Mathematics. Trigonometrical Ratio, Functions & Identities

Size: px
Start display at page:

Download "Mathematics. Trigonometrical Ratio, Functions & Identities"

Transcription

1 Mthemtics Tigmeticl Rti, Fuctis & Idetities

2 Tble f tet Defiitis stems f Mesuemet f gles Relti betwee Thee stems f Mesuemet f gle Relti betwee c d gle 5 Tigmeticl Rtis Fuctis 6 Tigmeticl Rtis f llied gles 7 Tigmeticl Rtis f Vius gles 8 Tigmeticl Rtis i tems f ech the 9 Tigmeticl Rtis f um d Diffeece f Tw gles 0 Tigmeticl Rtis f um d Diffeece f Thee gles Tsfm the Pduct it um Diffeece Tigmeticl Rtis f multiple f gle Tigmeticl Rtis f sub multiple f gle Mimum d Miimum vlue f cs + b si 5 ditil Tigmeticl Idetities

3 Defiiti ( gle: The mti f evlvig lie i ple fm its iitil psiti (iitil side t the fil psiti (temil side is clled gle The ed pit O but which the lie ttes is clled the vete f the gle Temil ( Mesue f gle: The mesue f gle is the mut f tti fm the iitil side t the temil side ( ese f gle: The sese f gle is detemied b the diecti f tti f the iitil side it the temil side The sese f gle is sid t be psitive egtive ccdig s the iitil side ttes i ticlckwise clckwise diecti t get the temil side Psitive Negtive ( Right gle: If the evlvig sttig fm its iitil psiti t fil psiti descibes e qute f cicle The we s tht the mesue f the gle fmed is ight gle (5 Qudts: Let X' OX d YOY ' be tw lies t ight gles i the ple f the ppe These lies divide the ple f ppe it fu equl pts Which e kw s qudts The lies X' OX d YOY ' e kw s -is d -is These tw lies tke tgethe e kw s the c-dite es Y II qudt I qudt (6 gle i stdd psiti: gle is sid t be i stdd psiti if its vete ccides with the igi O d the iitil side ccides with OX ie, the psitive diecti f -is III qudt O IV qudt X (7 gle i qudt: gle is sid t be i pticul qudt if the temil side f the gle i stdd psiti lies i tht qudt (8 Qudt gle: gle is sid t be qudt gle if the temil side ccides with e f the es

4 stem f Mesuemet f gles Thee e thee sstem f mesuig gles ( egesiml Eglish sstem: Hee ight gle is divided it 90 equl pts kw s degees Ech degee is divided it 60 equl pts clled miutes d ech miute is futhe divided it 60 equl pts clled secds Theefe, ight gle = 90 degee ( miutes ( 60 ' 60 secd ( 60' ' ' ( etesiml Fech sstem : It is ls kw s Fech sstem, hee ight gle is divided it 00 equl pts clled gdes d ech gde is divided it 00 equl pts, clled miutes d ech miute is futhe divided it 00 secds Theefe, ight gle = 00 gdes ( 00 gde = 00 miutes ( 00' miute = 00 secds ( 00' ' g ( icul sstem: I this sstem the uit f mesuemet is di Oe di, witte s c, is the mesue f gle subteded t the cete f cicle b c f legth equl t the dius f the cicle P side cicle f dius hvig cete t O Let be pit the cicle Nw cut ff c P whse legth is equl t the dius f the cicle The b the defiiti the mesue f di ( c OP is

5 Relti betwee Thee stems f Mesuemet f gle Let D be the umbe f degees, R be the umbe f dis d G be the umbe f gdes i gle Nw, 90 = ight gle D D ight gles ight gle D ight gles (i 90 gi, dis = ight gles di R dis ight gles R R ight gles ight gles (ii d 00 gdes = ight gle gde G gdes G ight gles 00 ight gle 00 G ight gles (iii 00 Fm (i, (ii d (iii we get, D G R π This is the equied elti betwee the thee sstems f mesuemet f gle Nte: Oe di 80 dis 80 di =

6 Relti betwee c d gle If s is the legth f c f cicle f dius, the the gle (i dis subteded b this c t the s cete f the cicle is give b s θ ie, c = dius gle i dis ectil e: Let O be sect hvig cetl gle the sect O is give b Imptt Tips θ d dius The e f The gle betwee tw csecutive digits i clck is 0 (= /6 dis The hu hd ttes thugh gle f 0 i e hu The miute hd tte thugh gle f 6 i e miute s 5 Tigmeticl Rtis Fuctis I the ight gled tigle OMP, we hve bse = OM =, pepedicul =PM = d hpteuse = OP = We defie the fllwig tigmetic ti which e ls kw s tigmetic fucti Pepedicu l si Hpteues t sec Pepedicu l se Hpteues se se cs Hpteues se ct, Pepedicu l csec Hpteues Pepedicu l O Y M P(, X 5

7 ( Relti betwee tigmetic tis (fucti (i si c sec (ii t ct (iii cs sec (iv t si cs (v ct cs si ( Fudmetl tigmetic idetities (i si cs (ii t sec (iii ct csec Imptt Tips If sec + t, the sec t If cesc ct, the csec ct ( ig f tigmeticl tis fuctis: Thei sigs depeds the qudt i which the temil side f the gle lies (i I fist qudt: 0, 0 si 0,cs 0,t 0, csec 0, sec 0 d ct 0 Thus, i the fist qudt ll tigmetic fuctis e psitive 6

8 (ii I secd qudt: sec 0 d ct 0 ll thes e egtive 0, 0 si 0,cs 0,t 0,csec 0, Thus, i the secd qudt si d csec fucti e psitive d (iii I thid qudt: 0, 0 si 0, cs 0, t 0, csec 0, sec 0 d ct 0 ecept tget d ctget Thus, i the thid qudt ll tigmetic fuctis e egtive (iv I futh qudt: 0, 0 si 0, cs 0, t 0, csec 0, sec 0 d ct 0 Thus, i the futh qudt ll tigmetic fuctis e egtive ecept cs d sec I bief : cude id t memise the sigs f tigmeticl ti i diffeet qudt "dd ug T ffee" Y II I qudt < 0, > 0 > 0, > 0 si d csec e ll e psitive psitive III qudt O IV qudt T < 0, < 0 > 0, < 0 X X t d ct cs d sec Y Imptt Tips Fist detemie the sig f the tigmetic fucti If is mesued fm X OX ie, {(, } the eti the igil me f the fucti If is mesued fm Y OY ie,,, the chge sie t csie, csie t sie, tget t ctget, ct t t, sec t csec d csec t sec 7

9 ( Vitis i vlues f tigmetic fuctis i diffeet qudts: Let X' OX d YOY ' be the cdite es Dw cicle with cete t igi O d dius uit Let M (, be pit the cicle such tht OM the cs d si ; cs d si f ll vlues f II-Qudt ( I-Qudt ( si deceses fm t 0 si iceses fm 0 t cs deceses fm 0 t cs deceses fm t 0 t iceses fm t 0 t iceses fm 0 t ct deceses fm 0 t ct deceses fm t 0 sec iceses fm t sec iceses fm t csec iceses fm t csec deceses fm t III-Qudt (T si deceses fm 0 t cs iceses fm t 0 t iceses fm 0 t ct deceses fm t 0 sec deceses fm t IV-Qudt ( si iceses fm t 0 cs iceses fm 0 t t iceses fm t 0 ct deceses fm 0 t sec deceses fm t csec iceses fm t csec deceses fm t (, Y (0, M (, X N (0, X Nte: d e tw smbls These e t el umbe Whe we s tht t iceses fm 0 t f s vies fm 0 t it mes tht t iceses i the itevl 0, d it ttis lge psitive vlues s teds t imill f the tigmetic fuctis 8

10 6 Tigmeticl Rtis f llied gles Tw gles e sid t be llied whe thei sum diffeece is eithe ze multiple f ( Tigmetic tis f ( : Let evlvig sttig fm its iitil psiti OX, tce ut gle XO Let P(, be pit O such tht OP = Dw PM fm P -is gle clckwise sese Let P ' be pit XO ' i the O ' such tht OP' OP lel M d M cicide d OMP is cguet t OMP ' the P ' e (, si( si ; cs( cs ; t( t Tkig the ecipcl f these tigmetic tis; csec( csec, sec( sec d ct( ct O Y 90 P(, M P (, X Nte: fucti f ( is sid t be eve fucti if f( f( f ll i its dmi fucti f ( is sid t be dd fucti if f( f( f ll i its dmi si, t, ct, csec e dd fuctis d cs, sec e eve fuctis ( Tigmetic fucti f (90 : Let the evlvig lie, sttig fm O, tce ut cute gle OP, equl t Fm pit P, dw PM t O Thee gles f tigle e tgethe equl t tw ight gles, d sice OMP is ight gle, the sum f the tw gles MOP d OPM is ight gle OPM 90 [Whe the gle OPM is cside, the lie PM is the bse d MO is the pepedicul ] MO PM si( 90 si MPO cs OP cs, cs( 90 cs MPO si OP si PO PO MO PM t( 90 t MPO ct OP ct, ct( 90 ct MPO t OP t PM MO PO csec(90 csec MPO sec OP sec, MO PO sec( 90 sec MPO csec OP csec PM O M P 9

11 ( Tigmetic fucti f (90+ : Let evlvig O sttig fm its iitil psiti OX, tce ut gle XO d let the evlvig O sttig fm the sme iitil psiti OX, fist tce ut gle s t cicide with O d the it evlves thugh gle f ticlckwise diecti t fm gle XO ' 90 Let P d OP OP' P ' be pits O d Dw pepedicul PM d PM ' fm P d OX Let the cdites f P be (, The clel, OM' PM d P' M' OM O ' espectivel such tht 90 i P ' espectivel OM d PM the cdites f P ' e, M' P' OM ' si( 90 cs, cs( 90 si OP' OP' M' P' t( 90 ct, ct( 90 t, sec( 90 csec, csec(90 sec OM' (, O Y Y M P(, X llied gles ( θ (90 ( 90 θ (80 θ (80 θ (70 θ (70 θ ( 60 θ Tig Rti π θ π θ ( π θ ( π θ π θ π θ ( π θ si si cs cs si si cs cs si cs cs si si cs cs si si cs t t ct ct t t ct ct t Imptt Tips si 0, cs ( si( ( si, cs( ( cs si ( / = ( si, if is eve cs ( ( / cs, if is dd si, if isdd cs, if iseve 0

12 7 Tigmeticl Rtis f Vius gles 0 /6 / / / / si 0 / / / 0 0 cs / / / 0 0 t 0 / Tigmeticl Rtis i tems f Ech the si si cs t ct sec csec si t cs t ct sec sec csec cs si cs t ct ct sec csec csec t si si cs cs t ct sec csec ct si si cs cs t ct sec csec sec si cs t ct ct sec csec csec csec si cs t t ct sec sec csec

13 Imptt Tips Vlues f sme stdd gles si5 cs 75 ; cs5 si75 ; t 5 ct 75 ; si8 cs 7 5 ; cs 6 si5 5 ; t 75 ct5 si cs 67, cs si67 ; ct t 67 t ct 67 9 Fmule f the Tigmetic Rtis f um d Diffeeces f Tw gles ( si( si cs cs si ( si( si cs cs si ( cs( cs cs si si ( cs( cs cs si si (5 t t t( t t (6 t t t( t t (7 ct( ct ct ct ct (8 ct( ct ct ct ct

14 (9 cs cs si si si( si( (0 si cs si cs cs( cs( ( cs cs si( cs cs si cs cs si cs si cs si t t m, ( si si si( ct ct, m 0 Fmule f the Tigmetic Rtis f um d Diffeeces f Thee gles ( si si si si cs cs cs si cs cs cs si si( si t t t t t (t cs cs cs ( ( si si cs si cs si cs si si cs cs cs cs( t t t t t t ( cs cs cs cs( ( t t t t t t t t t t t t t( ( ct ct ct ct ct ct ct ct ct ct ct ct ct( I geel; (5 si( = ( cs cs cs 7 5 (6 ( cs cs cs cs( 6 (7 t( 6 7 5

15 Whee; t t t = The sum f the tgets f the septe gles t t t t = The sum f the tgets tke tw t time t t t t t t = um f tgets thee t time, d s If, the t, t, t, 5 5 (8 si cs ( t t t (9 cs cs ( t t (0 t t t 5 t t t t ( si cs cs ( t t t t 5 t 6 t 5 6 ( si cs cs ( t t t t 5 t 6 t 5 6 ( si( si( si( si( ( = si{ ( ( / } si( / si( / ( cs( cs( cs( cs( ( = cs ( si si Fmule t Tsfm the Pduct it um Diffeece ( si cs si( si( ( cs si si( si( ( cs cs cs( cs(

16 ( si si cs( cs( Let d D D D The, d Theefe, we fid ut the fmule t tsfm the sum diffeece it pduct (5 (6 (7 (8 D D si si D si cs D D si si D cs si D D cs cs D cs cs D D cs cs D si si D D si si Imptt Tips =, if si( 60 si si( 60 si t( 60 t t(60 t cs( 60 si cs cs cs cs cs,if si =, if ( cs cs(60 cs Tigmetic Rti f Multiple f gle ( si si cs t t ( cs cs si ( t t t cs si t t ; whee ( 5

17 ( si si si si(60 si si(60 (5 cs cs cs cs(60 cs cs(60 t t (6 t t(60 t t(60, whee / 6 t (7 si si cs cs si (8 cs 8 cs 8 cs (9 t t t 5 (0 si 5 6 si 0 si 5 si 6 t t 5 ( cs 5 6 cs 0 cs 5 cs Tigmetic Rti f ub-multiple f gle ( si cs si si cs si ie,, If / /, thewise ( si cs si (si cs si ie, 5, If / /, thewise ( (i t t cs cs, whee ( t cs si (ii ct cs cs, whee cs si 6

18 The mbiguities f sigs e emved b lctig the qudts i which lies u c fllw the fllwig figue, si + cs is +ve si is+ve si si + cs cs is ve is +ve si + cs is +ve si cs is ve si + cs is ve si cs is ve ( t cs ; whee ( cs (5 ct cs ; whee cs Imptt Tips fmul tht gives the vlue f fmul tht gives the vlue f fmul tht gives the vlue f si cs i tems f si shll ls give the vlue f sie f i tems f cs shll ls give the vlue f cs f t i tems f t shll ls give the vlue f t f ( 7

19 Mimum d Miimum Vlue f cs + b si Let cs (i d b si (ii quig d ddig (i d (ii, the b, b si b cs = (si cs cs si = si( ut si, si( ; The si( Hece, b si b cs b The the getest d lest vlues f si b cs e espectivel b d b Nte: si csec, f eve el cs t sec, f eve el ct, f eve el Imptt Tips Use f (igm d (Pie tti si( si cs cs si, cs( cs cs si si, t t t( ( detes summti t t si si( si( tems ( detes pduct si si si[ ( / ] si[ / ] si( si( / si cs cs( cs( tems cs si cs( si si / cs / si / cs / cs[ ( / ] si[ / ] si[ / ] cs cs cs cs( cs cs cs si si si si( si si si t t t 8 ct 8 ct 8

20 5 ditil Tigmeticl Idetities We hve ceti tigmetic idetities Like, si cs d t sec etc uch idetities e idetities i the sese tht the hld f ll vlue f the gles which stisf the give cditi mg them d the e clled cditil idetities If,, dete the gles f tigle, the the elti + + = ebles us t estblish m imptt idetities ivlvig tigmetic tis f these gles ( If + + =, the + =, + = d + = ( If + + =, the si( si( si imill, si( si( si d si( si( si ( If, the cs( cs( cs imill, cs( cs( cs d cs( cs( cs ( If + + =, the t( t( t imill, t( t( t d t( t( t (5 If, the d d si si cs, cs cs si, t t ct 9

21 ll pblems cditil idetities e bdl divided it the fllwig thee tpes Idetities ivlvig sie d csie f the multiple sub-multiple f the gles ivlved Wkig Methd tep (i: Use D fmule tep (ii: Use the give elti ( + + = i the epessi btied i step-(i such tht fct c be tke cmm fte usig multiple gles fmule i the emiig tem tep (iii: Tke the cmm fct utside tep (iv: gi use the give elti ( + + = withi the bcket i such me s tht we c ppl D fmule tep (v: Fid the esult ccdig t the give ptis Idetities ivlvig sques f sie d csie f multiple sub-multiples f the gles ivlved Wkig Methd tep (i: ge the tems f the idetit such tht eithe si si si( si( cs si cs( cs( c be used tep (ii: Tke the cmm fct utside tep (iii: Use the give elti ( withi the bcket i such me s tht we c ppl D fmule tep (iv: Fid the esult ccdig t the give ptis Idetities f tget d ctget f the gles Wkig Methd tep (i: Epess the sum f the tw gles i tems f thid gle b usig the give elti ( tep (ii: Tkig tget ctget f the gles f bth the sides 0

22 tep (iii: Use sum d diffeece fmule i the left hd side tep (iv: Use css multiplicti i the epessi btied i the step (iii tep (v: ge the tems s pe the esult equied Imptt Tips Methd f cmped d divided If b q p, the b cmped d divided We c wite b b q p q p b b p q p q b b q p q p b b p q p q

MATHEMATICIA GENERALLI

MATHEMATICIA GENERALLI MATHEMATICIA GENERALLI (y Mhmmed Abbs) Lgithmi Reltis lgb ) lg lg ) b b) lg lg lg m lg m d) lg m. lg m lg m e) lg lg m lg g) lg lg h) f) lg lg f ( ) f ( ). Eetil Reltis ). lge. lge.... lge...!! b) e......

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt ( )( ) n n + 1 b c d e a a b c d e = + a + b c

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt ( )( ) n n + 1 b c d e a a b c d e = + a + b c Dwld FREE Study Pckge fm www.tekclsses.cm & Le Vide www.mthsbysuhg.cm Phe : 0 90 90 7779, 9890 888 WhtsApp 9009 60 9 SEQUENCE & SERIES PART OF f/u fpkj Hkh# tu] ugh vkjehks dke] fif s[k NksMs qj e/;e eu

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c 4. (0 ts) Use Femt s Piile t ve the lw eleti. A i b 0 x While the light uld tke y th t get m A t B, Femt s Piile sys it will tke the th lest time. We theee lulte the time th s uti the eleti it, d the tke

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

BC Calculus Review Sheet. converges. Use the integral: L 1

BC Calculus Review Sheet. converges. Use the integral: L 1 BC Clculus Review Sheet Whe yu see the wrds.. Fid the re f the uuded regi represeted y the itegrl (smetimes f ( ) clled hriztl imprper itegrl).. Fid the re f differet uuded regi uder f() frm (,], where

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

α = normal pressure angle α = apparent pressure angle Tooth thickness measurement and pitch inspection

α = normal pressure angle α = apparent pressure angle Tooth thickness measurement and pitch inspection Tth thickess measuemet ad pitch ispecti Tth thickess measuemet Whe yu eshape a shavig cutte yu educe the chdal thickess f the teeth f a value icluded etwee 0.06 ad 0.10 mm. I fucti f this value yu have

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope The agle betwee the tagets draw t the parabla y = frm the pit (-,) 5 9 6 Here give pit lies the directri, hece the agle betwee the tagets frm that pit right agle Ratig :EASY The umber f values f c such

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds.

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds. Jso Mille 8 Udestd the piciples, popeties, d techiques elted to sequece, seies, summtio, d coutig sttegies d thei pplictios to polem solvig. Polomil Diffeece Theoem: f is polomil fuctio of degee iff fo

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

ENGO 431 Analytical Photogrammetry

ENGO 431 Analytical Photogrammetry EGO Altil Phtgmmt Fll 00 LAB : SIGLE PHOTO RESECTIO u t: vm 00 Ojtiv: tmi th Eti Oitti Pmts EOP f sigl ht usig lst squs justmt u. Giv:. Iti Oitti Pmts IOP f th m fm th Cm Cliti Ctifit CCC; Clit fl lgth

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

On the k-lucas Numbers of Arithmetic Indexes

On the k-lucas Numbers of Arithmetic Indexes Alied Mthetics 0 3 0-06 htt://d.doi.og/0.436/.0.307 Published Olie Octobe 0 (htt://www.scirp.og/oul/) O the -ucs Nubes of Aithetic Idees Segio lco Detet of Mthetics d Istitute fo Alied Micoelectoics (IUMA)

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Multi-Electron Atoms-Helium

Multi-Electron Atoms-Helium Multi-lecto Atos-Heliu He - se s H but with Z He - electos. No exct solutio of.. but c use H wve fuctios d eegy levels s sttig poit ucleus sceeed d so Zeffective is < sceeig is ~se s e-e epulsio fo He,

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3

Review. I will give you these formulas: Sphere: V=frr Circle: A = rr2 Cone: V = I 2rr2h Cube: V = side3 You eed to kow: Rolle s Theoem: f ) f is cotiuous o [.bj, 2) f is diffeetible o (,b), d ) f()=f(b), the thee s oe c i (,b) whee f (c) = Me Vlue Theoem: l) f is cotiuous o [.b d 2) f is diffeetible o (,b),

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

A Level Further Mathematics A (H245) Formulae Booklet. Specimen. OCR 2017 H245 Turn over QN 603/1325/0

A Level Further Mathematics A (H245) Formulae Booklet. Specimen. OCR 2017 H245 Turn over QN 603/1325/0 A Level Futhe Mthemtics A (H45) Fomule Booklet Specime OCR 07 H45 Tu ove QN 603/35/0 Pue Mthemtics Aithmetic seies S ( l) { ( ) d} Geometic seies S S ( ) fo Biomil seies ( b) C b C b C b b ( ),! whee C!(

More information

Note 8 Root-Locus Techniques

Note 8 Root-Locus Techniques Lecture Nte f Ctrl Syte I - ME 43/Alyi d Sythei f Lier Ctrl Syte - ME862 Nte 8 Rt-Lcu Techique Deprtet f Mechicl Egieerig, Uiverity Of Sktchew, 57 Cpu Drive, Skt, S S7N 5A9, Cd Lecture Nte f Ctrl Syte

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS STATISTICAL FOURIER ANALYSIS The Furier Represetati f a Sequece Accrdig t the basic result f Furier aalysis, it is always pssible t apprximate a arbitrary aalytic fucti defied ver a fiite iterval f the

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

Fuzzy Neutrosophic Equivalence Relations

Fuzzy Neutrosophic Equivalence Relations wwwijirdm Jur 6 Vl 5 ssue SS 78 Olie u eutrsphi Equivlee eltis J Mrti Je eserh Shlr Deprtmet f Mthemtis irml Cllege fr Wme Cimtre mil du di rkiri riipl irml Cllege fr Wme Cimtre mil du di strt: his pper

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2 STUDENT NAME: STUDENT ID: ELEC ENG FH3: MIDTERM EXAMINATION QUESTION SHEET This emitio is TWO HOURS log. Oe double-sided cib sheet is llowed. You c use the McMste ppoved clculto Csio f99. You c tke y mteil

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chpte 4 Mtin in Tw nd Thee Dimensins In this chpte we will cntinue t stud the mtin f bjects withut the estictin we put in chpte t me ln stiht line. Insted we will cnside mtin in plne (tw dimensinl mtin)

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

5.1 Properties of Inverse Trigonometric Functions.

5.1 Properties of Inverse Trigonometric Functions. Inverse Trignmetricl Functins The inverse f functin f( ) f ( ) f : A B eists if f is ne-ne nt ie, ijectin nd is given Cnsider the e functin with dmin R nd rnge [, ] Clerl this functin is nt ijectin nd

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Chapter 5 Trigonometric Functions

Chapter 5 Trigonometric Functions Chapte 5 Tignmetic Functins Sectin 5.2 Tignmetic Functins 5-5. Angles Basic Teminlgy Degee Measue Standad Psitin Cteminal Angles Key Tems: vetex f an angle, initial side, teminal side, psitive angle, negative

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Entire Solution of a Singular Semilinear Elliptic Problem

Entire Solution of a Singular Semilinear Elliptic Problem JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 200, 498505 1996 ARTICLE NO 0218 Etie Sluti f a Sigula Semiliea Elliptic Pblem Ala V Lai ad Aihua W Shae Depatmet f Mathematics ad Statistics, Ai Fce Istitute

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main)

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main) AIITS-HT-VII-PM-JEE(Mai)-Sol./7 I JEE Advaced 06, FIITJEE Studets bag 6 i Top 00 AIR, 7 i Top 00 AIR, 8 i Top 00 AIR. Studets fom Log Tem lassoom/ Itegated School Pogam & Studets fom All Pogams have qualified

More information

Properties of tangential and cyclic polygons: an application of circulant matrices

Properties of tangential and cyclic polygons: an application of circulant matrices Title Popeties of tgetil d cyclic polygos: pplictio of cicult mtices utho(s eug Y; opez-rel FJ ittio Itetiol Joul of themticl Eductio i Sciece d Techology 00.. 6 p. 859-870 Issued Dte 00 UR http://hdl.hdle.et/07/8569

More information

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the

1. The 0.1 kg particle has a speed v = 10 m/s as it passes the 30 position shown. The coefficient of kinetic friction between the particle and the 1. The 0.1 kg pticle h peed v = 10 m/ it pe the 30 poitio how. The coefficiet of kietic fictio betwee the pticle d the veticl ple tck i m k = 0.0. Detemie the mgitude of the totl foce exeted by the tck

More information

ab b. c 3. y 5x. a b 3ab. x xy. p q pq. a b. x y) + 2a. a ab. 6. Simplify the following expressions. (a) (b) (c) (4x

ab b. c 3. y 5x. a b 3ab. x xy. p q pq. a b. x y) + 2a. a ab. 6. Simplify the following expressions. (a) (b) (c) (4x . Simplif the following epessions. 8 c c d. Simplif the following epessions. 6b pq 0q. Simplif the following epessions. ( ) q( m n) 6q ( m n) 7 ( b c) ( b c) 6. Simplif the following epessions. b b b p

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers AQA Mths M Topic Questions fom Ppes Cicul Motion Answes PhysicsAndMthsTuto.com PhysicsAndMthsTuto.com Totl 6 () T cos30 = 9.8 Resolving veticlly with two tems Coect eqution 9.8 T = cos30 T =.6 N AG 3 Coect

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa +

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa + -6-5 - - - - 5 6 - - - - - - / GCE A Level H Mths Nov Pper i) z + z 6 5 + z 9 From GC, poit of itersectio ( 8, 9 6, 5 ). z + z 6 5 9 From GC, there is o solutio. So p, q, r hve o commo poits of itersectio.

More information

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r

A 2 ab bc ca. Surface areas of basic solids Cube of side a. Sphere of radius r. Cuboid. Torus, with a circular cross section of radius r Sufce e f ic lid Cue f ide R See f diu 6 Cuid c c Elliticl cectin c Cylinde, wit diu nd eigt Tu, wit cicul c ectin f diu R R Futum, ( tuncted ymid) f e eimete, t e eimete nd lnt eigt. nd e te eective e

More information