Success of Heuristics and the Solution Space Representation

Size: px
Start display at page:

Download "Success of Heuristics and the Solution Space Representation"

Transcription

1 Magyar Kutatók 7. Nemzetköz Szmpózuma 7 th Internatonal Symposum of Hungaran Researchers on Computatonal Intellgence Success of Heurstcs and the Soluton Space Representaton Sándor Csszár Department of Mcroelectroncs and Technology, Kandó Kálmán Faculty of Electrcal Engneerng, Budapest Tech Tavaszmező út 7, H-084 Budapest, Hungary csszar.sandor@kvk.bmf.hu Abstract: In the study a developed soluton for VRP (Vehcle Routng Problem) and ts algorthms were analysed n order to fnd explanatons for ther success and evaluate ther results. Another exctng queston at the combnatoral optmzaton s the soluton space whch s often referred n the lterature despte we do not have tools for ts representaton, although the dstncton of solutons seems to be mportant at the Evolutonary technques and at the generalzed model of Adaptve Memory Programmng. Keywords: combnatoral optmzaton, heurstcs, vehcle routng problem Introducton A two-phase metaheurstc wth guded route elmnaton was developed by the author [] for the Vehcle Routng Problem wth Tme Wndows (VRP TW) to solve a mddle sze ( n = 00 ) combnatoral optmzaton problem. It s known from experence and from the lterature that heurstcs are very successful despte ther performance s not ustfed only some convergence theorems are proved [3]. Several questons often arse regardng the performance of the heurstcs, optmalty of the found soluton, navgaton n the soluton space, and how more effcent methods can be found. It s really dffcult to gve general answers for these questons (perhaps mpossble for one or the other). The maor part of the presented results comes from computaton and from analyss of a specfc problem. The purpose of ths artcle s to better understand and evaluate the performance of the developed algorthms n order to solve large scale problems -where the number of customers s about 000 and to put these questons nto focus. 383

2 S. Csszár Success of Heurstcs and the Soluton Space Representaton Regardng the topc of ths artcle (detaled above) only a short VRP defnton s gven. Let G = {V, E} be a graph and V = {v 0, v,..., v n } a set of vertces representng the customers around a depot, vertex v 0 denotes the depot. A route s startng from and enterng the depot: {v 0,..., v, v,..., v 0 }. The cost of a route s: C t = d, where and are consecutve customers on the route and d, E. The obectves of the soluton are to determne the lowest number of routes (N v ) and the lowest cost or total travel dstance, C = (s) Ct, where s s the actual soluton, provded that each customer can be vsted only once and should satsfy all the constrants (tme wndow, capacty). 2 Investgaton of Heurstcs Based on the Developed Soluton 2. Evaluaton of the Found Best Solutons The computatonal program developed for the cted study [] and the Solomon benchmark set [4] ncludng 56 problem nstances was used for the nvestgaton. The benchmark set was developed by M. M. Slomon to compare the behavour of dfferent heurstcs on dverse problems. It seems to be useful and nformng to compare the found best result and the estmated lower cost lmt of the gven problem nstance. The lower cost lmt was computed the followng way: The number of arcs of the graph s n ( n ) = 9900 (drected graph). The shortest 2 of { v 0 v } {,2 00} arcs were selected because n case of Nv Nv routes there are as many routes startng from and endng at the depot. The further number of arcs ( 00 Nv ) were selected from the remander, smlarly the shortest ones. At ths latest selecton the dentcal values were deleted because only one of them can be appled n a feasble soluton (f v arc s used then v s excluded). Consderng the large number of problem nstances (56) and the dversve problem types (random: R00 and R200, cluster: C00 and C200, and semclustered: RC00 and RC200) the found solutons by heurstcs are qute close to the estmated lower cost lmt (the reference s the random arc selecton). The results are llustrated by problem type, because of the slght dfference between the ndvdual problems. In Fgure the random arc selecton, the lower cost lmt and the found best result by heurstc are compared. It must be noted that at the random selecton the feasblty of the soluton was not consdered whle at the cost lmt calculaton a statc feasblty was consdered. It means a route 384

3 Magyar Kutatók 7. Nemzetköz Szmpózuma 7 th Internatonal Symposum of Hungaran Researchers on Computatonal Intellgence { v v } s feasble f Te + ts + d + ts Tl () where ts s the servce tme at node, d s the dstance between and, Tl s the latest start of servce at node, Te s the earlest start of servce at node. Under route constructon the condton determned by Equaton () s usually not suffcent because only a part of the tme wndow s avalable for travel. Table n the Appendx gves data for all the sx problem types Random edge selecton Estmated cost lmt Best found C00 Fgure Heurstc performance (clustered problem type) The nvestgated heurstcs gve qute good results despte they use a so called nexact logc. Explanatons for performance are looked for n the next secton n case of a specfc problem. The followng queston s nvestgated n the next secton: s t consequental to get good results wth heurstcs? 2.2 The Nearest Neghbour Example on the Travellng Salesman Problem The Travellng Salesman Problem (TSP) s a specfc case of the VRP where only one route s allowed, consequently the number of soluton s: n!. Let s examne ths problem wth the nearest neghbour heurstc (one of the smplest route constructon). Let n = 9 (number of customers) be n the example (the arc lengths are not essental at ths pont). Apply the nearest neghbour heurstc for the TSP. Fgure 2 shows the route constructon. The numbers n the matrx ndcate the steps of the route constructon procedure. The numbers determne the lowest value wthn the elgble arcs n each row (the strategy of the nearest neghbour heurstc). 385

4 S. Csszár Success of Heurstcs and the Soluton Space Representaton Suppose that an arc of ( v v ) s selected. Two thngs can be establshed: In every step of the procedure the mnmum value of the gven row s selected then all the remanng arcs of ths row ( v s ) and the relevant column ( v r ) fall out of the further selecton ( r, s P, where P s the set of ndexes of arcs ndcated by x and O ). 2 If an arc ( v v ) s selected as a mnmum value, or travel dstance n a certan row- then obvously ( v v ) can not be selected. From the establshments above an nverse-symmetrc feature of the matrx s deduced (n the symmetrc postons of an x or a number, an O can be found) and the x and numbers n the matrx covers all the arcs of the graph x x x x x x x x 0 O O O O O O O O O x O x 5 O x x O O x x x x O x x 3 O x O O O O O 8 O O x O O x O 6 x O O x x 2 x x x x x O x O O 7 O O x O O 9 O O O O O O O O x 4 O x x O x x No of elgble arcs No of (x) S v9 S v8 S v7 S v6 S v5 S v4 S v3 S v2 S v S v0 46 No of (O) S h0 S h S h2 S h3 S h4 S h5 S h6 S h7 S h8 S h9 Fgure 2 TSP wth nearest neghbour route constructon The problem s the followng: the last arc (9) s determned by the prevous procedure, addtonally the last node determnes the route ( v 0 ) to the startng pont (there are two routes to the depot). Let Sh be the sum of the elgble arcs ( d ) of row, Sv that of the of the column. The performance of ths smple heurstc can be estmated f x arcs are put n order of magntude. Rearrange the rows -and the ndexes- of the matrx accordng to the decreasng number of x : S = d + d, where d d, {, 9} 6 (2) h ( 6)

5 Magyar Kutatók 7. Nemzetköz Szmpózuma 7 th Internatonal Symposum of Hungaran Researchers on Computatonal Intellgence Generally: S h = dmn ( ) + d (3) P Calculate the average arc: a = n( n + ) n n d = 0 = 0 ( ) (4) Let s handle the last arc ( d l ) dfferently. It s known that the numbered arcs ( d ) have the lowest value wthn the elgble elements. Examne the nearest neghbour heurstc, consderng the arcs sgned by x cover all the arcs of the graph: S k a = k d + k Δˆ k {, n} d Δˆ 0 (5) h = mn( ) mn( ) The cost of the soluton s: n n mn ( ) l l = = = = n C = d + d = a Δˆ + d = na Δˆ + a + Δl (6) C = ( n + ) a 0.5 n( n + ) Δ + Δ Δ 0 (7) l Δˆ and Δ are proportonal wth the dfferences of the arcs. If the length of the arcs are dentcal ( d = const ) then the cost of the soluton s ( n + ) a, but the found soluton s optmal. In any other case the optmal soluton s not guaranteed. The hgher Δ (or Δˆ ) s the closer the found soluton by the (nearest neghbour) heurstc to the estmated cost lmt. Ths condton exsts at the cluster type problems (C00, C200) where many close and far nodes are avalable n large number. Although these results were produced by much more sophstcated algorthms but the best numbers of routes at these problems can be easly acheved by ntal route constructon (Fgure 3). n 3 Soluton Space Representaton At practcal problems ( n > 50 ) the revealed part of the soluton space s very lmted. If we take the TSP example, n case of n = 00, t has 00! 9,33 exp(57) solutons. Usual computer programs wth 3000 teratons usng three operators and Global Best Strategy (examnng the whole 8 neghbourhood and selectng the best one) nvestgates maxmum 0 solutons, that s a neglgble part of the soluton space. Fortunately the heurstc solutons accordng to the experences converge very fast to the promsng zone and there s no need to search dsnterest regons. 387

6 S. Csszár Success of Heurstcs and the Soluton Space Representaton Presently we are not able to purposvely navgate nto the desred zone, but t would be mportant to know how far the dfferent solutons are from each other. The appled search processes don t provde any knowledge about t. It comes from the neghbourhood graph defnton [2] that wth the avalable operator set sometmes there s no way from one soluton to the other although these solutons are qute close to each other. An attempt was made n the remanng part of the artcle to represent the dstance of dfferent solutons by ther uncommon parts (uncommon arcs). The ntal solutons of [] were used for the exercse. The purpose of ths leads to the subect of Adaptve Memory Programmng (AMP). AMP s a syntheszed methodology. The populaton of genetc algorthms, the pheromone tral of the ant colony systems or the short- md - or long term memores of the tabu search play the same role. The basc prncple of AMP s to combne components of good solutons n order to construct other, hopefully better solutons. If the new soluton s better then the worst one stored n the memory t s updated wth the components of the actual one. [5]. In the adaptve memory a knd of crossover s made, consequently the requrement of the soluton (whch s nserted nto the memory) s not only the qualty but to have certan dfferences n order to brng new genes nto the next generaton of the solutons. The dfference between two solutons s supposed to show the dfferences n genes. Let 0 D be the dstance between two solutons, E, E E the set of arcs of solutons and, then: D card( E E ) = D = (8) mn{ card( E ), card( E )} The cardnalty of arcs n the dfferent solutons s usually the same, VRP s an excepton f the number of routes s dfferent. The mnmum cardnalty s suggested (the range of the receved number s wder). If we want to represent more then two solutons then a matrx should be used. In the Appendx a couple of examples are gven. In case of several solutons the common part of them s compound, but only the common pars are calculated. The calculaton of D s qute smple, the common part s a scalar product of the relevant matrxes. It s enough to store only those arcs whch are n the actual soluton (nstead of 0000 Bytes at VRP TW, n = 00 only ~20 arcs, 240 Bytes). At the AMP about 0 solutons are stored n the adaptve memory, occupyng 2400 Bytes for ths purpose. Tables 2 and 3 show examples. R203 supposed to have an extent, dverse soluton space because wth a few exceptons ( D 32, D4 ) for most of the other pars D > 0. 7 relaton s vald. C0 seems to have a narrow and deep soluton space. It s n accordance wth the dffcultes of computaton and the 388

7 Magyar Kutatók 7. Nemzetköz Szmpózuma 7 th Internatonal Symposum of Hungaran Researchers on Computatonal Intellgence establshments n ths artcle. Comng back to the purpose of dstance of solutons beyond the vsualzaton- t can be used as an ndcator at the refreshment of adaptve memory. Although the AMP algorthm ensures a certan dversfcaton, f contnuously very close solutons are added to the memory t does not help revealng new soluton space. Conclusons Ths study summarses thoughts about the success of heurstcs, analyse and explan the receved results, rase a few questons related to the soluton space, ntroduces dstance of solutons and prepare an Adaptve Memory Programmng study wth n = 000 customers. Acknowledgement The author wshes to thank the Department of Mcroelectroncs and Technology, Budapest Tech, Hungary frst of all Dr. Péter Turmeze, Drector of Kandó Kálmán Faculty of Electrcal Engneerng for ther support. References [] S. Csszár: Optmzaton Approaches for Logstc Problems -Vehcle Routng Problem wth Tme Wndows, PhD Dssertaton, Budapest, Hungary, submtted: August 2006 [2] I. Futó: Mesterséges Intellgenca (Aula Kadó), 999, pp [3] B. Haek: Coolng Schedules for Optmal Annealng, Mathematcs of Operatons Research 3, 200, pp [4] M. M. Solomon: Algorthms for the Vehcle Routng and Schedulng Problems wth Tme Wndows Constrants, Operaton Research 35, 987, pp [5] É. D. Tallard, L. M. Gambadella, M. Gendreau, J. Y. Potvn: Adaptve Memory Programmng: A Unfed Wew of Metaheurstcs, European Journal of Operaton Research 35, 200, pp

8 S. Csszár Success of Heurstcs and the Soluton Space Representaton Appendx Random edge selecton Estmated cost lmt Best found by heurstc R R C C RC RC Table Heurstc performance (by problem type) R Table 2 Soluton space representaton (R203) 390

9 Magyar Kutatók 7. Nemzetköz Szmpózuma 7 th Internatonal Symposum of Hungaran Researchers on Computatonal Intellgence C Table 2 Soluton space representaton (C0) Fgure 2 Computatonal Result of C00 Problem 39

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH Proceedngs of IICMA 2013 Research Topc, pp. xx-xx. SOLVIG CAPACITATED VEHICLE ROUTIG PROBLEMS WITH TIME WIDOWS BY GOAL PROGRAMMIG APPROACH ATMII DHORURI 1, EMIUGROHO RATA SARI 2, AD DWI LESTARI 3 1Department

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

A HYBRID DIFFERENTIAL EVOLUTION -ITERATIVE GREEDY SEARCH ALGORITHM FOR CAPACITATED VEHICLE ROUTING PROBLEM

A HYBRID DIFFERENTIAL EVOLUTION -ITERATIVE GREEDY SEARCH ALGORITHM FOR CAPACITATED VEHICLE ROUTING PROBLEM IJCMA: Vol. 6, No. 1, January-June 2012, pp. 1-19 Global Research Publcatons A HYBRID DIFFERENTIAL EVOLUTION -ITERATIVE GREEDY SEARCH ALGORITHM FOR CAPACITATED VEHICLE ROUTING PROBLEM S. Kavtha and Nrmala

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Customer Selection and Profit Maximization in Vehicle Routing Problems

Customer Selection and Profit Maximization in Vehicle Routing Problems Customer Selecton and Proft Maxmzaton n Vehcle Routng Problems Denz Aksen 1, Necat Aras 2 1 Koç Unversty, College of Admnstratve Scences and Economcs, Rumelfener Yolu, Sarıyer, 34450 İstanbul, Turkey 2

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems Internatonal Journal of Innovatve Research n Advanced Engneerng (IJIRAE) ISSN: 349-63 Volume Issue 6 (July 04) http://rae.com Heurstc Algorm for Fndng Senstvty Analyss n Interval Sold Transportaton Problems

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem Internatonal Journal of Industral Engneerng Computatons 7 (2016) 573 584 Contents lsts avalable at GrowngScence Internatonal Journal of Industral Engneerng Computatons homepage: www.growngscence.com/ec

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Research on Route guidance of logistic scheduling problem under fuzzy time window

Research on Route guidance of logistic scheduling problem under fuzzy time window Advanced Scence and Technology Letters, pp.21-30 http://dx.do.org/10.14257/astl.2014.78.05 Research on Route gudance of logstc schedulng problem under fuzzy tme wndow Yuqang Chen 1, Janlan Guo 2 * Department

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem

A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem EMS Vol. 4, No., pp. 94-0, June 2005. A Varable Neghbourhood Descent Algorthm for the Redundancy Allocaton Problem Yun-Cha Lang Cha-Chuan u Department of ndustral Engneerng and Management, Yuan Ze Unversty

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search Optmal Soluton to the Problem of Balanced Academc Currculum Problem Usng Tabu Search Lorna V. Rosas-Téllez 1, José L. Martínez-Flores 2, and Vttoro Zanella-Palacos 1 1 Engneerng Department,Unversdad Popular

More information

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure Intern. J. Fuzzy Mathematcal rchve Vol. 5, No., 04, 9-7 ISSN: 30 34 (P, 30 350 (onlne Publshed on 5 November 04 www.researchmathsc.org Internatonal Journal of Complement of Type- Fuzzy Shortest Path Usng

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Thin-Walled Structures Group

Thin-Walled Structures Group Thn-Walled Structures Group JOHNS HOPKINS UNIVERSITY RESEARCH REPORT Towards optmzaton of CFS beam-column ndustry sectons TWG-RR02-12 Y. Shfferaw July 2012 1 Ths report was prepared ndependently, but was

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Two Methods to Release a New Real-time Task

Two Methods to Release a New Real-time Task Two Methods to Release a New Real-tme Task Abstract Guangmng Qan 1, Xanghua Chen 2 College of Mathematcs and Computer Scence Hunan Normal Unversty Changsha, 410081, Chna qqyy@hunnu.edu.cn Gang Yao 3 Sebel

More information

The Convergence Speed of Single- And Multi-Objective Immune Algorithm Based Optimization Problems

The Convergence Speed of Single- And Multi-Objective Immune Algorithm Based Optimization Problems The Convergence Speed of Sngle- And Mult-Obectve Immune Algorthm Based Optmzaton Problems Mohammed Abo-Zahhad Faculty of Engneerng, Electrcal and Electroncs Engneerng Department, Assut Unversty, Assut,

More information

The L(2, 1)-Labeling on -Product of Graphs

The L(2, 1)-Labeling on -Product of Graphs Annals of Pure and Appled Mathematcs Vol 0, No, 05, 9-39 ISSN: 79-087X (P, 79-0888(onlne Publshed on 7 Aprl 05 wwwresearchmathscorg Annals of The L(, -Labelng on -Product of Graphs P Pradhan and Kamesh

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Embedded Systems. 4. Aperiodic and Periodic Tasks

Embedded Systems. 4. Aperiodic and Periodic Tasks Embedded Systems 4. Aperodc and Perodc Tasks Lothar Thele 4-1 Contents of Course 1. Embedded Systems Introducton 2. Software Introducton 7. System Components 10. Models 3. Real-Tme Models 4. Perodc/Aperodc

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

An Extended Hybrid Genetic Algorithm for Exploring a Large Search Space

An Extended Hybrid Genetic Algorithm for Exploring a Large Search Space 2nd Internatonal Conference on Autonomous Robots and Agents Abstract An Extended Hybrd Genetc Algorthm for Explorng a Large Search Space Hong Zhang and Masum Ishkawa Graduate School of L.S.S.E., Kyushu

More information

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function A Local Varatonal Problem of Second Order for a Class of Optmal Control Problems wth Nonsmooth Objectve Functon Alexander P. Afanasev Insttute for Informaton Transmsson Problems, Russan Academy of Scences,

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information