B.Sc. MATHEMATICS - III YEAR

Size: px
Start display at page:

Download "B.Sc. MATHEMATICS - III YEAR"

Transcription

1 MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 670, TAMIL NADU B.Sc. MATHEMATICS - III YEAR DJMC - MECHANICS (Fom the cdemic ye 06-7) Most Stdet fiedly Uivesity - Stive to Stdy d Le to Excel Fo moe ifomtio visit:

2 DJMC - MECHANICS Uit I: Foces ctig t poit Pllelogm of foces tigle of foces Lmi s Theoem, Pllel foces d momets Coples Eqilibim of thee foces ctig o igid body. Uit II: Fictio Lws of fictio eqilibim of pticle (i) o ogh iclied ple, (ii) de foce pllel to the ple, (iii) de y foce eqilibim of stigs eqtio of the commo ctey tesio t y poit geometicl popeties of commo ctey ifom chi de the ctio of gvity sspesio bidge. Uit III: Dymics pojectiles eqtio of pth, ge etc ge o iclied ple motio o iclied ple. Implsive foces collisio of elstic bodies lws of impct diect d obliqe impct impct o fixed ple. Uit IV: Simple hmoic motio i stight lie geometicl epesettio compositio of SHMS of the sme peiod i the sme le d log two pepedicl diectios pticles sspeded by spig SHM o cve simple pedlm simple eqivlet pedlm secod s pedlm. Uit V: Motio de the ctio of cetl foces velocity d cceletio i pol co-odites diffeetil eqtio of cetl obit pedl eqtio of cetl obit pses psidl distces ivese sqe lw. Refeece Books:. Sttics d Dymics: S. Ny. Sttics d Dymics: M.K. Vektm. Sttics : Mickvchgompilli. Dymics : Dipdi

3 Itodctio Mthemtics is the Qee of the Scieces d Nmbe Theoy is the Qee of Mthemtics - Gss. Mechics is bch of Sciece which dels with the ctio of foces o bodies. Mechics hs two bches clled Sttics d Dymics. Sttics is the bch of Mechics which dels with bodies emi t est de the iflece of foces. Dymics is the bch of Mechics which dels with bodies i motio de the ctio of foces. Defiitios: Spce: The egio whee vios evets tke plce is clled spce. Body: A potio of mtte is clled body. Rigid body: A body cosists of imeble pticles i which the distce betwee y two pticles emis the sme i ll positios of the body is clled igid body. Pticle: A pticle is body which is vey smll whose positio t y time coicides with poit. Motio: If body chges its positio de the ctio of foces, the it is sid to be i motio. Pth of pticle: It is the cve joiig the diffeet positios of the pticle i spce while i motio. Speed: The te t which the body descibes its pth. It is scl qtity. Displcemet (vecto qtity): It is the chge i the positios of pticle i ceti itevl. Velocity (vecto qtity): It is the te of chge of displcemet. Acceletio (vecto qtity): It is the te of chge of velocity. Eqilibim: A body t est de the ctio of y mbe of foces o it is sid to be i eqilibim. Eqilibim of two foces Q P If two foces P, Q ct o body sch tht they hve eql mgitde, opposite diectios, sme lie of ctio the they e i eqilibim. Foce (vecto): Foce is y cse which podces o teds to podce chge i the existig stte of est of body o of its ifom motio i stight lie. Foce is epeseted by stight lie (thogh the poit of pplictio) which hs both mgitde d diectio. Types of foces: Weight, ttctio, eplsio, tesio, thst, fictio etc. By Newto s thid lw, ctio d ectio e lwys eql d opposite.

4 Diectios of Noml Rectio R t the poit of cotct.. Whe od AB is i cotct with smooth ple, R is pepedicl to the ple t the poit of cotct A. R od B Smooth A Ple. Whe od AB is estig o smooth peg P, R is pepedicl to the od t the poit of cotct P. A R B O P -Peg. Whe od AB is estig o smooth sphee, R is oml to the sphee t the poit of cotct C. A R C B. Whe od AB is estig o the im of hemisphee, with R oe ed A i cotct with the ie sfce d C i cotct with the im. The the oml O R C B ectios R t A is oml to A the spheicl sfce d psses thogh the cete O, R t C is pepedicl to the od. Regl polygo is polygo with eql sides. Its vetices lie o cicle.

5 Itodctio UNIT I Foces Actig t Poit Foces e epeseted by stight lies with mgitde d diectio. Foces ctig o igid body my be epeseted by stight lies with mgitde d diectio pssig thogh the sme poit d we sy the foces e ctig t poit. If P P, P.. e the foces ctig o igid body it is esy to fid sigle foce whose effect is sme s the combied effect of P, P, P.. The the sigle foce is clled the esltt. P, P, P.. e clled the compoets of the esltt. I this sectio we stdy some theoems d methods to fid the esltt of two o moe foces ctig t poit.. Pllelogm lw of foces (Fdmetl theoem i sttics) If two foces ctig t poit be epeseted i mgitde d diectio by the sides of pllelogm dw fom the poit, thei esltt is epeseted both i mgitde d diectio by the digol of the pllelogm dw thogh tht poit. Q D R C, AB AD AC A P B ie) P + Q R The esltt of two foces ctig t poit D C Q R A P B E Let the two foces P d Q ctig t A be epeseted by AB d AD. Let be the gle betwee them. i.e. BAD Complete the pllelogm ABCD. The the digol AC will epeset the esltt.

6 5 Let CAB Dw CE to AB. Now BC AD Q. Fom the ight gled CBE, si C B E CE i.e. si BC CE Q CE Q si (i) cos BE BC BE Q BE Q cos (ii) R AC AE + CE (AB + BE) +CE (P + Q cos ) + (Q si ) P + PQcos + Q R P PQcos Q t CE AE Qsi P Qcos Reslt If the foces P d Q e t ight gles to ech othe, the 90 o ; R P Q t Q P Reslt If the foces e eql (i.e.) Q P, the R P P cos P P cos t ie) P.cos P cos si cos Psi si P Pcos cos cos t

7 6 Ths the esltt of two eql foces P, P t gle is P cos i diectio bisectig the gle betwee them. Reslt Resltt R is getest whe cos is getest. i.e. whe cos o 0 o. ie) Getest vle of R is R P +Q. R is lest whe cos is lest. i.e. whe cos o 80 o. Lest vle of R is P~Q. Poblem The esltt of two foces P, Q ctig t ceti gle is X d tht of P, R ctig t the sme gle is lso X. The esltt of Q, R gi ctig t the sme gle is Y, Pove tht. P (X + QR ) QR Q R Q R Y Pove lso tht, if P + Q + R 0, Y X. Soltio: Let be the gle betwee P d Q Give X P + Q + PQ cos... () X P + R + PR cos... () Y Q + R + QR cos... () () () gives 0 Q R + P cos ( Q R) i.e. 0 (Q R) (Q+R+P cos ) Bt Q R d so Q R 0 Q + R + Pcos 0 Q R cos... () P Sbstitte () i (), X P + Q Q R + PQ P + Q Q QR P P X + QR. i.e. P (X + QR )

8 7 Sbstitte () i (), Y Q + R Q R + QR P Q + R QR Q R QR Q R Q + R Y P P QR Q R Q R Y If P + Q + R 0, the Q + R P, Fom (), cos (5) (6) gives X Y cos P Q R P P P X P + R + PR (5) Y Q + R + QR (6) X Y P Q + PR QR (P Q) (P + Q + R) (P Q).0 0 Poblem Two foces of give mgitde P d Q ct t poit t gle. Wht will be the mximm d miimm vle of the esltt? Soltio: i. Mximm vle of the esltt P + Q ii. Miimm vle of the esltt P~ Q.

9 8 Poblem The getest d lest mgitdes of the esltt of two foces of costt mgitdes e R d S espectively. Pove tht, whe the foces ct t gle, the esltt is of mgitde R cos S si Soltio: Resltt the foces is Soltio: Give, R P + Q, S P-Q, whee P d Q e two foces. Whe P d Q e ctig t gle P Q PQ.cos P Q PQcos si P Q si cos PQcos si P Q PQcos P Q PQsi R cos S si. Poblem The esltt of two foces P d Q is t ight gles to P. Show tht the gle betwee cos P Q Let be the gle betwee the two foces P d Q. Give 90 o. D C Q R A P B We kow, t i.e. t 90 o Qsi P Q cos Qsi P Q cos

10 9 0 P P Qcos 0 cos cos P Q P Q Qsi Q cos Poblem 5 The esltt of two foces P d Q is of mgitde P. Show tht, if P be dobled, the ew esltt is t ight gles to Q d its mgitde will be P Q. Soltio: Let be the gle betwee P d Q D C P P A Q B Give, P P + Q + PQ cos. Q (Q+Pcos ) 0 Q cos P If P is dobled, let R be the ew esltt, d be the gle betwee Q d R. R P Q PQ.cos Q P Q PQ P P Q Q P Q R P Q

11 0 t Q Psi Pcos i.e. t Psi Q Q P P P si 0 cos 0 φ 90 0 Q is t ight gles to R. Poblem 6 Two eql foces ct o pticle, fid the gle betwee them whe the sqe of thei esltt is eql to thee times thei podct. Soltio: D C P R A P B Let be the gle betwee the two eql foces P, P, d let R be thei esltt. R P P P. P.cos P cos P cos i.e. R P cos R Pcos Give, R P P P P P cos cos cos

12 α o Poblem 7 If the esltt of foces P, 5P is eql to 7P fid i. the gle betwee the foces ii. the gle which the esltt mkes with the fist foce. Soltio: Let be the gle betwee P, 5P i. Give (7P) (P) + (5P) + (P) (5P).cos 9P 9P + 5P + 0P cos 5P 0P cos cos α 60 0 ii. Let be the gle betwee the esltt d P. t Qsi P Q cos 5P.si P 5P.cos 5P.si 60 P 5P.cos60 5 5

13 t 5 5 t. Tigle of foces If thee foces ctig t poit c be epeseted i mgitde d diectio by the sides of tigle tke i ode, they will be i eqilibim. M D C Q R Q Q O R P L A P B N Let the foces, P,Q,R ct t poit O d be epeseted i mgitde d diectio by the sides AB,BC,CA of the tigle ABC. To pove : They will be i eqilibim. Complete the pllelogm BADC. P+Q AB + AD AB + BC AC ie) The esltt of the foces P, Q t O is epeseted i mgitde d diectio by AC. The thid foce R cts t O d it is epeseted i mgitde d diectio by CA. Hece P+Q+R AC + CA 0

14 Piciple If two foces ctig t poit e epeseted i mgitde d diectio by two sides of tigle tke i the sme ode, the esltt will be epeseted i mgitde d diectio by the thid side tke i the evese ode.. Lmi s Theoem If thee foces ctig t poit e i eqilibim, ech foce is popotiol to the sie of the gle betwee the othe two. M X Q B D R O A P L Y Z N Poof: By covese of the tigle of foces, the sides of the tigle OAD epeset the foces P,Q,R i mgitde d diectio. By sie le i OAD, we hve OA AD DO si ODA si DOA si OAD. () Bt OAD lt. BOD 80 si ODA si 80 Also DOA 80 si DOA si 80 0 MON 0 MON si MON 0 NOL 0 NOL si NOL.. (). ()

15 Ad OAD 80 si OAD si 80 Sbstitte (), (), () i (), 0 BOA 80 0 LOM 0 LOM si LOM OA AD DO si MON si NOL si LOM i.e. si P MON si Q NOL si P Q R si( Q. R) si( R, P) si( P, Q) R LOM. () Poblem 8 Two foces ct o pticle. If the sm d diffeece of the foces e t ight gles to ech othe, show tht the foces e of eql mgitde. Soltio: D C Q A P B Let the foces P d Q ctig t A be epeseted i mgitde d diectio by the lies AB d AD. Complete the pllelogm BAD. The P+Q P-Q AB AD AB DA AB AD AC DA AB DB

16 5 Give AC d DB e t ight gles. The digols AC d BD ct t ight gles. ABCD mst be hombs. AB AD. P Q. Poblem 9 Let A d B two fixed poits o hoizotl lie t distce c pt. Two fie light stigs AC d BC of legths b d espectively sppot mss t C. Show tht the tesios of b c b : b c the stigs e i the tio Soltio A c D B T T b C E W Foces T, T, W e ctig t C. By Lmi s theoem, T T...() si ECB si ECA 0 Now si ECB si 80 DCB si DCB si 90 0 ABC cosabc 0 si ECA si 80 ACD si ACD si 90 0 BAC cosbac

17 6 T T cosabc cos BAC T T T c cos B cos A b b c c bc T c b bc bc b c b c b c Poblem 0 ABC is give tigle. Foces P,Q,R ctig log the lies OA,OB,OC e i eqilibim. Pove tht (i)p : Q : R b c : b c b : c b c if O is the cicmcete of the tigle. A B C (ii) P : Q : R cos : cos : cos if O is the icete of the tigle. (iii) P : Q : R :b:c if O is the otho cete of the tigle. (iv) P : Q : ROA : OB : OC if O is the cetoid of the tigle, Soltio: A A P F B Q O R C B D O E C By Lmi s theoem, P Q R si BOC si COA si AOB () (i) O is the cicmcete of the ABC BOC BAC A; COA B d AOB C

18 7 C R B Q A P si si si ) ( i.e. C C R B B Q A A P cos si cos si cos si. () Bt bc c b A cos d bc A si whee is the e of the tigle ABC bc bc c b A A cos si c b c b Similly cos si c b c B B si CcosC b c b Sbstitte i ().. c b b R b c Q c c b c P b Divide by c b c b c R b c b Q c b P (ii) O is the i-cete of the tigle, OB d OC e the bisectos of B d C

19 8 BOC 80 B C 80 B 0 0 C 0 0 A 0 A Similly COA 90 B, 0 0 C AOB 90 P Q R () 0 A 0 B 0 C si 90 si 90 si 90 i.e. P A cos Q B cos R C cos (iii) O is the otho-cete of the tigle AD, BE, CF e the ltitdes of the tigle AFOE is cyclic qdiltel. 0 FOE A 80, FOE 80 A BOC 0 80 A 0 Similly, COA 80 B, AOB 80 C Hece () becomes P Q A si 80 B si 80 C si 80 i.e. i.e. P Q R si A si B si C P Q R b c b c si A si B si C 0 R 0

20 9 (iv) O is the cetoid of the tigle BOC COA AOB BOC OB. OC si BOC ABC si BOC OB. OC ABC ABC Similly, ABC si COA, OC. OA ABC si AOB OAOB. Hece () becomes P.OB. OC Q.OC. OA R.OAOB. ABC ABC ABC i.e. P.OB.OC Q.OC.OA R.OA.OB Dividig by OA.OB.OC, we get P OA Q R. OB OC. Pllel foces: Foces ctig log pllel lies e clled pllel foces. Thee e two types of pllel foces kow s like d like pllel foces. Sice the pllel foces do ot meet t poit, i this chpte we stdy methods to fid the esltt of two like pllel d like pllel foces. Pllel foces ctig o igid body hve tedecy to otte it bot fixed poit. Sch tedecy is kow s momet of the pllel foces. Hee we stdy the theoem o momets of foces bot poit. Defiitio: Two pllel foces e sid to be like if they ct i the sme diectio, they e sid to be like if they ct i opposite pllel diectios.

21 0 The esltt of two like pllel foces ctig o igid body Y F O F Y P G F A C B F N Q R P X E D Q R L M Poof: Let P d Q be two like pllel foces ctig t A d B log the lies AD d BL.At A d B, itodce two eql d opposite foces F log AG d BN. These two foces F blce ech othe d will ot ffect the system. Now, R is the esltt of P d F t A d R is the esltt of Q d F t B s i the digm. Podce EA d MB to meet t O. At O, dw YOY pllel to AB d dw OX pllel to the diectio of P. Resolve R d R t O ito thei oigil compoets. R t O is eql to F log OY d P log OX. R t O is eql to F log OY d Q log OX. The two foces F, F t O ccel ech othe. The emiig two foces P d Q ctig log OX hve the esltt P+Q (sm) log OX.

22 Fid the positio of the esltt Now, AB d OX meet t C. Tigles, OAC d AED e simil. OC AC OC AC ie) AD ED P F F. OC P. AC () Tigles OCB d BLM e simil. OC CB OC CB ie) BL LM Q F F. OC Q. CB.. () () & () P.AC Q.CB ie) AC CB Q P ie) C divides AB itelly i the ivese tio of the foces. The esltt of two like d eql pllel foces ctig o igid body: O Y F F Y P Q E D C P B F N X G F R A Q R L M

23 Poof: Let P d Q t A d B be two eql like pllel foces ctig log AD d BL. Let P > Q. At A d B itodce two eql d opposite foces F log AG d BN. These two blces ech othe d will ot ffect the system. Let R be the esltt of F d P t A d R be the esltt of F d Q t B. s i the digm. Podce EA d MB to meet t O. At O, dw Y OY pllel to AB d dw OX pllel to the diectio of P. Resolve R d R t O ito thei compoets. R t O is eql to F log XO. R t O is eql to F log OY d Q log OX. OY d P log The two foces F, F t O ccel ech othe. Now, the emiig foces e P d Q log the sme lie bt opposite diectios. Hece the esltt is P ~ Q (diffeece) log XO. Fid the positio of the esltt Now, AB d OX meet t C. Tigles OCA d EGA e simil. OC CA OC CA, ie) EG GA P F F. OC P. AC () Tigles OCB d BLM e simil. OC CB OC CB, ie) BL LM Q F F. OC QCB. () () d () P.AC Q.CB ie) CA Q CB P ie) C divides AB extelly. Note : The effect of two eql d like pllel foces c ot be eplced by sigle foce.

24 The coditio of eqilibim of thee copl pllel foces P P+Q Q A C B R Let P, Q, R be the thee copl pllel foces i eqilibim. Dw lie to meet the foces P, Q, R t the poits A, B, C espectively. Eqilibim is ot possible if ll the thee foces e i the sme diectio. Let P + Q be the esltt of P d Q pllel to P. Hece R mst be eql d opposite to P + Q. R P + Q (i mgitde, opposite i diectio) P. AC QCB. P CB Q AC P Q CB AC R AB Hece, P CB Q AC R AB ie) If thee pllel foces e i eqilibim the ech foce is popotiol to the distce betwee the othe two. Note: The cete of two pllel foces is fixed poit thogh which thei esltt lwys psses. Poblem Two me, oe stoge th the othe, hve to emove block of stoe weighig 00 kgs. with light pole whose legth is 6 mete. The weke m cot cy moe th 00 kgs. Whee the stoe be fsteed to the pole, so s jst to llow him his fll she of weight?

25 Soltio: x 6 x A C B Let A be the weke m beig 00 kgs., B the stoge m beig 00 kgs. Let C be the poit o AB whee the stoe is fsteed to the pole, sch tht AC x. The the weight of the stoe ctig t C is the esltt of the pllel foces 00 d 00 t A d B espectively. 00.AC 00.BC m. i.e. 00x 00 (6-x) 00 00x 00x 00 o x Hece the stoe mst be fsteed to the pole t the poit distt metes fom the weke Poblem Two like pllel foces P d Q ct o igid body t A d B espectively. P ) If Q be chged to, show tht the lie of ctio of the esltt is the sme s it wold Q be if the foces wee simply itechged. b) If P d Q be itechged i positio, show tht the poit of pplictio of the esltt will P Q be displyed log AB thogh distce d, whee d. AB. P Q Soltio: P Q A C D B

26 5 Let C be the cete of the two foces. The P. AC Q.CB. () () If Q is chged to foces. P, (P emiig the sme), let D be the ew cete of pllel Q P The P.AD DB.... () Q Q.AD P.DB. () Reltio () shows tht D is the cete of two like pllel foces, with Q t A d P t B. (b) Whe the foces P d Q e itechged i positio, D is the ew cete of pllel foces. Let CD d Fom (), Q. (AC+CD) P. (CB CD) i.e. Q.AC + Q.d P.CB P.d (Q + P).d P.CB Q.AC P (AB AC) Q (AB CB) (P Q).AB[P.AC Q.CB fom ()] d P P Q. AB Q Poblem The positio of the esltt of two like pllel foces P d Q is lteed, whe the positio of P d Q e itechged. Show tht P d Q e of eql mgitde. Soltio: P Q Q P A C B A C B

27 6 Let C be the cete of two like pllel foces P t A d Q t B. P.AC Q.CB () Whe P d Q e itechged, the cete C is ot lteed (give) Q.AC P.CB. () () P Q P Q Q P P Q Poblem P d Q e like pllel foces. If Q is moved pllel to itself thogh distce x, pove tht Qx the esltt of P d Q moves thogh distce. P Q Soltio: P Q Q x A C D B B Let C be the cete of P d Q t A d B. P. AC Q. CB. () Let D be the ew cete of P t A d Q t B sch tht P. AD Q. DB () ie) PAC CD QDB BB QCB CD x BB x

28 7 P QCD Q. x sig () CD Qx P Q Poblem 5 Two like pllel foces P d Q (P>Q) ctig o igid body t A d B espectively be itechged i positio, show tht the poit pplictio of the esltt i AB P Q will be displyed log AB thogh distce AB. P Q Soltio: P C D A B Q Let C be the cete of two like pllel foces P t A d Q t B. P. AC Q. CB () Let D be the ew cete whe P d Q e itechged i positio. Q. AD P. DB.. () i.e.) QAC CD P. DA AB i.e.) QCB AB CD P. AC CD AB Q. CB Q. AB QCD. P. AC PCD. P. AB P Q. CD P Q. AB sig () P Q CD. AB P Q

29 8 Poblem 6 A light od is cted o by thee pllel foces P, Q, d R, ctig t thee poits distt, 8 d 6 ft. espectively fom oe ed. If the od is i eqilibim, show tht P: Q: R ::. Soltio P Q A B D C R P, Q, R e pllel foces ctig o the od AD t B, D, C espectively. Give, AB ft, AD 8ft, AC 6ft. BC ft, CD ft, BD 6ft. Fo eqilibim of the od, ech foce shold be popotiol to the distce betwee the othe two. P Q R P : Q : R 6 : : 6 P : Q : R : :.5 Momet of foce (o) Tig effect of foce Defiitio: The momet of foce bot poit is defied s the podct of the foce d the pepedicl distce of the poit fom the lie of ctio of the foce. p O A F N B

30 9 Momet of F bot O F x ON F x p. Note: Momet of F bot O is zeo if eithe F O (o) ON O. i.e.) F 0 (o) AB psses thogh O. Hece, momet of foce bot y poit is zeo if eithe the foce itself is zeo (o) the foce psses thogh tht poit. Physicl sigificce of the momet of foce It meses the tedecy to otte the body bot the fixed poit. Geometicl Repesettio of momet O O A F B N A F N B Let AB epeset the foce F both i mgitde d diectio d O be y give poit. the momet of the foce F bot O F x ON AB x ON. AOB Twice the e of the tigle AOB Sig of the momet If the foce teds to t the body i the ticlockwise diectio, momet is positive. If the foce teds to t the body i the clockwise diectio, momet is egtive. Vigo s Theoem of Momets The lgebic sm of the momets of two foces bot y poit i thei ple is eql to the momet of thei esltt bot tht poit.

31 0 Poof: Cse Let the foces be pllel d O lies i) Otside AB P+Q R P Q O A C B Let P d Q be the two pllel foces ctig t A d B. P + Q be thei esltt R ctig t C. sch tht P.AC Q.CB.. () Algebic sm of the momets of P d Q bot O P.OA + Q.OB P x (OC AC) + Q x (OC + CB) (P +Q).OC P.AC +Q.CB (P+Q).OC sig () R.OC momet of R bot O. ii) P d Q e pllel d O lies withi AB A C O B P RP+Q Q Algebic sm of the momets of P d Q bot O P.OA Q.OB P. (OC+CA) Q. (CB CO) (P+Q).OC + P.CA Q.CB by () R.OC momet of R bot O.

32 Cse II iii) P d Q meet t poit d O y poit i thei ple. O lies otside the gle BAD O D C Q R A P B Thogh O, dw lie pllel to the diectio of P, to meet the lie of ctio of Q t D. Complete the pllelogm ABCD sch tht AB, AD epeset the mgitde of P d Q d the digol AC epesets the esltt R of P d Q. Algebic sm of the momets of P d Q bot O. AOB +. AOD ACB +. AOD [ AOB ACB] ADC + AOD ( ADC + AOD). AOC Momet of R bot O. iv) O lies iside the gle BAD Algebic sm of the momets of P d Q bot O: AOB AOD ACB AOD ADC AOD ( ADC AOD). AOC momet of R bot O. D O C Q R A P B

33 Poblem 7 Two me cy lod of kg. wt, which hgs fom light pole of legth 8 m. ech ed of which ests o sholde of oe of the me. The poit fom which the lod is hg is m. ee to oe m th the othe. Wht is the pesse o ech sholde? Soltio R R x C A B AB is the light pole of legth 8m. C is the poit fom which the lod of kgs. is hg. Let AC x. The BC 8 x. give ( 8 x) x i.e) 8 x 0 x 6. x. i.e. AC d BC 5. Let the pesses t A d B be R d R kg. wt. espectively. Sice the pole is i eqilibim, the lgebic sm of the momets of the thee foces R, R d kg. wt. bot y poit mst be eql to zeo. Tkig momets bot B, CB R.AB 0 i.e. 5 R R 0. 8 Tkig momets bot A, R.AB.AC 0. i.e. 8R 0. R 8 8

34 Poblem 8 A ifom plk of legth d weight W is sppoted hoizotlly o two veticl pops t distce b pt. The getest weight tht c be plced t the two eds i sccessio withot psettig the plk e W d W espectively. Show tht W W W W W W b. Soltio Let AB be the plk plced po two veticl pops t C d D. CD b. The weight W of the plk cts t G, the midpoit of AB, AG GB Whe the weight W is plced t A, the cotct with D is jst boke d the pwd ectio t D is zeo. R R A C G D B W W W Thee is pwd ectio R t C. Tke momets bot C, we hve W. AC W.CG i.e. W (AG CG) W.CG W.AG (W +W ).CG i.e. W. (W+W ) CG

35 CG W W W. () Whe the weight W is ttched t B, thee is loose cotct t C. The ectio t C becomes zeo. Thee is pwd ectio R bot D. Tke momets bot D, we get W.GD W (GB GD) GD (W+W ) W.GB W. GD W W W () W W W W W W CG + GD CD b W W W W W W b b Poblem 9 The esltt of thee foces P, Q, R, ctig log the sides BC, CA, AB of tigle ABC psses thogh the othocete. Show tht the tigle mst be obtse gled. If A 0, d B C, show tht Q+R P. Soltio: A R F O E 90-C B P D C Q

36 5 Let AD, BE d CF be the ltitdes of the tigle itesectig t O, the othocete. As the esltt psses thogh O, momet of the esltt bot O O. Sm of the momets of P, Q, R bot O O P.OD+Q.OE+R.OF 0.. () I t. dbod, OBD EBC 90 C. t( 90 C) OD i.e) cot C BD OD BD OD BD cot C. () Fom t. dabd, BD cos B AB Fom( ), OD ccos B. cot C Similly OE c.cos Bcos C si C cos C ccos B. si C c Rcos Bcos C( R si C, R is the cicmdis of the ) R cosc cos A d OF R cos AcosB Hece () becomes P. Rcos Bcos C Q.Rcos Ccos A R.Rcos Acos B 0 Dividig by R cos Acos Bcos C, P A cos Q B cos R C cos 0 () Now, P, Q, R beig mgitdes of the foces, e ll positive. () my hold good, if t lest oe of the tems mst be egtive. Hece oe of the cosies mst be egtive. i.e) the tigle mst be obtse gled. If A 0 d the othe gles eql, the B C 0 Hece () becomes

37 6 P Q R 0 cos0 cos0 cos0 P Q R i.e. 0 i.e. P Q R.6 Coples: Defiitio Two eql d like pllel foces ot ctig t the sme poit e sid to costitte cople. Exmples of cople e the foces sed i widig clock o tig tp. Sch foces ctig po igid body c hve oly otto effect o the body d they c ot podce motio of tsltio. The momet of cople is the podct of eithe of the two foces of the cople d the pepedicl distce betwee them, The pepedicl distce (p) betwee the two eql foces P of cople is clled the m of the cople. A cople ech of whose foces is P d whose m is p is slly deoted by (P, p). A cople is positive whe its momet is positive i.e., if the foces of the cople ted to podce ottio i the ti-clockwise diectio d cople is egtive whe the foces ted to podce ottio i the clockwise diectio..7 Eqilibim of thee foces ctig o Rigid Body. I the pevios sectios we hve stdied theoems d poblems ivolvig pllel foces d foces ctig t poit. Hee we stdy thee impott theoems d solved poblems o foces ctig o igid body d thei coditios of eqilibim. Theoem Poof: If thee foces ctig o igid body e i eqilibim, they mst be copl. P R A B C D E Q

38 7 Let the thee foces be P,Q,R Give : They e ctig o igid body d i eqilibim. Tke A o the foce P, d B o the foce Q sch tht AB is ot pllel to R. Sm of the momets of P, Q, R bot AB 0 [ P,Q, R e i eqilibim] Now, momet of P d Q bot AB 0 [ P d Q itesect AB]. Momet of R bot AB 0, Hece R mst itesect AB t poit C Similly if D is othe poit o Q sch tht AD is ot pllel to R, we pove, R mst itesect AD t poit E. Sice BC d DE itesect t A, BD, CE, A lie o the sme ple. i.e) A lies o the ple fomed by Q d R. Sice A is bity poit o the foce P, evey poit o the foce P lie o the sme ple. ie) P, Q, R lie o the sme ple. Thee Copl Foces theoem If thee copl foces ctig o igid body keep it i eqilibim, they mst be eithe cocet o ll pllel. Poof: Let P, Q, R be the thee foces ctig o igid body keep it i eqilibim. Oe foce mst be eql d opposite to the esltt of the othe two. they mst be pllel o itesect. Cse : If P d Q e pllel (like o like) The the esltt of P d Q is lso pllel. Hece R mst be pllel to P d Q. Cse : If P d Q e ot pllel: (itesect) They meet t O. Theefoe, by pllelogm lw, the thid foce R mst pss thogh O. i.e) the thee foces e cocet. Note: A cople d sigle foce c ot be i eqilibim Coditios of eqilibim. If thee foces ctig t poit e i eqilibim, the ech foce is popotiol to the sie of the gle betwee the othe two.. If thee foces i eqilibim e pllel, the ech foce is popotiol to the distce betwee the othe two

39 8 Two Tigoometicl theoems If D is y poit o BC of tigle ABC sch tht BD m d ADC, DC BAD, DAC the ) m cot m.cot. cot ) m cot.cot B m.cot C. Poof: A. Give, m ) B m D C BD DC BD. DA DA DC Usig, sie foml i ABD, ADC, m si si BAD ABD si si m si si si si Divide by si si m cot cot cot cot m ACD DAC si.cos cos.si si cos cos.si si.si. si cot cot cot cot m cot m.cot. cot

40 9. m BD DA. DA DC si BAD si ACD si ABD si DAC si B.si C si B.si 80 C si C.si B si B.si C si C si.cos B cos si B si B si C cos cos C si Divide by si B si C si m cot B cot cot cot C m cot cot C cot B cot ( m )cot cot B mcotc Poblem 0 A ifom od, of legth, hgs gist smooth veticl wll beig sppoted by mes of stig, of legth l, tied to oe ed of the od, the othe ed of the stig beig ttched to poit i the wll: show tht the od c est iclied to the wll t gle give by cos l. Wht e the limits of the tio of : l i ode tht eqilibim my be possible? Soltio: C T A L 90 0 G R w l D B

41 0 AB is the od of legth, with G its cete of gvity d BC is the stig of legth l. The foces ctig o the od e: (i). Its weight W ctig veticlly dowwds thogh G. (ii). The ectio R t A which is oml to the wll d theefoe hoizotl. iii) The tesio T of the stig log BC. These thee foces i eqilibim ot beig ll pllel, mst meet i poit L. Let the stig mke gle with the veticl. ACB GLB. LGB 80 dalg 90, AG:GB :, Usig the tigoometicl theoem i ALB 80.cot90. cot ( )cot i.e) cot cot cot cot () Dw BD to CA. Fom t. dcdb, BD BC.si l. si t. dabd, BD ABsi si l si si () Elimite betwee () d (). We kow tht cos ec cot () si l () si cosec () l si Sbstitte () d () i () i.e. l si l cot si l cos cos l cos

42 l cos (5) Eqilibim positio is possible, if l 0 i.e. l l Also i.e. l i.e. l l cos positive d less th o l.. (6) o l (7) l [ By (6) & (7) ]. l l Poblem A bem of weight W higed t oe ed is sppoted t the othe ed by stig so tht the bem d the stig e i veticl ple d mke the sme gle with the hoizo. Show tht the ectio t the hige is W 8 cos ec Soltio: C L Let AB be the bem of weight W d G its cete of gvity. R G α θ T B BC is the stig The foce ctig o the bem e: i) Its wt. W ctig veticlly dow wds t G ii) the tesio T log BC iii) the ectio R t the hige A. A 90 0 W

43 Fo eqilibim (i), (ii) d (iii) mst meet t L. BC d AB mke the sme gle with the hoizo. They mke i.e. Let 90 with the veticl LG, BLG 90 LGB ALG Usig tigoometicl theoem i ALB, AG:GB : cot90.cot.cot90 i.e. t cot t t cot. () Applyig Lmi s theoem t L, si i.e. R W 90 si 90 R cos si W cos R cos W W 90 cos W cos cos cos si si W cos si cos cot si W cos si cos.t si [By ()] W cos cos ec W cot W.cos ec cot cot si si W.cot 9t W W cot 9 cot 8 W cos ec 8

44 Wll Poblem A solid coe of height h d semi-veticl gle is plced with its bse fltly gist smooth veticl wll d is sppoted by stig ttched to its vetex d to poit i the wll. 6 Show tht the getest possible legth of the stig is h t. 9 (The cete of gvity of solid coe lies o its xis d divides it i the tio : fom the vetex.) Soltio: O R O T C A G D W B Let A be the vetex, & height AD h. Semi-veticl gle D AC. G divides AD i the tio : Legth AO is getest, whe the coe is jst i the poit of tig bot C. At tht time, oml ectio R mst be pepedicl to the wll. Sice, the coe is i eqilibim, the thee foces T, W, R mst be cocet t O. AOG & AO D e simil. AO AO AD AG Now, OG CD. Fom h h AO AO CD CD ACD, t CD ht AD h OG h.t ()

45 Fom AOG, AO AG GO AO 9 h t 6 AO h 9. 6 h h.t 9h h.t t 6 9 A O h 6 6 A O h. 9 9h 6h 6 t t t Poblem A hevy ifom od of legth lies ove smooth peg with oe ed estig o smooth veticl wll. If c is the distce of the peg fom the wll d the iclitio of the od to the wll, show tht c si Soltio: O R A R 90 D c P G W B

46 5 Foces ctig o the od AB e i) Weight W t G ii) iii) Rectio R t A ( to the wll) Rectio R t the peg P ( to the od) Fo eqilibim, W, R,R mst be cocet t O. Fom ightgled tigle ADP (DP c) Fom Fom c si. () AP AP AOP, si.. () AO OA OGA, si.. () AG c AP OA si AP AO AG t c AG c Poblem A hevy ifom sphee ests tochig two smooth iclied ples oe of which is iclied 60 to the hoizotl. If the pesse o this ple is oe-hlf of the weight of the sphee, pove tht the iclitio of the othe ple to the hoizotl is Soltio: c si 0 M N A 60 o R B C 60 o L R A B

47 6 Let the sphee cete C est o the iclied ples AM d BN. MA mkes hoizotl d let NB mke gle with the hoizo. The foces ctig e 60 with the i) Rectio R A t A pepedicl to the iclied ple AM d to the sphee d hece pssig thogh C. ii) Rectio R B t B which is oml to the iclied ple BN d to the sphee d iii) hece pssig thogh C. W, the weight of the sphee ctig veticlly dowwds t C log CL. Clely the bove thee foces meet t C. Also ACL 60 d BCL Applyig Lmi s theoem, R A W si si 60 W si R A. () si 60 Bt W R A () Fom () d (), we hve W si W si 60 i.e. si si 60 si 60cos cos60si i.e. si cos si o si cos si i.e. si si cos o cos i.e. t o 0

48 7 Poblem 5 A ifom solid hemisphee of weight W ests with its cved sfce o smooth hoizotl ple. A weight w is sspeded fom poit o the im of the hemisphee. If the ple 8w bse of the im is iclied to the hoizotl t gle, pove tht t W Soltio: R C A L O D G B W C w Dw GL pepedicl to OC d BD pepedicl to OC. Bse AB is iclied t gle θ with the hoizotl BD. Foces ctig e i) Rectio R c ii) Weight W t G iii) Weight w t B. Sice these thee foces e pllel, d i eqilibim ech foce is popotiol to the distce betwee the othe two. W w () BD GL Now, OBD BD OB cos cos Hee, OG, 8 GL OG. si 8 dis si W w () cos si 8 8w t W

49 8 UNIT II. Fictio I the pevios sectios we hve stdied poblems o eqilibim of smooth bodies. Pcticlly o bodies e pefectly smooth. All bodies e ogh to ceti extet. Fictio is the foce tht opposes the motio of object. Oly becse of this fictio we e ble to tvel log the od by wlkig o by vehicles. So fictio helps motio. It is tgetil foce ctig t the poit o cotct of two bodies. To stop movig object foce mst ct i the opposite diectio to the diectio of motio. Sch foce is clled fictiol foce. Fo exmple if yo psh yo book coss yo desk, the book will move. The foce of the psh moves the book. As the books slides coss the desk, it slows dow d stops movig. Whe yo ide bicycle the cotct betwee the wheel d the od is exmple of dymic fictio. Defiitio If two bodies e i cotct with oe othe, the popety of the two bodies, by mes of which foce is exeted betwee them t thei poit of cotct to pevet oe body fom slidig o the othe, is clled fictio; the foce exeted is clled the foce of fictio. Types of Fictio Thee e thee types of fictio ) Stticl Fictio ) Limitig Fictio ) Dymicl fictio.. Whe oe body i cotct with othe is i eqilibim, the fictio exeted is jst sfficiet to miti eqilibim is clled stticl fictio.. Whe oe body is jst o the poit of slidig o othe, the fictio exeted ttis its mximm vle d is clled limitig fictio; the eqilibim is sid to be limitig eqilibim.. Whe motio eses by oe body slidig ove othe, the fictio exeted is clled dymicl fictio.. Lws of Fictio Fictio is ot mthemticl cocept; it is physicl elity. Lw Whe two bodies e i cotct, the diectio of fictio o oe of them t the poit of cotct is opposite to the diectio i which the poit of cotct wold commece to move. Lw Whe thee is eqilibim, the mgitde of fictio is jst sfficiet to pevet the body fom movig.

50 9 Lw The mgitde of the limitig fictio lwys bes costt tio to the oml ectio d this tio depeds oly o the sbstces of which the bodies e composed. Lw The limitig fictio is idepedet of the extet d shpe of the sfces i cotct, so log s the oml ectio is lteed. Lw 5 (Lw of dymicl Fictio) Whe motio eses by oe body slidig ove the othe the diectio of fictio is opposite to tht of motio; the mgitde of the fictio is idepedet of the velocity of the poit of cotct bt the tio of the fictio to the oml ectio is slightly less whe the body moves, th whe it is i limitig eqilibim. Fictio is pssive foce: Expli ) Fictio is oly esistig foce. ) It ppes oly whe ecessy to pevet o oppose the motio of the poit of cotct. ) It c ot podce motio of body by itself, bt mitis eltive eqilibim. ) It is self-djstig foce. 5) It ssmes mgitde d diectio to blce othe foces ctig o the body. Hece, fictio is pely pssive foce. Co-efficiet of fictio The tio of the limitig fictio to the oml ectio is clled the co-efficiet of fictio. It is deoted by i.e.) F R Note: ) depeds o the te of the mteils i cotct. ) Fictio is mximm whe it is limitig. R is the mximm vle of fictio. F ) Whe eqilibim is o-limitig, F R i.e.) R ) Fictio F tkes y vle fom zeo pto R. Agle of Fictio F R B C B C R R O F A O R A

51 50 Let OA F(Fictio), If OB R (Noml ectio) &OC be the esltt of F d R. BC OA F BOC, t.. () OB OB R As F iceses, - iceses til F eches its mximm vle R. I this cse, eqilibim is limitig. Defiitio Whe oe body is i limitig eqilibim ove othe, the gle which the esltt ectio mkes with the oml t the poit of cotct is clled the gle of fictio d is deoted by t I the limitig eqilibim, B OC gle of fictio. BC OB OA OB t R R i.e.) The co-efficiet of fictio is eql to the tget of the gle of fictio. Coe of Fictio R R O R

52 5 We kow, the getest gle mde by the esltt ectio with the oml is (gle of fictio) whee t. Coside the motio of body t O (its poit of cotct) with othe. Whe two bodies e i cotct, coside coe dw with O s vetex, commo oml s the xis of the coe, - be the semi-veticl gle of the coe. Now, the esltt ectio of R d R will hve diectio which lies withi the sfce o o the sfce of the coe. It c ot fll otside the coe. This coe geeted by the esltt ectio is clled the coe of fictio.. Eqilibim of pticle o ogh iclied ple. R F A W Let - be the iclitio of the ogh iclied ple, o which pticle of weight W, is plced t A. Foces ctig o the pticle e, ) Weight W veticlly dowwds ) Noml ectio R, to the ple. ) Fictiol foce F, log the ple pwds (Sice the body ties to slip dow). Resolvig the foces log d pepedicl to the ple, R F F W si, R W cos t

53 5 Bt i.e) F R t t F Whe, R t t Hece, it is cle tht whe body is plced o ogh iclied ple d is o the poit of slidig dow the ple, the gle of iclitio of the ple is eql to the gle of fictio. Now is clled s the gle of epose. Ths the gle of epose of ogh iclied ple is eql to the gle fictio whe thee is o extel foce ct o the body.. Eqilibim of body o ogh iclied ple de foce pllel to the ple. A body is t est o ogh ple iclied to the hoizo t gle gete th the gle of fictio d is cted o by foce pllel to the ple. Fid the limits betwee which the foce mst lie. Poof: ectio. Let be the iclitio of the ple, W be the weight of the body& R be the oml Cse : Let the body be o the poit of slippig dow. Theefoe ple. P R cts pwds log the R R W si W cos W

54 5 Let P be the foce pplied to keep the body t est. Resolvig the foces log d pepedicl to the ple, P R W si.. () Let R W.cos () P W. si. W cos W si t. cos W cos si.cos cos si W. si cos.si P W cos Cse ii Let the body be o the poit of movig p. Theefoe limitig fictiol foce R cts dowwd log the ple. R P W si W cos R W Let P be the extel foce pplied to keep the body t est. Resolvig the foce, R W cos ; P R W si P. W cos W si W cos si cos cos.si

55 5 W cos.si W cos Let P. si If P P, body will move dow the ple. If P P, body will move p the ple. Fo eqilibim P mst lie betwee P d P. i.e.) P P P.5 Eqilibim of body o ogh iclied ple de y foce. Theoem: A body is t est o ogh iclied ple of iclitio to the hoizo, beig cted o by foce mkig gle with the ple; to fid the limits betwee which the foce mst lie d lso to fid the mgitde d diectio of the lest foce eqied to dg the body p the iclied ple. P P R µr R W si α A A W si R W cos W Let α be the iclitio of the ple, W be the weight of the body, P be the foce ctig t gle with the iclied ple d R be the oml ectio. Cse i: The body is jst o the poit of slippig dow. Theefoe the limitig fictio pwds. Resolvig the foces log d to the iclied ple, Pcos R W si.. () R cts

56 55 Psi R W cos.. () R W cos Psi Pcos W cos Psi W si P cos si Wsi cos We hve W si cos P cos si t si t.cos P W cos t.si W si cos cos.si cos.cos si.si si W cos Let si P W. cos Cse ii: The body is jst o the poit of movig p the ple. Theefoe Resolvig the foces log d to the ple. Pcos R W. si. () Psi R W. cos. () R W cos Psi Pcos W cos Psi W. si P cos si Wsi cos si t.cos P W cos t.si si.cos si.cos W cos cos si.si W.si cos R cts dowwds.

57 56 Let P W.si cos To keep the body i eqilibim, P d P e the limitig vles of P. Fid the lest foce eqied to dg the body p the iclied ple We hve, P W. si cos P is lest whe cos is getest. i.e.) Whe cos i.e.) Whe 0 i.e.) Whe Lest vle of P W. si Hece the foce eqied to move the body p the ple will be lest whe it is pplied i diectio mkig with the iclied ple gle eql to the gle of fictio. i.e.) The best gle of tctio p ogh iclied ple is the gle of fictio Poblem A pticle of weight 0 kgs. estig o ogh hoizotl ple is jst o the poit motio whe cted o by hoizotl foces of 6kg wt. d 8kg. wt. t ight gles to ech othe. Fid the coefficiet of fictio betwee the pticle d the ple d the diectio i which the fictio cts. Soltio: C D 6 0 F A 8 B Let AB (8) d AC (6) epeset the

58 57 Let AB 8 d AC 6 epeset the diectios of the foces, A beig the pticle. The esltt foce 8 6 0kg. wt. d this cts log AD, mkig gle cos with the 8kg foce. 5 Let F be the fictiol foce. As motio jst begis, mgitde of F is eql to tht of the esltt foce. F 0 () If R is the oml ectio o the pticle, R 0.. () If is the coefficiet of fictio s the eqilibim is limitig, F R Poblem A body of weight kgs. ests i limitig eqilibim o iclied ple whose iclitio is 0. Fid the coefficiet of fictio d the oml ectio. Soltio: R R W si 0 W cos 0 0 W kg Sice the body is i limitig eqilibim o the iclied ple, it ties to move i the dowwd diectio log the iclied ple.

59 58 log d Fictiol foce R cts i the pwd diectio log the iclied ple. Resolvig to the ple, R W si 0 (). R W.cos0. () t, 0 Poblem A ifom ldde is i eqilibim with oe ed estig o the god d the othe gist veticl wll; if the god d wll be both ogh, the coefficiets of fictio beig d espectively, d if the ldde be o the poit of slippig t both eds, show tht, the iclitio of the ldde to the hoizo is give by ectios t the wll d god. Soltio: S t. Fid lso the B S G R θ C R E A W

60 59 AB is the ifom ldde, whose weight W is ctig t G sch tht AG GB. Foces ctig e,. Weight W. Noml ectio R t A. Noml ectio S t B. R 5. S Whe the ldde is o the poit of slippig t both eds, fictiol foces S, R ct log CB, AC espectively. Sice the ldde is i eqilibim esltt is zeo. Resolvig hoizotlly d veticlly, S R.. () R S W. () R R R W W W R By Vigo s theoem o momets, tkig momets bot A S. BC S. AC W. AE S. ABsi S. ABcos W. AG. cos S. si S.cos W.. cos AB AG W S W S.si S. cos t W S W W t I the pevios poblem, whe of fictio. Poblem show tht 90, whee is the gle

61 60 Soltio: I the pevios poblem, we hve poved t Pt t, we get t t ; t t t t 90 cot t90 i.e.) 90 Poblem 5 A ifom ldde ests i limitig eqilibim with its lowe ed o ogh hoizotl ple d its ppe ed gist eqlly ogh veticl wll. If be the iclitio of the ldde to the veticl, pove tht t whee is the coefficiet of fictio. Soltio: S S L B S R G R C R A W Whe the ldde AB is i limitig eqilibim, five foces e ctig s mked i the fige.

62 6 Let ) Weight of the ldde W ) Noml ectio R t A ) Noml ectio S t B ) Fictiol foce R 5) fictiol foce S R, S be the esltt ectios of R, R d S, S espectively. We hve foces R, S, W. Fo eqilibim, they mst be cocet t L. I LAB, LG A 80 ; ALG B LG 90, AG : GB : By tigoometicl theoem i LBA, (+) cot80.cot90. cot t.cot t cot t t cot t i.e.) t t Poblem 6 A ifom ldde ests with its lowe ed o ogh hoizotl god its ppe ed gist ogh veticl wll, the god d the wll beig eqlly ogh d the gle of fictio beig. Show tht the getest iclitio of the ldde to the veticl is. Soltio I the pevios poblem, we hve poved, t t t t t Bt t

63 6 Poblem 7 A ldde which stds o hoizotl god, leig gist veticl wll, is so loded tht its C. G. is t distce d b fom its lowe d ppe eds espectively. Show tht if the ldde is i limitig eqilibim, its iclitio to the hoizotl is give by b t b whee, e the coefficiets of fictio betwee the ldde d the god d the wll espectively. Soltio: As i poblem 5, five foces e ctig o the ldde Hee, AG : GB : b By Tigoometicl theoem i LBA, b. cot90 b.cot 90. cot i.e.) b t b.t. cot b. b. t b b Poblem 8 A ldde AB ests with A o ogh hoizotl god d B gist eqlly ogh veticl wll. The cete of gvity of the ldde divides AB i the tio : b. If the ldde is o the poit of slippig, show tht the iclitio of the ldde to the god is give by b t whee is the coefficiet of fictio. ( b) Soltio: Pt I the pevios poblem, i b t b b t b

64 6 Poblem 9 A ldde AB ests with A estig o the god d B gist veticl wll, the coefficiets of fictio of the god d the wll beig d espectively. The cete of gvity G of the ldde divides AB i the tio :. If the ldde is o the poit of slippig t both eds, show tht its iclitio to the god is give by Soltio: Pt : b : i poblem7. t Poblem 0 t. A ldde of legth l is i cotct with veticl wll d hoizotl floo, the gle of fictio beig t ech cotct. If the weight of the ldde cts t poit distt kl below the middle poit, pove tht its limitig iclitio to the veticl is give by cot cot k cosec. Soltio: B S S S L C kl G R R R A W Foces e ctig s mked i the fige. Fo eqilibim, the thee foces mst be cocet t L, whee W be the weight of the ldde. I LAB, BC CA l; CG kl. BG BC CG l kl ( k) l R, S, W

65 6 B LG 90, LG A 80 ALG ; GA CA CG l kl l k: k BG : GA k. By Tigoometicl theoem i LBA, k k].cot80 k.cot 90 k.cot. [ cot k.t. cot k kcot t cot k k.cot k cot cot k cot cot cot cot k.cosec.cot t cot k cot.t.cot ie) t k t.t. cot t k. t si cot cot k.cosec Poblem A ifom ldde ests i limitig eqilibim with its lowe ed o ogh hoizotl ple d with the ppe ed gist smooth veticl wll. If be the iclitio of the ldde to the veticl, pove tht, t, whee is the coefficiet of fictio.

66 65 Soltio: B L 90 S G R R C R A W Sice the wll is smooth, thee is o fictiol foce. Foces ctig o the ldde e i) its weight W, ii) Fictiol foce R iii) R t A iv) S t B. Fo eqilibim, the thee foces W, R, S mst be cocet t L. whee R is the esltt of R d L G A 80, ALG, B LG 90; BG : GA :. ABC By Tigoometicl theoem i LAB, cot80.cot90. cot.cot 0 cot t t i.e) t t t R. I tigle LAB, Poblem A pticle is plced o the otside of ogh sphee whose coefficiet of fictio is. Show tht it will be o the poit of motio whe the dis fom it to the cete mkes gle t with the veticl.

67 66 Soltio: A R R B O W Let O be the cete, A the highest poit of the sphee d B the positio of the pticle which is jst o the poit of motio. Let The foces ctig t B e: ) the oml ectio R ) limitig fictio R AOB ) Its weight W, Sice the pticle t B is i limitig eqilibim, Resolvig log the oml OB, R W cos. () Resolvig log the tget t B, R W si.. () t.6 Eqilibim of Stigs Whe ifom stig o chi hgs feely betwee two poits ot i the sme veticl lie, the cve i which it hgs de the ctio of gvity is clled ctey. If the weight pe it legth of the chi o stig is costt, the ctey is clled the ifom o commo ctey. t.7 Eqtio of the commo ctey: A ifom hevy iextesible stig hgs feely de the ctio of gvity; to fid the eqtio of the cve which it foms.

68 67 Let ACB be ifom hevy flexible cod ttched to two poits A d B t the sme level, C beig the lowest, of the cod. Dw CO veticl, OX hoizotl d tke OX s X xis d OC s Y xis. Let P be y poit of the stig so tht the legth of the e CP s Let ω be the weight pe it legth of the chi. Coside the eqilibim of the potio CP of the chi. The foces ctig o it e: (i) Tesio T 0 ctig log the tget t C d which is theefoe hoizotl. (ii) Tesio T ctig t P log the tget t P mkig gle Ψ with OX. (iii) Its weight ws ctig veticlly dowwds thogh the C.G. of the c CP. Fo eqilibim, these thee foces mst be cocet. Hece the lie of ctio of the weight ws mst pss thogh the poit of the itesectio of T d T o. Resolvig hoizotlly d veticlly, we hve Tcos Ψ T o () d Tsi Ψ ws () Dividig () by (), t Ψ ws T 0 Now it will be coveiet to wite the vle of T o the tesio t the lowest poit, s T o wc () whee c is costt. This mes tht we ssme T o, to be eql to the weight of kow legth c of the cble.

69 68 The t Ψ ws wc s c S ctψ () Eqtio () is clled the itisic eqtio of the ctey. It gives the eltio betwee the legth of the e of the cve fom the lowest poit to y othe poit o the cve d the iclitio of the tget t the ltte poit. To obti the cetesi eqtio of the ctey, We se the eqtio () d the eltios dy ds dy si Ψ d t Ψ which e te fo y cve. dx Now dy dψ dy ds. ds dψ si Ψ d dψ c t Ψ si csec Ψ csec Ψ t Ψ y ʃ csec Ψ t Ψ dψ + A csec Ψ + S If y c whe Ψ 0, the c csec0 + A A 0 Hece y csec Ψ (5) y c sec Ψ c ( + t Ψ) c + s (6) dy t Ψ s y c dx c c dy y c dx c Itegtig, cos h - Whe x 0, y c y c x c + B i.e. cos h B o B 0 cos h - y c i.e. y ccos h x c x c (7) (7) is the Ctesi eqtio to the ctey. We c lso fid the eltio coectig s d x.

70 69 Diffeetitig (7). dy csih x. dx c c sih x c Fom (), s ct Ψ c. dy dx csih x c (8) Defiitios: The Ctesi eqtio to the ctey is y ccosh x c. cosh x c is eve fctio of x. Hece the cve is symmeticl with espect to the y-xis i.e. to the veticl thogh the lowest poit. This lie of symmety is clled the xis of the ctey. Sice c is the oly costt, i the eqtio, it is clled the pmete of the ctey d it detemies the size of the cve. The lowest poit C is clled the vetex of the ctey. The hoizotl lie t the depth c below the vetex (which is tke by s the x xis) is clled the diectix of the ctey. If the two poits A d B fom whee the stig is sspeded e i hoizotl lie, the the distce AB is clled the sp d the distce CD (i.e. the depth of the lowest poit C below AB) is clled the sg..8 Tesio t y poit: We hve deived the eqtios T cos Ψ T 0 () Ad T si Ψ ws () We hve lso pt T 0 wc () Eqtio () shows tht the tesio t the lowest poit is costt d is eql to the weight of potio of the stig whose legth is eql to the pmete of the ctey. Fom the eqtio (), we fid tht the hoizotl compoet of the tesio t y poit o the cve is eql to the tesio t the lowest poit d hece is costt. Fom eqtio (), we dedce tht the veticl compoet of the tesio t y poit is eql to ws i.e. eql to the weight of the potio of the stig lyig betwee the vetex d the poit. ( s e CP)

71 70 Sqig () d () d the ddig, T T 0 + w s w c +w w (c +s ) w y sig eqtio (6) of pge 77 T wy () Ths the tesio t y poit is popotiol to the height of the poit bove the oigi. It is eql to the weight of potio of the stig whose legth is eql to the height of the poit bove the diectix. Impott Coolly: Sppose log chis is thow ove two smooth pegs A d B d is i eqilibim with the potios AN d BN hgig veticlly. The potio BCA of the chi will fom ctey. The tesio of the chi is lteed by pssig ovet the smooth peg A. The tesio t A c be clclted by two methods. O oe side (i.e. fom the ctey potio), Tesio t A w.y whee y is the height of A bove the diectix. O the othe side, tesio t A weight of the fee pt AN hgig dow w. AN yan I othe wods, N is o the diectix of the ctey. Similly N is o the diectix. Hece if log chi is thow ove two smooth pegs d is i eqilibim, the fee eds mst ech the diectix of the ctey fomed by it.

72 7 Impott Fomle: The Ctesi coodites of poit P o the ctey e (x, y) d its itisic coodites e (s, Ψ). Hece thee e fo vible qtities we c hve eltio coectig y two of them. Thee will be C 6 sch eltios, most of them hvig bee ledy deived. We shll deive the emiig. It is wothwhile to collect these eslts fo edy efeece. (i) The eltio coectig x d y is y ccosh x () c (ii) (iii) (iv) d this is the Ctesi eqtio to the ctey. The eltio coectig s d Ψ is s ct Ψ () The eltio coectig y d Ψ is ycsecψ () The eltio coectig y d s is y c +s. () (v) The eltio coectig s d x is s csih x c (vi) We hve y ccosh x c d y csec Ψ, sec Ψ cosh x c x c cosh -(secψ) log(secψ + sec Ψ log(secψ + t Ψ) x clog (secψ + tψ) (6) This eltio c lso be obtied ths: dx dx. ds dψ ds dψ cos Ψ. d dx (ct Ψ ) sice cos Ψ fo y cve dψ ds cos Ψ. CsecΨ csecψ

73 7 Itegtig, x ʃ csec Ψ dψ + D clog (secψ + Ψ) + D At the lowest poit, Ψ 0 d x 0 0 clog (sec0+t0 + D i.e. 0 D x clog (secψ + t Ψ) (vii) The tesio t y poit wy (7), whee y is the distce of the poit fom the diectix. (viii) The tesio t the lowest poit wc (8) sih - x log(x+ x + ) cosh - x log(x+ x ).9 Geometicl Popeties of the Commo ctey: Let P be y poit o the ctey y ccosh x. c PT is the tget meetig the diectix (i.e. the x xis) t T. gle PTX Ψ PM (y) is the odite of P d PG is the oml t P. Dw MN to PT. Fom ΔPMN. MN PMcosΨ ycosψ

74 7 csecψ cos Ψ ccostt i.e. The legth of the pepedicl fom the foot of the odite o the tget t y poit of the ctey is costt. Agi t Ψ PN MN PN C PN C t Ψ S c CP PM NM + PN y c +s, eltio ledy obtied. If is the dis of cvte of the ctey t P, P ds dψ d dψ (ct Ψ) csec Ψ Let the oml t P ct the x xis t G. The PG. cos Ψ PM y PG ρ PG y cosψ csecψ. secψ csec Ψ Hece the dis of cvte t y poit o the ctey is meiclly eql to the legth of the oml itecepted betwee the cve d the diectix, bt they e dw i opposite diectios. Poblem A ifom chi of legth l is to be sspeded fom two poits i the sme hoizotl lie so tht eithe temil tesio is times tht t the lowest poit. Show tht the sp mst be l log(+ Soltio: Tesio t A wy A Ad tesio t C w.y C sice T wy t y poit Now w.y A.w.y C y A y C c Bt y A ccosh x A c cosh x A c c

75 7 o x A c cosh - log (+ ) x A clog (+ ) () We hve to fid c. y A c +s A, s A deotig the legth of CA. c + l (s totl legth l) i.e. c c + l o c l ( ) c l () Sbstittig () i (), x A sp AB x A l log (+ ) l ) log (+ ) Poblem A box kite is flyig t height h with legth l of wie pid ot, d with the vetex of the ctey o the god. Show tht t the kite, the iclitio of the wie to the god is t - h d tht its tesios thee d t the god e w(l +h ) d w(l h ) whee w is the l h h weight of the wie pe it of legth. Soltio: Y A h C l L c O M X

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

Engineering Mathematics I (10 MAT11)

Engineering Mathematics I (10 MAT11) www.booksp.com VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Egieeig Mthemtics I (0 MAT) LECTURE NOTES (FOR I SEMESTER B E OF VTU) www.booksp.com VTU NOTES QUESTION PAPERS of 4 www.booksp.com VTU NOTES

More information

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2 STUDENT NAME: STUDENT ID: ELEC ENG FH3: MIDTERM EXAMINATION QUESTION SHEET This emitio is TWO HOURS log. Oe double-sided cib sheet is llowed. You c use the McMste ppoved clculto Csio f99. You c tke y mteil

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the 1. The 0.1 kg pticle h peed v = 10 m/ it pe the 30 poitio how. The coefficiet of kietic fictio betwee the pticle d the veticl ple tck i m k = 0.0. Detemie the mgitude of the totl foce exeted by the tck

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Force and Motion. Force

Force and Motion. Force Force d Motio Cocept of Force Newto s hree Lws ypes of Forces Free body lysis Equilibrium Noequilibrium Frictio Problem Solvig Force A Force is push or pull tht is exerted o object by some other object.

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES O completio of this ttoial yo shold be able to do the followig. Eplai aithmetical ad geometic pogessios. Eplai factoial otatio

More information

Plane Kinetics of Rigid Bodies 동역학 및 응용

Plane Kinetics of Rigid Bodies 동역학 및 응용 Ple Kietics of igid odies 동역학 및 응용 EQUTONS O PLNE OTON esultt of the pplied etel foces : esultt foce (pss though ss cete) + ouple oets of the etel foces gul otio z ouple : sste of foces with esultt oet

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3 You eed to kow: Rolle s Theoem: f ) f is cotiuous o [.bj, 2) f is diffeetible o (,b), d ) f()=f(b), the thee s oe c i (,b) whee f (c) = Me Vlue Theoem: l) f is cotiuous o [.b d 2) f is diffeetible o (,b),

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Set 1 Paper 2. 1 Pearson Education Asia Limited 2014

Set 1 Paper 2. 1 Pearson Education Asia Limited 2014 . C. A. C. B 5. C 6. A 7. D 8. B 9. C 0. C. D. B. A. B 5. C 6. C 7. C 8. B 9. C 0. A. A. C. B. A 5. C 6. C 7. B 8. D 9. B 0. C. B. B. D. D 5. D 6. C 7. B 8. B 9. A 0. D. D. B. A. C 5. C Set Pper Set Pper

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

Set 3 Paper 2. Set 3 Paper 2. 1 Pearson Education Asia Limited 2017

Set 3 Paper 2. Set 3 Paper 2. 1 Pearson Education Asia Limited 2017 Set Pper Set Pper. D. A.. D. 6. 7. B 8. D 9. B 0. A. B. D. B.. B 6. B 7. D 8. A 9. B 0. A. D. B.. A. 6. A 7. 8. 9. B 0. D.. A. D. D. A 6. 7. A 8. B 9. D 0. D. A. B.. A. D Sectio A. D ( ) 6. A b b b ( b)

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Force and Motion. Force. Classifying Forces. Physics 11- Summer /21/01. Chapter 4 material 1. Forces are vector quantities!

Force and Motion. Force. Classifying Forces. Physics 11- Summer /21/01. Chapter 4 material 1. Forces are vector quantities! Force d Motio Cocept of Force Newto s hree Lws ypes of Forces Free body lysis Equilibrium Noequilibrium Frictio Problem Solvig Force A Force is push or pull tht is exerted o object by some other object.

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

The z Transform. The Discrete LTI System Response to a Complex Exponential

The z Transform. The Discrete LTI System Response to a Complex Exponential The Trsform The trsform geerlies the Discrete-time Forier Trsform for the etire complex ple. For the complex vrible is sed the ottio: jω x+ j y r e ; x, y Ω rg r x + y {} The Discrete LTI System Respose

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Mathematics. Trigonometrical Ratio, Functions & Identities

Mathematics. Trigonometrical Ratio, Functions & Identities Mthemtics Tigmeticl Rti, Fuctis & Idetities Tble f tet Defiitis stems f Mesuemet f gles Relti betwee Thee stems f Mesuemet f gle Relti betwee c d gle 5 Tigmeticl Rtis Fuctis 6 Tigmeticl Rtis f llied gles

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

A Level Further Mathematics A (H245) Formulae Booklet. Specimen. OCR 2017 H245 Turn over QN 603/1325/0

A Level Further Mathematics A (H245) Formulae Booklet. Specimen. OCR 2017 H245 Turn over QN 603/1325/0 A Level Futhe Mthemtics A (H45) Fomule Booklet Specime OCR 07 H45 Tu ove QN 603/35/0 Pue Mthemtics Aithmetic seies S ( l) { ( ) d} Geometic seies S S ( ) fo Biomil seies ( b) C b C b C b b ( ),! whee C!(

More information

Ground Rules. PC1221 Fundamentals of Physics I. Uniform Circular Motion, cont. Uniform Circular Motion (on Horizon Plane) Lectures 11 and 12

Ground Rules. PC1221 Fundamentals of Physics I. Uniform Circular Motion, cont. Uniform Circular Motion (on Horizon Plane) Lectures 11 and 12 PC11 Fudametals of Physics I Lectues 11 ad 1 Cicula Motio ad Othe Applicatios of Newto s Laws D Tay Seg Chua 1 Goud Rules Switch off you hadphoe ad page Switch off you laptop compute ad keep it No talkig

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level 3 Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u Natioal Jio College Mathematics Depatmet 00 Natioal Jio College 00 H Mathematics (Seio High ) Seqeces ad Seies (Lecte Notes) Topic : Seqeces ad Seies Objectives: At the ed of this topic, stdets shold be

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Solutions for May. 3 x + 7 = 4 x x +

Solutions for May. 3 x + 7 = 4 x x + Solutios for May 493. Prove that there is a atural umber with the followig characteristics: a) it is a multiple of 007; b) the first four digits i its decimal represetatio are 009; c) the last four digits

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main)

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main) AIITS-HT-VII-PM-JEE(Mai)-Sol./7 I JEE Advaced 06, FIITJEE Studets bag 6 i Top 00 AIR, 7 i Top 00 AIR, 8 i Top 00 AIR. Studets fom Log Tem lassoom/ Itegated School Pogam & Studets fom All Pogams have qualified

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Properties of the Circle

Properties of the Circle 9 Properties of the Circle TERMINOLOGY Arc: Part of a curve, most commonly a portion of the distance around the circumference of a circle Chord: A straight line joining two points on the circumference

More information

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers AQA Mths M Topic Questions fom Ppes Cicul Motion Answes PhysicsAndMthsTuto.com PhysicsAndMthsTuto.com Totl 6 () T cos30 = 9.8 Resolving veticlly with two tems Coect eqution 9.8 T = cos30 T =.6 N AG 3 Coect

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample

Consider unordered sample of size r. This sample can be used to make r! Ordered samples (r! permutations). unordered sample Uodeed Samples without Replacemet oside populatio of elemets a a... a. y uodeed aagemet of elemets is called a uodeed sample of size. Two uodeed samples ae diffeet oly if oe cotais a elemet ot cotaied

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

Fill in the blanks Chapter 10 Circles Exercise 10.1 Question 1: (i) The centre of a circle lies in of the circle. (exterior/ interior) (ii) A point, whose distance from the centre of a circle is greater

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper SET - GSE tch : 0th Std. Eg. Medium MHESH TUTILS SUJET : Mths(0) First Prelimiry Exm Model swer Pper PRT -.. () like does ot exist s biomil surd. () 4.. 6. 7. 8. 9. 0... 4 (c) touches () - d () -4 7 (c)

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

Mathematics Extension 2 SOLUTIONS

Mathematics Extension 2 SOLUTIONS 3 HSC Examiatio Mathematics Extesio SOLUIONS Writte by Carrotstics. Multiple Choice. B 6. D. A 7. C 3. D 8. C 4. A 9. B 5. B. A Brief Explaatios Questio Questio Basic itegral. Maipulate ad calculate as

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Convergence of the FEM. by Hui Zhang Jorida Kushova Ruwen Jung

Convergence of the FEM. by Hui Zhang Jorida Kushova Ruwen Jung Covergece o te FEM by Hi Zg Jorid Ksov Rwe Jg I order to proo FEM soltios to be coverget, mesremet or teir qlity is reqired. A simple pproc i ect soltio is ccessible is to qtiy te error betwee FEMd te

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Suggested t-z and q-z functions for load-movement responsef

Suggested t-z and q-z functions for load-movement responsef 40 Rtio (Exponent = 0.5 80 % Fnction (.5 times 0 Hypeolic ( = 0 % SHAFT SHEAR (% of lt 00 80 60 ULT Zhng = 0.0083 / = 50 % Exponentil (e = 0.45 80 % (stin-softening 40 0 0 0 5 0 5 0 5 RELATIVE MOVEMENT

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0 STD: XI MATHEMATICS Totl Mks: 90 Time: ½ Hs I Choose the coect nswe: ( 0 = 0 ). The solution of is ) = b) = c) = d) = 0. Given tht the vlue of thid ode deteminnt is then the vlue of the deteminnt fomed

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials)

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Dt proie: Form Sheet MAS5 SCHOOL OF MATHEMATICS AND STATISTICS Mthemtics II (Mteris) Atm Semester -3 hors Mrks wi e wre or swers to qestios i Sectio A or or est THREE swers to qestios i Sectio. Sectio

More information

Multi-Electron Atoms-Helium

Multi-Electron Atoms-Helium Multi-lecto Atos-Heliu He - se s H but with Z He - electos. No exct solutio of.. but c use H wve fuctios d eegy levels s sttig poit ucleus sceeed d so Zeffective is < sceeig is ~se s e-e epulsio fo He,

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information