter 13: Oscillations About Equilibriu 17. he position of a ass on a spring is given by x 6.5 c cos t 0.88 s. (a) What is the period,, of this otion? (b) Where is the ass at t 0.5

More information

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE Bulletin of the Transilvania University of Braşov Series II: Forestry Wood Industry Agricultural Food Engineering Vol. 5 (54) No. 1-1 THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

The Development of a Generalised Jet Mixing Model for the Derivation of Exclusion Zones in Hazardous Area Classification

The Development of a Generalised Jet Mixing Model for the Derivation of Exclusion Zones in Hazardous Area Classification The Developent of a Generalised Jet Mixing Model for the Derivation of Exclusion Zones in Hazardous Area Classification Katherine McCobe, Peter Tait, Jason Whitley LogiCas Ltd. 33 Boundary Street, Spring

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

Results of Final Exam

Results of Final Exam Results of Fial Exa # of studets 1 3 4 5 6 7 8 9 Grade Poits A >15 + 1-14 75-94 C + 7-74 C 45-69 D 35-44 F

More information

S O RPTOME TE R BET A

S O RPTOME TE R BET A Pharaceuticals Cheicals A u t o o t iv e Ceraics Not just products... Solutions! Papers Filters S O RPTOME TE R BET- 201- A Sorptoeters PMI s BET-Sorptoeter is fully autoated, voluetric gas sorption analyzer

More information

Particle Kinetics Homework

Particle Kinetics Homework Chapter 4: article Kinetics Hoework Chapter 4 article Kinetics Hoework Freefor c 2018 4-1 Chapter 4: article Kinetics Hoework 4-2 Freefor c 2018 Chapter 4: article Kinetics Hoework Hoework H.4. Given:

More information

Chapter 2: Introduction to Damping in Free and Forced Vibrations

Chapter 2: Introduction to Damping in Free and Forced Vibrations Chapter 2: Introduction to Daping in Free and Forced Vibrations This chapter ainly deals with the effect of daping in two conditions like free and forced excitation of echanical systes. Daping plays an

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON

DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON Unurbileg Daraa 2 1, Jin Wan Chung 1 and Sungjun Lee 1, Seung Na Park 1* 1 Korea Research Institute of Standards and

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

A Numerical Investigation of Turbulent Magnetic Nanofluid Flow inside Square Straight Channel

A Numerical Investigation of Turbulent Magnetic Nanofluid Flow inside Square Straight Channel A Nuerical Investigation of Turbulent Magnetic Nanofluid Flow inside Square Straight Channel M. R. Abdulwahab Technical College of Mosul, Mosul, Iraq ohaedalsafar2009@yahoo.co Abstract A nuerical study

More information

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.

ELEC NCERT. 1. Which cell will measure standard electrode potential of copper electrode? (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq. I. Multiple Choice Questions (Type-I) 1. Which cell will easure standard electrode potential of copper electrode? Pt (s) H 2 (g,0.1 bar) H + (aq.,1 M) Cu 2+ (aq.,1m) Cu Pt(s) H 2 (g, 1 bar) H + (aq.,1

More information

Ex Problem 10 - Countercurrent Packed Tower for Absorption of Ammonia Gas (Pilat)

Ex Problem 10 - Countercurrent Packed Tower for Absorption of Ammonia Gas (Pilat) Ex Problem 10 - Countercurrent Packed Tower for Absorption of Ammonia Gas (Pilat) Given Gas (air flow) upward of 4,000 acfm at 68F or 528R and 1 atm pressure Inlet gaseous conc. of 6,000 ppm NH 3 (dry

More information

MATHEMATICAL MODELING OF LARGE FOREST FIRE INITIATION

MATHEMATICAL MODELING OF LARGE FOREST FIRE INITIATION . INTODUCTION MATHEMATICAL MODELING OF LAGE FOEST FIE INITIATION Valeri A.Perinov * Belovo Branch of Keerovo State University Belovo Keerovo region ussia A large technogeneous or space catastrophe as a

More information

Lecture 8.2 Fluids For a long time now we have been talking about classical mechanics, part of physics which studies macroscopic motion of

Lecture 8.2 Fluids For a long time now we have been talking about classical mechanics, part of physics which studies macroscopic motion of Lecture 8 luids or a long tie now we have een talking aout classical echanics part of physics which studies acroscopic otion of particle-like ojects or rigid odies Using different ethods we have considered

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

The ballistic pendulum

The ballistic pendulum (ta initials) first nae (print) last nae (print) brock id (ab17cd) (lab date) Experient 4 The ballistic pendulu In this Experient you will learn how to deterine the speed of a projectile as well as the

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

1 The properties of gases The perfect gas

1 The properties of gases The perfect gas 1 The properties of gases 1A The perfect gas Answers to discussion questions 1A. The partial pressure of a gas in a ixture of gases is the pressure the gas would exert if it occupied alone the sae container

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A raindrop falls vertically under gravity through a cloud. In a odel of the otion the raindrop is assued to be spherical at all ties and the cloud is assued to consist of stationary water particles.

More information

Chapter 5 Sludge treatment

Chapter 5 Sludge treatment Chapter 5 Sluge treatent 5.1 Sluge efinition: Sluge is ae of soli aterials separate fro the water line uring wastewater treatent. In aition to solis, sluge contains a high percent of water. 5.2 Sluge sources:

More information

ln P 1 saturation = T ln P 2 saturation = T

ln P 1 saturation = T ln P 2 saturation = T More Tutorial at www.littledubdoctor.co Physical Cheistry Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information