Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013


 Gloria May Cox
 5 years ago
 Views:
Transcription
1 Sample Exam # 2 ECEN 3320 Fall 203 Semiconductor Devices October 28, 203 Due November 4, 203. Below is the capacitancevoltage curve measured from a Schottky contact made on GaAs at T 300 K. Figure : Capacitance voltage curve for problem 2. Some relations: The maximum field in the metal to ntype Schottky is given by E max qn dx d ɛ s. The builtin potential is the integral of this or φ i V a qn dx 2 d 2ɛ s. The builtin potential is also ressible as φ i φ b q ln Nc N d the relation that defines φ i as a quasi Fermi level. The depletion width can be found from the builtin potential by x d φ i V a ). qn d This x d can be used to find a well defined ression for the E max E max φ i V a ). qn d
2 From the x d, we can also find the capacitance per unit area by C A ɛ s qɛs N d x d 2φ i V a ). This is the ression that we really need here, for this first problem. Actually, we need the inverse square of this relation that is Calculate: a) the builtin potential, φ i, A C ) 2 2 φ i V a ) qɛ s N d Solution: The builtin potential is evidently the intercept or b) the doping density, N d, φ i 0.9 V Solution: We have that the slope, s, of the A/C) 2 curve is given by s 2 qɛ s N d or that N d 2 sqɛ s. and The slope can be read from the curve as 3/ giving N d c) the barrier height, φ B cm 3 Solution: The barrier height is the distance from the metal Fermi level to the unperturbed conduction band edge. The built in potential is the distance from the metal Fermi level to the unperturbed semiconductor Fermi level. The difference is the distance from the Fermi level to the conduction band edge in the semiconductor or φ b φ i + q ln Nc ln N d Consider a Schottky contact between gold and ntype GaAs with a crosssectional area of 0 4 cm 2. 2
3 Solution: If we consider only the thermionic and diffusion current in the Schottky diode that is, we ignore the quantum tunneling current), we find that J J t + J d A T 2 + qv d N c ) qφ ) [ ] b qva J t0 + J d0 ) qφ ) [ ] b qva. The relation can also be written as J J t0 + J d0 ) qφ ) [ b qva qv R + µ n E max )N c qφ ) [ b where the v R is given by We note here that v R 2πm. m { GaAs m 0.08 Si, ] qva ) ] N c { cm 3 GaAs cm 3 Si and from Table 3.2. in the book) { 0.9 ev AuGaAs φ b. 0.8 ev AuSi The N c is signifcantly smaller for GaAs than Si. The µ n is a factor 6 larger qφ b for GaAs, and the v R due to the /m is larger for GaAs by) a factor of roughly 4. These factors are insignifcant with respect to the N c qφ b that is two orders of magnitude larger for silicon. a) Plot the current for forward bias voltage range of 0 V a 0.5 V. ). Solution: The plot follows the shape of qva b) Do the same for a Schottky contact made with gold and ntype silicon. ). Solution: The plot follows the shape of qva c) Discuss the differences between the two results in a) and b). Solution: The GaAs curve will lie more than an order of magnitude below the silicon curve. The exact number depends on the ratio of the thermionic current that can be calculated from the above) to the diffusion current that cannot be calculated exactly from the above as there is not enough information to calculate the E max ). The difference is not especially great, though, as the diffusion current and thermionic currents have differ by nearly the same factors in GaAs versus silicon. 3
4 3. Consider a silicon pin photodetector under a back bias loaded with a resistor R L. a) Draw the circuit diagram labeling all relevant voltages and currents. Solution: The p contact connects to the high side of a battery and the n contact to the load resistor that in turn connects to the low side ground) of the battery. b) Calculate the junction capacitance assuming that x i µm is much larger than the x n and x p due to doping. Use A 0 4 cm 2. Solution: We have that C ɛa x d pf c) Sketch the RC time constant and the circuit receiver) bandwidth /RC) as a function of R L. Solution: A straight line with slope C. d) Sketch the output voltage as a function of R L for a mw input power and a responsivity of R A/W. Solution: A straight line with slope ma. e) Find an ression and a value for a gain bandwidth product for the circuit. Solution: The bandwidth is /R L C and the transfer characteristic is V RL /P in RR L. The transfer characteristic bandwidth product is then R/C and is independent of the circuit, that is, only dependent on the properties of the diode. 4. Consider a step pn junction made of GaAs. The doping densities and carrier lifetimes are given as N d 0 7 cm 3, N a cm 3 and τ n 0 7 s, τ p 0 5 s. Assume long diode, i.e. long quasineutral regions. a) Find the builtin potential, Solution: We have that φ i q ln Na N d n 2 i ) q ln ev. b) Find the depletion region widths on the n and psides, Solution: The depletion width is given by x d + ) φ i q Nd Na cm Given the disparity in doping densities, the lowest approximation is that x n 0 and x p x d. c) the capacitance per unit area, 4
5 Solution: We have that and C A ɛ s x d F/cm 2. d) Sketch the energy band diagram indicating the energy levels, E c, E f and E v, the builtin potential φ i and the depletion widths x n and x p. Solution: There is nothing tricky here. e) Find the ratio of the electron current to the total current at the edge of the pside depletion region. Solution: We have that yielding that J tot J n + J p qn 2 i [ N a D n + τ n N d ] Dp τ p J n J tot Dn τ n Dn τ n + Na Dp N d τ p + Na Dpτn N d D nτ p
6 Useful Relations g c E) 2π 2 F E) 2m ) 3/2 e E h 2 Ec g v E) 2π 2 [E E f )/ ] + 2m ) 3/2 Ev h h 2 E Ei E c n i N c Ef E c n 0 N c Ev E i n i N v Ev E f p 0 N v n 0 p 0 n 2 i Fn E c Ev F p n 0 + δn N c p 0 + δp N v n t J n q x + G n R n n J n qd n x + qnµ ne I opt G n α n E ph R n δn τ n p t J p q x + G p R p p J p qd p x + qpµ ne I opt G p α p E ph R p δp τ p x n N ax d N a + N d q J J s φ i V a qn dx 2 n 2ɛ s + qn dx 2 p 2ɛ s N a φ i V a ) x p N dx d N d N d + N a N a + N d q + ) φ i V a ) Na Nd x d x n + x p q C A ɛ s x d N a N d n 2 φi V a i N a N d n 2 φi V a i qva J s J n + J p qn 2 i ) N a D n + τ n N d 6 ) Dp τ p N d φ i V a ) N a N d + N a
7 J J t + J n qv R + v d )N c [ v R 2πm v d µ n E max J J t + J n A T 2 + qv d N c ) A 4πqm k 2 h 3 Si Material Parameters Band gap energy at 300 K: E g.24 ev Relative permittivity: ɛ s.7 Intrinsic carrier concentration at 300 K: n i 0 0 cm 3 Effective density of states at 300 K: N c cm 3, N v cm 3 Effective mass: m e.08m 0, m h 0.8m 0 Mobility: µ n 400 cm 2 /V s, µ p 450 cm 2 /V s Diffusion coefficients: D n 32.cm 2 /s, D p cm 2 /s qφ b [ qφ b ) ) )] qva )] qva GaAs Material Parameters Band gap energy at 300 K: E g.424 ev Relative permittivity: ɛ s 2.9 Intrinsic carrier concentration at 300 K: n i cm 3 Effective density of states at 300 K: N c cm 3, N v cm 3 Effective mass: m e 0.067m 0, m h 0.45m 0 Mobility: µ n 8400 cm 2 /V s, µ p 400 cm 2 /V s Diffusion coefficients: D n 20cm 2 /s, D p 0. cm 2 /s 7
8 Physical Constants Permittivity of vaccum: ɛ F/cm Planck s constant: h J s Speed of light: c cm/s Electronic charge: q C Electron rest mass: m kg Boltzmann constant: k J/ K Thermal energy at 300 k: ev Energy conversion: ev J 8
For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.
Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is
More informationSchottky Rectifiers Zheng Yang (ERF 3017,
ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 MetalSemiconductor Contact The work function
More informationFinal Examination EE 130 December 16, 1997 Time allotted: 180 minutes
Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and crosssectional area 100µm 2
More informationSemiconductor Junctions
8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss
More information1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :0011:00
1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:0011:00 INSTRUCTIONS: 1. Answer all seven (7) questions.
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm I Name: Closed book. One sheet of notes is allowed.
More informationECE305: Spring 2018 Exam 2 Review
ECE305: Spring 018 Exam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75138) Chapter 5 (pp. 1956) Professor Peter Bermel Electrical and Computer Engineering Purdue University,
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationSemiconductor Physics Problems 2015
Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and MK Lee 1. The purest semiconductor crystals it is possible
More informationSemiconductor Physics fall 2012 problems
Semiconductor Physics fall 2012 problems 1. An ntype sample of silicon has a uniform density N D = 10 16 atoms cm 3 of arsenic, and a ptype silicon sample has N A = 10 15 atoms cm 3 of boron. For each
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon
More informationQuiz #1 Practice Problem Set
Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016  No aids except a nonprogrammable calculator  All questions must be answered  All questions
More informationFigure 3.1 (p. 141) Figure 3.2 (p. 142)
Figure 3.1 (p. 141) Allowed electronicenergystate systems for two isolated materials. States marked with an X are filled; those unmarked are empty. System 1 is a qualitative representation of a metal;
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationSemiconductor Device Physics
1 emiconductor Device Physics Lecture 8 http://zitompul.wordpress.com 2 0 1 3 emiconductor Device Physics 2 M Contacts and chottky Diodes 3 M Contact The metalsemiconductor (M) contact plays a very important
More informationLecture 15  The pn Junction Diode (I) IV Characteristics. November 1, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 151 Lecture 15  The pn Junction Diode (I) IV Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. IV characteristics
More informationSpring Semester 2012 Final Exam
Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters
More informationThe Law of the Junction Revisited. Mark Lundstrom Network for Computational Nanotechnology and Purdue University ( ). (1)
The Law of the Junction Revisited Mark Lundstrom Network for Computational Nanotechnology and Purdue University Consider a onesided, short base diode like that shown in Fig.. We usually analyze the IV
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are
More informationLecture 17  pn Junction. October 11, Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
6.72J/3.43J  Integrated Microelectronic Devices  Fall 22 Lecture 171 Lecture 17  pn Junction October 11, 22 Contents: 1. Ideal pn junction in equilibrium 2. Ideal pn junction out of equilibrium
More informationECE 305 Exam 3: Spring 2015 March 6, 2015 Mark Lundstrom Purdue University
NAME: PUID: : ECE 305 Exam 3: March 6, 2015 Mark Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula sheet at the end of this exam Following the ECE policy,
More informationHoles (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2
Part V. (40 pts.) A diode is composed of an abrupt PN junction with N D = 10 16 /cm 3 and N A =10 17 /cm 3. The diode is very long so you can assume the ends are at x =positive and negative infinity. 1.
More informationChapter 7. The pn Junction
Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a Ptype substrate such that a layer of semiconductor is converted into N type. Converting
More informationElectrical Characteristics of MOS Devices
Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oide charges Thresholdvoltage
More informationECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University
NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator
More informationSession 6: Solid State Physics. Diode
Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at
More informationMidterm I  Solutions
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2008 Professor Chenming Hu Midterm I  Solutions Name: SID: Grad/Undergrad: Closed
More informationECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017
NAME: PUID: ECE 305 Fall 017 Final Exam (Exam 5) Wednesday, December 13, 017 This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Following the ECE policy,
More informationFundamentals of Semiconductor Physics
Fall 2007 Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics xinwan@zimp.zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Transistor technology evokes new physics The objective of
More informationSection 12: Intro to Devices
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor
More informationSchottky diodes. JFETs  MESFETs  MODFETs
Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs  MESFETs  MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different
More informationReview Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination
Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The MetalSemiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)
More informationConsider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is
CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.
More informationEE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions
EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 pn Junction ptype semiconductor in
More informationMetal Semiconductor Contacts
Metal Semiconductor Contacts The investigation of rectification in metalsemiconductor contacts was first described by Braun [3335], who discovered in 1874 the asymmetric nature of electrical conduction
More information6.012 Electronic Devices and Circuits
Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3
More informationEE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level
EE 13 Intro to S Junctions eek 6 Notes Problem 1 hat is the work function? Energy to ecite electron from Fermi level to the vacuum level Electron affinity of 4.5eV Electron affinity of Ge 4.eV orkfunction
More informationPHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETEROJUNCTIONS Tennessee Technological University Wednesday, October 30, 013 1 Introduction Chapter 4: we considered the
More informationEECS130 Integrated Circuit Devices
EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:304:30
More information( )! N D ( x) ) and equilibrium
ECE 66: SOLUTIONS: ECE 66 Homework Week 8 Mark Lundstrom March 7, 13 1) The doping profile for an n type silicon wafer ( N D = 1 15 cm  3 ) with a heavily doped thin layer at the surface (surface concentration,
More informationEffective masses in semiconductors
Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse
More information3. Twodimensional systems
3. Twodimensional systems Image from IBMAlmaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological
More information8. Schottky contacts / JFETs
Technische Universität Graz Institute of Solid State Physics 8. Schottky contacts / JFETs Nov. 21, 2018 Technische Universität Graz Institute of Solid State Physics metal  semiconductor contacts Photoelectric
More informationRecombination: Depletion. Auger, and Tunnelling
Recombination: Depletion Region, Bulk, Radiative, Auger, and Tunnelling Ch 140 Lecture Notes #13 Prepared by David Gleason We assume: Review of Depletion Region Recombination Flat Quantum Fermi Levels
More informationCHAPTER 4: PN P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki
CHAPTER 4: PN P N JUNCTION Part 2 Part 2 Charge Storage & Transient Behavior Junction Breakdown Heterojunction CHARGE STORAGE & TRANSIENT BEHAVIOR Once injected across the junction, the minority carriers
More informationIntroductory Nanotechnology ~ Basic Condensed Matter Physics ~
Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : DulongPetit empirical law c V, mol 3R 0 E
More informationSolid State Electronics. Final Examination
The University of Toledo EECS:4400/5400/7400 Solid State Electronic Section elssf08fs.fm  1 Solid State Electronics Final Examination Problems Points 1. 1. 14 3. 14 Total 40 Was the exam fair? yes no
More informationOPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626
OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:3012:30pm
More informationThe pn junction. [Fonstad, Ghione]
The pn junction [Fonstad, Ghione] Band diagram On the vertical axis: potential energy of the electrons On the horizontal axis: now there is nothing: later we ll put the position qf s : work function (F
More informationMTLE6120: Advanced Electronic Properties of Materials. Semiconductor pn junction diodes. Reading: Kasap ,
MTLE6120: Advanced Electronic Properties of Materials 1 Semiconductor pn junction diodes Reading: Kasap 6.16.5, 6.96.12 Metalsemiconductor contact potential 2 ptype ntype ptype ntype Same semiconductor
More informationn N D n p = n i p N A
Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donordoped semiconductor: n N D where N D is the concentration of donor impurity Acceptordoped
More informationCurrent mechanisms Exam January 27, 2012
Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms
More information6.012 Electronic Devices and Circuits
Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless
More informationExtensive reading materials on reserve, including
Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si
More informationStudent Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS
Name: CARLETON UNIVERSITY SELECTE FINAL EXAMINATION QUESTIONS URATION: 6 HOURS epartment Name & Course Number: ELEC 3908 Course Instructors: S. P. McGarry Authorized Memoranda: Nonprogrammable calculators
More informationThermionic emission vs. driftdiffusion vs. pn junction
6.772/SMA5111  Compound Semiconductors Lecture 4  Carrier flow in heterojunctions  Outline A look at current models for ms junctions (old business) Thermionic emission vs. driftdiffusion vs. pn junction
More informationLecture 04 Review of MOSFET
ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D
More information1st YearComputer Communication EngineeringRUC. 4 PN Junction
4 PN Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries
More informationElectronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)
Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices PN Junctions (Diodes): Physical
More informationJunction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006
Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION
More informationEE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors
EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µsensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification
More informationECEN 3320 Semiconductor Devices Final exam  Sunday December 17, 2000
Your Name: ECEN 3320 Semiconductor Devices Final exam  Sunday December 17, 2000 1. Review questions a) Illustrate the generation of a photocurrent in a pn diode by drawing an energy band diagram. Indicate
More informationLecture 2. Introduction to semiconductors Structures and characteristics in semiconductors
Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor pn junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation
More informationPhotonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University
Photonic Communications Engineering Lecture Dr. Demetris Geddis Department of Engineering Norfolk State University Light Detectors How does this detector work? Image from visionweb.com Responds to range
More informationWeek 3, Lectures 68, Jan 29 Feb 2, 2001
Week 3, Lectures 68, Jan 29 Feb 2, 2001 EECS 105 Microelectronics Devices and Circuits, Spring 2001 Andrew R. Neureuther Topics: M: Charge density, electric field, and potential; W: Capacitance of pn
More informationLecture Notes 2 ChargeCoupled Devices (CCDs) Part I. Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis
Lecture Notes 2 ChargeCoupled Devices (CCDs) Part I Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis Charge Well Capacity Buried channel CCD Transfer Efficiency Readout Speed
More informationjunctions produce nonlinear current voltage characteristics which can be exploited
Chapter 6 PN DODES Junctions between nand ptype semiconductors are extremely important foravariety of devices. Diodes based on pn junctions produce nonlinear current voltage characteristics which can
More informationSolar Cell Physics: recombination and generation
NCN Summer School: July 2011 Solar Cell Physics: recombination and generation Prof. Mark Lundstrom lundstro@purdue.edu Electrical and Computer Engineering Purdue University West Lafayette, Indiana USA
More informationLecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
6.012  Microelectronic Devices and Circuits  Fall 2005 Lecture 41 Contents: Lecture 4  PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005
More informationMSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University
MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures
More informationPN Junction. Ang M.S. October 8, Maxwell s Eqautions Review : Poisson s Equation for PNJ. Q encl S. E ds. σ = dq ds. ρdv = Q encl.
PN Junction Ang M.S. October 8, 0 Reference Sedra / Smith, M icroelectronic Circuits Maxwell s Eqautions Review : Poisson s Equation for PNJ. Gauss Law for E field The total enclosed charge Q encl. insde
More informationSemiconductor Physics and Devices
The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation
More informationSolid State Physics SEMICONDUCTORS  IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL
Solid State Physics SEMICONDUCTORS  IV Lecture 25 A.H. Harker Physics and Astronomy UCL 9.9 Carrier diffusion and recombination Suppose we have a ptype semiconductor, i.e. n h >> n e. (1) Create a local
More informationPHYS208 PN Junction. Olav Torheim. May 30, 2007
1 PHYS208 PN Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density
More informationElectronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline
6.012  Electronic Devices and Circuits Lecture 5  pn Junction Injection and Flow  Outline Review Depletion approimation for an abrupt pn junction Depletion charge storage and depletion capacitance
More informationR. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6
R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence
More informationLecture 2. Introduction to semiconductors Structures and characteristics in semiconductors
Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor pn junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation
More information8.1 Drift diffusion model
8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of
More informationDepartment of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM
Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Homework 4 Due on March 01, 2018 at 7:00 PM Suggested Readings: a) Lecture notes Important Note:
More informationFundamentals of the Metal Oxide Semiconductor FieldEffect Transistor
Triode Working FET Fundamentals of the Metal Oxide Semiconductor FieldEffect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the
More informationLecture 20  pn Junction (cont.) October 21, Nonideal and secondorder effects
6.70J/3.43J  Integrated Microelectronic Devices  Fall 00 Lecture 01 Lecture 0  pn Junction (cont.) October 1, 00 Contents: 1. Nonideal and secondorder effects Reading assignment: del Alamo, Ch.
More informationAppendix 1: List of symbols
Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination
More informationDiodes. anode. cathode. cutoff. Can be approximated by a piecewiselinearlike characteristic. Lecture 91
Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode
More informationECE PN Junctions and Diodes
ECE 342 2. PN Junctions and iodes Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10
More informationCarrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor?
Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? 1 Carrier Motion I Described by 2 concepts: Conductivity: σ
More informationLect. 10: Photodetectors
Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photogenerated carriers: photoconductors, photodiodes, avalanche
More informationSemiconductor device structures are traditionally divided into homojunction devices
0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting
More informationELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling
ELEC 3908, Physical Electronics, Lecture 13 iode Small Signal Modeling Lecture Outline Last few lectures have dealt exclusively with modeling and important effects in static (dc) operation ifferent modeling
More information16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:
16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion
More informationPeak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,
Peak Electric Field Junction breakdown occurs when the peak electric field in the P junction reaches a critical value. For the + P junction, qa E ( x) ( xp x), s W dep 2 s ( bi Vr ) 2 s potential barrier
More informationAvalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping
Avalanche breakdown Impact ionization causes an avalanche of current Occurs at low doping Zener tunneling Electrons tunnel from valence band to conduction band Occurs at high doping Tunneling wave decays
More informationComparison of Ge, InGaAs pn junction solar cell
ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs pn junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online
More informationMetal Semiconductor Contacts
10 Metal Semiconductor Contacts 10.1. Introduction In this chapter, the basic device physics, the electrical and transport properties, the formation and characterization of various metal semiconductor
More informationLecture contents. Metalsemiconductor contact
1 Lecture contents Metalsemiconuctor contact Electrostatics: Full epletion approimation Electrostatics: Eact electrostatic solution Current Methos for barrier measurement Junctions: general approaches,
More informationECE 340 Lecture 21 : PN Junction II Class Outline:
ECE 340 Lecture 21 : PN Junction II Class Outline: Contact Potential Equilibrium Fermi Levels Things you should know when you leave Key Questions What is the contact potential? Where does the transition
More information