Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors

Size: px
Start display at page:

Download "Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors"

Transcription

1 Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Philip Klipstein

2 General Review of Barrier Detectors 1) Higher operating temperature, T OP 2) Higher signal to noise at low T OP 3) Simple 2-color architecture 4) Simplification of processing and passivation Standard Diode Barrier diode SPIE March

3 Timeline 1983: Anthony White (UK): patent of barrier devices in MCT: US 4,679, : P C Klipstein, patent of barrier devices in InAsSb and superlattice: WO 2005/ A1 2006: Maimon and Wicks, Appl. Phys. Lett. 89, Coined the name: nbn First nbn fabrication in InAs 2007: U of New Mexico, Appl. Phys. Lett91, First nbn fabrication in Superlattice SPIE March

4 BIPOLAR X Bn Detector Family - No Depletion in NARROW bandgap absorber - Holes free to move from absorber to contact p-b-n UNIPOLAR n-b-n BIPOLAR UNIPOLAR C p -B-n C n -B-n SPIE March

5 Standard Diode: NARROW bandgap is depleted GR process S-R-H trap (G-R centre) Diffusion process E G IDiffusion IGR ~ ~ EG kbt e EG 2kBT e I = I + I Diffusion GR 77K L n L dep L p Log I E /k /kslopes G B slopes I MWIR (λ C ~4µ) at 77K: 1 N L τ E /2k GR D Dep p0 4 5 ~ ~ IDiffusion 2 ni L τ p n0 SPIE / T 19 March G B

6 XBn has no depletion in narrow bandgap S/C XBn has negligible G-R current Log I I STD XBn (high temperature) Dark Current Arrhenius plot Standard diode XBn (high sensitivity) XBn Device only has an advantage below T 0 T 0 1 / T I STD < I photo SPIE March

7 E C E (p) F E V GaSb AlSbAs V bias MWIR CBn detector Room Temperature Bandgap (ev) GaP Si AlP GaAs AlAs Ge InP AlSb GaSb InAs Indirect Gap Direct Gap InSb Lattice Constant (nm) Room Temperature Wavelength (microns) InAsSb E C E F(n) SPIE March E V i) Optical behaviour like narrow gap diode ii) Electrical behaviour like wide gap diode

8 log 10 I J GR Estimation of crossover temperature, T 0 Ldep NvNc = 2 τ τ InSb p 0 n /T ( K -1 ) e T0(K) k T 50 E G B J GR (T 0 )= J diff (T 0 ) τ n0 ~300nS D P ~32cm 2 /s (τ p0 ~500nS) T 0 ~130K N=2e16 N=2e Bandgap (ev) SPIE March J Diff ~ InAs 0.91 Sb 0.09 T 0 ~170K NC N N D V L τ diff p p 0 e E B G k T V.P. Astakhov et al. Pis ma Zh Tekh Fiz 18, 1 (1992) InAs

9 Estimation of XBn Operating Temperature, T 0P Temperature (K) λ C = 4.2µ (E G =0.3eV) T 0 1.E+14 1.E+15 1.E+16 1.E+17 N D (cm -3 ) T OP: BLIP/10 (f/3;qe=0.7) InAs 0.91 Sb 0.09 BLIP/10: J diff (T OP )= J photo /10 T OP < T 0, so barrier detector works HOTTER than standard detector Real T OP ~ 150K is feasible for large N D Barrier detector tolerates large N D because depletion width is independent of N D (determined by barrier width) and bias SPIE March

10 C p -B-n AlSb As 1-x x Bias Range E C p-type GaSb V bias =V MAX E C V bias <V MAX E (p) F E V ξ V bias InAs Sb 1-z z E (n) F E C E V E F(p) E V < 3kT OP V bias E (n) F E C E V No G-R current = higher T OP SPIE March

11 C p -B-n Barrier Doping E C barrier p-type GaSb AlSb As 1-x x Flat bands, in InAsSb p-type barrier Bent bands, in InAsSb E (p) F E V ξ V bias InAs Sb 1-z z E (n) F E C E V Hole accumulation layer V BIAS Depletion in absorbing layer = lower T OP SPIE March

12 Type II SL CBn detectors Al Ga Sb As 1-x x 1-y y SL( ) λ 1 SL( ) λ 2 E F,L V bias E F (n) λ 1 λ 2 E F,R C p -B-n C n -B-n (2 colour) SPIE March

13 Type II SL CBn detectors Al Ga Sb As 1-x x 1-y y SL( ) λ 1 SL( ) λ 2 E F,R E F,L V bias E F (n) λ 1 λ 2 C p -B-n C n -B-n (2 colour) SPIE March

14 Processing of XBn Detector B C p n-active layer Etch stop B C p n-active layer Cap B Metal C p n-active layer I Metal -Barrier acts a bit like overgrown passivation layer -Standard LWIR FPAs are hard to passivate XBn could be a good alternative passivation solution SPIE March

15 C p -B-n Limits on Barrier width and height t. emission GaSb E C ~1.0eV n-b-n t. emission E C ~2.1eV η V bias tunneling InAs Sb InAsSb tunneling InAs Sb InAsSb I TE, I tunn < I photo (f/8, QE=0.7) gives Thermionic emission: E C >0.4eV (based on Richardson Formula) Tunneling: Barrier Thickness > 300Å (based on 2-band k.p calculation) SPIE March

16 Conclusions 1. XBn Detectors come as CBn, pbn, nbn, etc. 2. No depletion in absorbing layer and no G-R current 3. Anticipated Advantages for MW and LW i) HOTTER than a standard photodiode (MWIR) ii) LESS NOISE at lower T OP (MWIR) iii) EASIER to passivate (LWIR) iv) 2 color (including MW/LW) is simple in nbn configuration v) All proposed designs grown on GaSb substrates 4. XBn detector design for better performance : barrier and high doping in absorbing layer SPIE March

"XBn" Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors

XBn Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors "XBn" Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Philip Klipstein Semiconductor Devices, P O Box 2250, Haifa 31021, ISRAEL email: philip_k@scd.co.il ABSTRACT

More information

XBn and XBp infrared detectors

XBn and XBp infrared detectors XBn and XBp infrared detectors P.C. Klipstein, SemiConductor Devices P.O. Box 22, Haifa 31021, Israel XBn and XBp barrier detectors grown from III-V materials on GaSb substrates have recently been shown

More information

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

Chapter 3 The InAs-Based nbn Photodetector and Dark Current 68 Chapter 3 The InAs-Based nbn Photodetector and Dark Current The InAs-based nbn photodetector, which possesses a design that suppresses surface leakage current, is compared with both a commercially available

More information

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors Very long wavelength type-ii InAs/GaSb superlattice infrared detectors L. Höglund 1, J. B. Rodriguez 2, S. Naureen 1, R. Ivanov 1, C. Asplund 1, R. Marcks von Würtemberg 1, R. Rossignol 2, P. Christol

More information

MODELING InAs/GaSb AND InAs/InAsSb SUPERLATTICE INFRARED DETECTORS

MODELING InAs/GaSb AND InAs/InAsSb SUPERLATTICE INFRARED DETECTORS MODELING InAs/GaSb AND InAs/InAsSb SUPERLATTICE INFRARED DETECTORS P.C. Klipstein *, Y. Livneh +, A. Glozman, S. Grossman, O. Klin, N. Snapi, E. Weiss SemiConductor Devices, P O Box 2250, Haifa 31021,

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University Photonic Communications Engineering Lecture Dr. Demetris Geddis Department of Engineering Norfolk State University Light Detectors How does this detector work? Image from visionweb.com Responds to range

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

Chapter 5 Lateral Diffusion Lengths of Minority Carriers

Chapter 5 Lateral Diffusion Lengths of Minority Carriers 111 Chapter 5 Lateral Diffusion Lengths of Minority Carriers The nbn photodetector is proposed as a tool for measuring the lateral diffusion length of minority carriers in an epitaxially grown crystal

More information

Extended short wavelength infrared nbn photodetectors based on type II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier

Extended short wavelength infrared nbn photodetectors based on type II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier Extended short wavelength infrared nbn photodetectors based on type II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi 1,a)

More information

Growth and characteristics of type-ii InAs/GaSb superlattice-based detectors

Growth and characteristics of type-ii InAs/GaSb superlattice-based detectors Growth and characteristics of type-ii InAs/GaSb superlattice-based detectors A. Khoshakhlagh*, D. Z. Ting, A. Soibel, L. Höglund, J. Nguyen, S. A. Keo, A. Liao, and S. D. Gunapala Jet Propulsion Laboratory,

More information

Accepted Manuscript. Manufacturability of type-ii InAs/GaSb superlattice detectors for infrared imaging

Accepted Manuscript. Manufacturability of type-ii InAs/GaSb superlattice detectors for infrared imaging Accepted Manuscript Manufacturability of type-ii InAs/GaSb superlattice detectors for infrared imaging L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, E.

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes John Prineas Department of Physics and Astronomy, University of Iowa May 3, 206 Collaborator: Thomas Boggess Grad Students: Yigit Aytak Cassandra

More information

Schottky Diodes (M-S Contacts)

Schottky Diodes (M-S Contacts) Schottky Diodes (M-S Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Barrier infrared detectors

Barrier infrared detectors OPTO ELECTRONICS REVIEW 22(2), 127 146 DOI: 10.2478/s11772 014 0187 x Barrier infrared detectors P. MARTYNIUK *, M. KOPYTKO, and A. ROGALSKI Institute of Applied Physics, Military University of Technology,

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

MODELING & SIMULATION FOR PARTICLE RADIATION DAMAGE TO ELECTRONIC AND OPTO-ELECTRONIC DEVICES

MODELING & SIMULATION FOR PARTICLE RADIATION DAMAGE TO ELECTRONIC AND OPTO-ELECTRONIC DEVICES AFRL-RV-PS- TR-2018-0001 AFRL-RV-PS- TR-2018-0001 MODELING & SIMULATION FOR PARTICLE RADIATION DAMAGE TO ELECTRONIC AND OPTO-ELECTRONIC DEVICES Sanjay Krishna University of New Mexico 1700 Lomas Blvd.

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Chapter 4. Photodetectors

Chapter 4. Photodetectors Chapter 4 Photodetectors Types of photodetectors: Photoconductos Photovoltaic Photodiodes Avalanche photodiodes (APDs) Resonant-cavity photodiodes MSM detectors In telecom we mainly use PINs and APDs.

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout ECE 162C Lecture #13 Prof. John Bowers Definitions Quantum efficiency η: Ratio of the number of electrons collected to the number of

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Mid-Wavelength Infrared nbn for HOT Detectors

Mid-Wavelength Infrared nbn for HOT Detectors Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014 DOI: 10.1007/s11664-014-3161-y Ó 2014 The Author(s). This article is published with open access at Springerlink.com Mid-Wavelength Infrared nbn for

More information

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

Reticulated shallow etch mesa isolation (RSEMI) for controlling surface leakage in GaSb-based infrared detectors

Reticulated shallow etch mesa isolation (RSEMI) for controlling surface leakage in GaSb-based infrared detectors Reticulated shallow etch mesa isolation (RSEMI) for controlling surface leakage in GaSb-based infrared detectors J. A. Nolde, 1,a) E. M. Jackson, 1 M. F. Bennett, 2 C. A. Affouda, 1 E. R. Cleveland, 1

More information

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5 unneling transport Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5 Electron transport properties l e : electronic mean free path l φ : phase coherence length λ F : Fermi wavelength ecture Outline Important

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

InGaAs-AlAsSb quantum cascade lasers

InGaAs-AlAsSb quantum cascade lasers InGaAs-AlAsSb quantum cascade lasers D.G.Revin, L.R.Wilson, E.A.Zibik, R.P.Green, J.W.Cockburn Department of Physics and Astronomy, University of Sheffield, UK M.J.Steer, R.J.Airey EPSRC National Centre

More information

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction, Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information for Mid-infrared HgTe colloidal quantum dot photodetectors Sean Keuleyan, Emmanuel Lhuillier, Vuk Brajuskovic and Philippe Guyot-Sionnest* Optical absorption

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Electro-Optical Characterization of MWIR InAsSb Detectors

Electro-Optical Characterization of MWIR InAsSb Detectors Electro-Optical Characterization of MWIR InAsSb Detectors A.I. D Souza a, E. Robinson, A.C. Ionescu, D. Okerlund DRS Sensors & Targeting Systems, 10600 Valley View Street, Cypress, CA 90630 T.J. de Lyon,

More information

BARRIER DETECTORS VERSUS HOMOJUNCTION PHOTODIODE P. Martyniuk, W. Gawron

BARRIER DETECTORS VERSUS HOMOJUNCTION PHOTODIODE P. Martyniuk, W. Gawron Metrol. Meas. Syst., Vol. XXI (2014), No. 4, pp. 675 684. METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-8229 www.metrology.pg.gda.pl BARRIER DETECTORS VERSUS HOMOJUNCTION PHOTODIODE P. Martyniuk,

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Mid-wave InAs/GaSb superlattice barrier infrared detectors with nbnn and pbnn design

Mid-wave InAs/GaSb superlattice barrier infrared detectors with nbnn and pbnn design BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 66, No. 3, 2018 DOI: 10.24425/123438 Mid-wave InAs/GaSb superlattice barrier infrared detectors with nbnn and pbnn design E. GOMÓŁKA

More information

B12: Semiconductor Devices

B12: Semiconductor Devices B12: Semiconductor Devices Example Sheet 2: Solutions Question 1 To get from eq. (5.70) of the notes to the expression given in the examples sheet, we simply invoke the relations n 0 p 0, n 0 n 0. In this

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor device structures are traditionally divided into homojunction devices 0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting

More information

Photodetector Basics

Photodetector Basics Photodetection: Absorption => Current Generation hυ Currents Materials for photodetection: t ti E g

More information

Chapter 17. λ 2 = 1.24 = 6200 Å. λ 2 cutoff at too short a wavelength λ 1 cutoff at to long a wavelength (increases bandwidth for noise reduces S/N).

Chapter 17. λ 2 = 1.24 = 6200 Å. λ 2 cutoff at too short a wavelength λ 1 cutoff at to long a wavelength (increases bandwidth for noise reduces S/N). 70 Chapter 17 17.1 We wish to use a photodiode as a detector for a signal of 9000 Å wavelength. Which would be the best choice of material for the photodiode, a semiconductor of bandgap = 0.5 ev, bandgap

More information

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL Solid State Physics SEMICONDUCTORS - IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a p-type semiconductor, i.e. n h >> n e. (1) Create a local

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

Lect. 10: Photodetectors

Lect. 10: Photodetectors Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S. Short wavelength and strain compensated InGaAs-AlAsSb AlAsSb quantum cascade lasers D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.Menzel, Department of Physics and Astronomy, University of Sheffield, United

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Photosynthesis & Solar Power Harvesting

Photosynthesis & Solar Power Harvesting Lecture 23 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE SEM and EDAX images of an integrated circuit SEM EDAX: Si EDAX: Al source: [Cal 99 / 605] M&D-.PPT, slide: 1, 12.02.02 Classification semiconductors electronic semiconductors mixed conductors ionic conductors

More information

3. Two-dimensional systems

3. Two-dimensional systems 3. Two-dimensional systems Image from IBM-Almaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological

More information

PIN versus PN Homojunctions in GaInAsSb Micron Mesa Photodiodes

PIN versus PN Homojunctions in GaInAsSb Micron Mesa Photodiodes PIN versus PN Homojunctions in GaInAsSb 2.0-2.5 Micron Mesa Photodiodes J. P. Prineas a,b, J.R. Yager a,b, J. T. Olesberg b,c, S. Seydmohamadi a,b, C. Cao a,b, M. Reddy b, C. Coretsopoulos b, J. L. Hicks

More information

Quantum Well Infrared Photodetectors: From Laboratory Objects to Products

Quantum Well Infrared Photodetectors: From Laboratory Objects to Products Quantum Well Infrared Photodetectors: From Laboratory Objects to Products 6th Rencontres du Vietnam: Hanoi 2006 Nanophysics: from fundamental to applications P. Bois QWIP history: from laboratory objects

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Photonic Devices. Light absorption and emission. Transitions between discrete states

Photonic Devices. Light absorption and emission. Transitions between discrete states Light absorption and emission Photonic Devices Transitions between discrete states Transition rate determined by the two states: Fermi s golden rule Absorption and emission of a semiconductor Vertical

More information

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance LED access resistances W the output window size p-layer series access resistance d p n-layer series access resistance d n The n-layer series access resistance R = ρ s n where the resistivity of the n-layer

More information

Recombination: Depletion. Auger, and Tunnelling

Recombination: Depletion. Auger, and Tunnelling Recombination: Depletion Region, Bulk, Radiative, Auger, and Tunnelling Ch 140 Lecture Notes #13 Prepared by David Gleason We assume: Review of Depletion Region Recombination Flat Quantum Fermi Levels

More information

GCEP Symposium 5 October 2011 HOT CARRIER SOLAR CELLS

GCEP Symposium 5 October 2011 HOT CARRIER SOLAR CELLS GCEP Symposium 5 October 2011 HOT CARRIER SOLAR CELLS Gavin Conibeer - Photovoltaics Centre of Excellence, UNSW Robert Patterson, Pasquale Aliberti, Shujuan Huang, Yukiko Kamakawa, Hongze Xia, Dirk König,

More information

Investigation of InAs/GaSb superlattice based nbn detectors and focal plane arrays

Investigation of InAs/GaSb superlattice based nbn detectors and focal plane arrays University of New Mexico UNM Digital Repository Optical Science and Engineering ETDs Engineering ETDs 9-10-2010 Investigation of InAs/GaSb superlattice based nbn detectors and focal plane arrays Ha sul

More information

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description: File name: Supplementary Information Description: Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Figure Electron micrographs and ballistic transport

More information

T. L. Lin, J. S. Park, S. D. Gunapala, E. W. Jones, and H. M. Del Castillo. Pasadena, CA 91109

T. L. Lin, J. S. Park, S. D. Gunapala, E. W. Jones, and H. M. Del Castillo. Pasadena, CA 91109 ,,. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths T. L. Lin, J. S. Park, S. D. Gunapala, E. W. Jones, and H. M. Del Castillo Center for Space Microelectronics Technology

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Lecture 8 Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Reading: (Cont d) Notes and Anderson 2 sections 3.4-3.11 Energy Equilibrium Concept Consider a non-uniformly

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas. Heterojunction Infrared Detector

Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas. Heterojunction Infrared Detector Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas Heterojunction Infrared Detector D. Chauhan, 1 A. G.U. Perera, 1, a) L. H. Li, 2 L. Chen, 2 and E. H. Linfield 2 1 Center for Nano-Optics

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb...

1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb... PROBLEMS part B, Semiconductor Materials. 2006 1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb... 2. Semiconductors

More information

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cecile Saguy A. Raanan, E. Alagem and R. Brener Solid State Institute. Technion, Israel Institute of Technology, Haifa 32000.Israel

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Intersubband Transitions in Narrow InAs/AlSb Quantum Wells

Intersubband Transitions in Narrow InAs/AlSb Quantum Wells Intersubband Transitions in Narrow InAs/AlSb Quantum Wells D. C. Larrabee, J. Tang, M. Liang, G. A. Khodaparast, J. Kono Department of Electrical and Computer Engineering, Rice Quantum Institute, and Center

More information

Purpose: To convert the received optical signal into an electrical lsignal.

Purpose: To convert the received optical signal into an electrical lsignal. OPTICAL DETECTORS Optical Detectors Purpose: To convert the received optical signal into an electrical lsignal. Requirements For Detector HIGH SENSITIVITY (at operating wave lengths) at normal op. temp

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 E

More information

Semiconductor. Byungwoo Park. Department of Materials Science and Engineering Seoul National University.

Semiconductor. Byungwoo Park.   Department of Materials Science and Engineering Seoul National University. Semiconductor Byungwoo Park Department of Materials Science and Engineering Seoul National University http://bp.snu.ac.kr http://bp.snu.ac.kr Semiconductors Kittel, Solid State Physics (Chapters 7 and

More information

Utmost response time of long-wave HgCdTe photodetectors operating under zero voltage condition

Utmost response time of long-wave HgCdTe photodetectors operating under zero voltage condition Opt Quant Electron (2018) 50:17 https://doi.org/10.1007/s11082-017-1278-y Utmost response time of long-wave HgCdTe photodetectors operating under zero voltage condition P. Martyniuk 1 P. Madejczyk 1 M.

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan 10.1149/1.3109626 The Electrochemical Society Thermoelectric and electrical properties of Si-doped InSb thin films H. Nagata a and S. Yamaguchi a,b a Department of Electrical, Electronic and Information

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Title: Colloidal Quantum Dots Intraband Photodetectors

Title: Colloidal Quantum Dots Intraband Photodetectors Title: Colloidal Quantum Dots Intraband Photodetectors Authors: Zhiyou Deng, Kwang Seob Jeong, and Philippe Guyot-Sionnest* Supporting Information: I. Considerations on the optimal detectivity of interband

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

g-factors in quantum dots

g-factors in quantum dots g-factors in quantum dots Craig Pryor Dept. of Physics and Astronomy University of Iowa With: Michael Flatté, Joseph Pingenot, Amrit De supported by DARPA/ARO DAAD19-01-1-0490 g-factors in quantum dots

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

The pn junction. [Fonstad, Ghione]

The pn junction. [Fonstad, Ghione] The pn junction [Fonstad, Ghione] Band diagram On the vertical axis: potential energy of the electrons On the horizontal axis: now there is nothing: later we ll put the position qf s : work function (F

More information

Engineering the Bandgap of Unipolar HgCdTe-Based nbn Infrared Photodetectors

Engineering the Bandgap of Unipolar HgCdTe-Based nbn Infrared Photodetectors Journal of ELECTRONIC MATERIALS, Vol. 44, No. 1, 2015 DOI: 10.1007/s11664-014-3511-9 Ó 2014 The Author(s). This article is published with open access at Springerlink.com Engineering the Bandgap of Unipolar

More information

junctions produce nonlinear current voltage characteristics which can be exploited

junctions produce nonlinear current voltage characteristics which can be exploited Chapter 6 P-N DODES Junctions between n-and p-type semiconductors are extremely important foravariety of devices. Diodes based on p-n junctions produce nonlinear current voltage characteristics which can

More information

Thermionic emission vs. drift-diffusion vs. p-n junction

Thermionic emission vs. drift-diffusion vs. p-n junction 6.772/SMA5111 - Compound Semiconductors Lecture 4 - Carrier flow in heterojunctions - Outline A look at current models for m-s junctions (old business) Thermionic emission vs. drift-diffusion vs. p-n junction

More information

Introduction on the Semiconductor Heterostructures

Introduction on the Semiconductor Heterostructures Introduction on the Semiconductor Heterostructures Yong Song Department of Physics University of Cincinnati Cincinnati, OH, 45221 March 7,2002 Abstract: The heterostructure physics becomes more and more

More information

PN Junctions. Lecture 7

PN Junctions. Lecture 7 Lecture 7 PN Junctions Kathy Aidala Applied Physics, G2 Harvard University 10 October, 2002 Wei 1 Active Circuit Elements Why are they desirable? Much greater flexibility in circuit applications. What

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013 Sample Exam # 2 ECEN 3320 Fall 203 Semiconductor Devices October 28, 203 Due November 4, 203. Below is the capacitance-voltage curve measured from a Schottky contact made on GaAs at T 300 K. Figure : Capacitance

More information

AVALANCHE photodiodes (APDs), which have signal

AVALANCHE photodiodes (APDs), which have signal 2296 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 7, JULY 2013 Dual-Carrier High-Gain Low-Noise Superlattice Avalanche Photodiodes Jun Huang, Koushik Banerjee, Siddhartha Ghosh, Senior Member, IEEE,

More information

AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence

AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence Vol. 25, No. 20 2 Oct 2017 OPTICS EXPRESS 24340 AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence ANDREW H. JONES,1 YUAN YUAN,1 MIN REN,1 SCOTT J. MADDOX,2 SETH R. BANK,2

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information