#A79 INTEGERS 16 (2016) ROUND FORMULAS FOR EXPONENTIAL POLYNOMIALS AND THE INCOMPLETE GAMMA FUNCTION

Size: px
Start display at page:

Download "#A79 INTEGERS 16 (2016) ROUND FORMULAS FOR EXPONENTIAL POLYNOMIALS AND THE INCOMPLETE GAMMA FUNCTION"

Transcription

1 #A79 INTEGERS 6 (06) ROUND FORMULAS FOR EXPONENTIAL POLYNOMIALS AND THE INCOMPLETE GAMMA FUNCTION St Wgo Deprtmet of Mthemtcs d Computer Scece, Mclester College, St. Pul, Mesot wgo@mclester.edu Receved: 5/0/6, Accepted: //6, Pulshed: /3/6 Astrct The th prtl sum of the Mclur seres for e /, where d re tegers, ecomes teger whe multpled y!. Ths teger s relted to my comtorl propertes of terest d s lso drectly ted to exct computto of,, where s the complete gmm fucto. Ths pper presets very short formuls tht gve ths teger exctly whe pple. For lrger the method exteds d whle ot s fst s the smller cses, t s mprovemet o exstg computtol methods. The cses = ± were kow for my -vlues. The pproch here exteds the geerl de to ll rtols y mkg use of cogruece to overcome the error heret the tructo of the Mclur seres. A sde-e ect of the vestgto s ew lytc lower oud o the umer of tmes prme ppers fctorl: log ( + ).. Itroducto Let e (z) = P k=0 zk k! e the prtl sum for the Mclur seres of e z ; [ ] s the roudg (or erest teger) fucto where hlf-tegers re rouded to the erest eve teger; d lwys deote tegers, wth 0 d gcd(, ) = ; deotes oegtve teger. Clerly!e s teger cll t K, ofte revted to just K sce ll deomtors the sum re clered. Here we vestgte short d e cet formuls tht gve K s exct vlue. Tle shows severl of these sequeces together wth ther locto the O-Le Ecycloped of Iteger Sequeces []. The m result here s tht very smple roud formuls for K exst whe = ± or ±, s y ozero teger, d s y postve teger. Whe the umertor s ±, the formul s remrkly smple:!e ±/ ; for = ± t s lttle more complcted ut c stll e clled oe-ler. I these cses the computtol lod s the sgle hgh-precso evluto of the rtol power of e. There re extesos to = ±3 d greter, ut ther mprovemet over the method of rute-force ddto s modest: -step lgorthm s reduced to oe log usg out steps. Here the computtol lod ecomes the evluto of lrge cogruetl resdue.

2 INTEGERS: 6 (06) My specl cses whe = ± were kow (e.g., K y S. Plou e [3] d M. v Hoej [, A000354]), ut we here provde geerl method for ± ± K s well s smlrly e cet formul for K. By the clssc detty!e (z) = e z ( +, z), where s the complete gmm fucto (defed s (, z) = R e t t dt), y formul for K z yelds smlr formul tht expresses +, symolc form s K e /. = 0 = = = 3 = 4 = 5 = 6 OEIS ctlog A A A A A A A A A A A A A A A A A A Tle.! e for pple 3, pple pple 6, d 0 pple pple 6. The teger K ofte hs terestg comtorl terprettos. For exmple, let T () e the umer of permuttos of {,..., } hvg t lest oe trsposto [, A00066]. Let T c () cout the permuttos hvg o trsposto: T c () =! T (). The, wth m =, T c () =! P m k=0 ( )k k k! =

3 INTEGERS: 6 (06) 3! m m! K m, where the frst equlty s stdrd exercse usg the prcple of cluso d excluso []. Here s smplg of some others (see the correspodg etres t [], s lsted Tle ). K () couts the totl umer of ordered tuples usg dstct elemets of {,,..., }, where the tuple s legth s from 0 to, clusve. K ( ) gves the umer of dergemets of -elemet set: permuttos wth o fxed pot (lso kow s sufctorl ()). K s the umer of wys to sort spredsheet wth colums. K s the umer of wys to choose permutto of {,,..., } d choose k elemets (0 pple k pple ) tht re ot fxed pots of the permutto. Here re some geerl propertes of K; we do ot use these, ut lst them for completeess. Asymptotcs: K (z)! e z. (Ths s ecuse e (z) s symptotc to e z.) Recurrece: K the defto.) = K +. (Proof: Follows drectly from the sum Itegrl chrcterzto: K = +, = e / R / e t t dt. (Proof: Itegrto y prts shows tht the tegrl stsfes the sme recurrece s K.) The expoetl geertg fucto of the sequece K 0 x (f) = f P! ( x) k ( x) k=0 k! k ; t x = 0 ths s! P k=0 k! s f = ex x. K () s the permet of the mtrx wth + t ech dgol etry d ll other etres. (Proof: Use the defto of the permet d clssfy the permuttos ccordg to how my fxed pots ech hs.) The strtg pot s smple theorem showg tht, uder cert codtos, the teger K c e expressed y very short formul. Theorem. Suppose Z,, N,, d ( + ) >, d. The (Roud Formul) K =!e =!e / k.) + (+) pple Proof. The tl of the Mclur seres for e z fter the th term s P j= z+j (+j)!. Multplcto y! gves P j=!z+j (+j)!, whch s strctly less th P j= z+j (+). j Ths lst, settg z = /, s coverget geometrc seres wth sum + (+). Therefore!e /!e < + (+) pple. Becuse!e s teger, the proof s complete.

4 INTEGERS: 6 (06) 4. The Cse = ± Whe = ±, the codto of Theorem holds lmost ll cses. Note tht tl cses ( pple ) re qute trvl: K 0 =, K = +, d K = ( + ) +. Corollry. Suppose = ±, s postve teger, N wth 6= 0, d (, ) 6= (, ). The!e =!e / d +, =!e / e /. Proof. Use Theorem ; ecuse = ±, the restrctve equlty holds for ll. The excluded cse mes tht ether or, d for such vlues the crtcl qutty + (+) = (+) s less th. ± To compute K Mthemtc whe, oe just uses Roud! E /. ± Ad s gve y Roud! E / - E -/. We c ow compute stteously the exct umer of permuttos wth o trsposto, s frst oted [3] d [, A00066, A000354]. Corollry 3. If m = h, the T c () =! m m pm! m! e. Proof. Use Corollry wth = d =. The T () =! m P k= =! m P k= ( ) k+ k k! =!! m P =!! k=0 =!! m m! k k! k k! m! K m m h m m! p e 3. The Cse = ± Next we tur to the cse = ± wth odd. The teger K hs cert rthmetc propertes tht wll llow us to overcome the ucertty cused y the Mclur seres tructo. As Theorem s proof, the Mclur error s ouded solute vlue y + (+), or + (+) ; the drecto of the error s determed y the sg of d the prty of : t s egtve f d oly f < 0 d s eve. So ths determes tervl whch K les; whe =, the tervl hs legth t most /. For lrger the error c e much lrger, ut for = ±, we c ppel to smple cogruece codto o K to overcome the error.

5 INTEGERS: 6 (06) 5 Whe s prme, we use p () for the expoet of!. We strt y vestgtg upper d lower lytc ouds o p (). The proof of Lemm 4 whe 3 ws provded y Roert Isrel (Uv. of Brtsh Colum) d s cluded wth hs permsso. l m Lemm 4. If s postve teger d s prme, the log ( + ) pple j k p () pple. Proof. Let D = {d j } e the set of se- dgts of ; the D = L, where L = + log c d L pple < L. Let = D. Recll the Legedre formul [5] tht p () =. Ths mmedtely gves the upper oud. The lower oud follows from pple ( ) log ( + ), whch s the sme s /( ) pple +. Defe F, cosdered s rel-vlued fucto of the d j, to e F (d,..., d L ) = ( ) log + L j=0 d j j L j=0 d j. The the equlty we seek s equvlet to F (d,..., d L ) 0. But F s cocve fucto d so ts mmum must occur t extreme pot of [0, ] L,.e., t the vector where ech etry s ether 0 or. Now, f such vector hs oe or more etres equl to 0, the the clmed equlty holds ecuse /( ) pple L pple, whch mes tht F 0. If oe re 0 the ll re, whch mes = L ; the /( ) = L = +, whch g mes F 0. Hece F 0 holds ll cses.! - - ( + ) Fgure. The ouds o the power of! Lemm 4 re frly shrp. Next we fd uversl cogruece codto for K.

6 INTEGERS: 6 (06) 6 Lemm 5. For N d prme Z wth gcd (, ) =, let p = p (), q =!, d L = mod ( q, ). The K p K 0 (mod p ). L p mod p+ ; t follows tht Proof. We hve K = P k=0 k k! k!. The proof wll proceed y showg tht the frst term the sum s cogruet to L mod p p+ whle the others re ech dvsle y p+. The frst term s! = p q. The! L p = q p L p = p ( q L), whch s dvsle y p+ y the defto of L; therefore! L p mod p+, s clmed. For the secod result, t su ce to show tht k hs t lest oe more t th does k!. Ths follows from the upper oud of Lemm 4: p (k) pple k pple k. ± Now we c use the two lemms to derve exct formul for K. The m pot s tht the Mclur error s out + whle the smple modulus p from Lemm 4 s out. For the modulus to exceed the error, we eed to ether fd lrger modulus for cogruece codto or reduce the Mclur error. The ltter pproch works well, where we smply dd oe more term to the prtl sum to etter estmte the tructo error. Theorem 6 (The cse = ±) Assume = ± d, N wth d (, ) 6= (, 3). Let r = pple!e / + ( + ), 3, odd, m = d log (+)e, d s = sg(). The K = r s mod m (sr) d +, = e / (r s mod m (sr)). Proof. By Lemm 4, m s lower oud o the power of!; therefore K 0(mod m). The theorem strts wth r d the djusts t, the proper drecto, so tht t ecomes dvsle y m. Note tht the djustmet drecto depeds oly o the sg of d ot o the prty of. Now, the tructo error oud (see Thm. ; the ecessry equlty ( + ) > lwys holds) whe usg!e ±/ for ±!e s + (+). But the ehced form Theorem 6 s sttemet usg oe ddtol seres term mproves the oud to P B = ++j + j= (+) j pple + (+)((+) ). Therefore B + ouds the d erece etwee r d K. Becuse y tervl of legth m cots exctly oe teger dvsle y m, the result follows from B + pple m, whch tur follows from the specl cse where =. By replcg d log ( + )e wth log ( + ) m, t s esy to see tht, for = d y 4, we hve B + pple m. Detls: B pple m follows from log (+) + (+) +, whch follows from log (+) +, whch s equvlet to log ( + ) + ( log ), whch smplfes to pple log +

7 INTEGERS: 6 (06) 7 or 4 pple +. Ths lst s equvlet to 5. The equlty B + pple m s esly checked whe s 3 or 4 except for the cse (, ) = (, 3), where t fls. Oe c prove verso of Theorem 6 where the tl pproxmto s the smpler r =!e ±/ y usg Lemm 5 s stroger cogruece codto ± K p mod p+, where p = p () (ote tht p p mod p+ ). But ths requres the exct computto of p, whch s voded Theorem 6. Asde: Usg the ltertg error for the cse gves smller B of + (+)(+), ut ths hs o essetl mpct. Exmple. Suppose =, =, = 0. The r = d m = d0 log e = The rouded Mclur-polyoml-plus-oeterm error oud s out , well uder m. The true vlue of ths error s!e /! e The mod-m resdue of r s 9940; ths grees to the erest teger wth the true error. Ideed, ths s the crux of the whole method: the rouded error equls the mod-m vlue of r. Now r mod m r = d so we coclude tht the exct vlue of e 0 (), the Mclur polyoml, s e 0 () = , where the deomtor s 0!. I lowest terms ths s e 0 () = , whch grees wth the sum of the terms defg e 0 (). Ad ths gves (, ) = e. All ths works qute quckly whe s lrge: K () s teger wth dgts d the formul fds t well uder oe secod. For K 0 6() the formul works 30 secods whle the ve sum tkes mutes. All tmgs here re usg Mthemtc o Apple Mc wth 4 GHz processor. ± Here s Mthemtc mplemetto of the formul for K, where 4 d s odd. Note tht mod( ) works o rel umers d sce r mod m r s dvsle y m t follows tht oe c elmte the Roud operto from the formul, s well s from the code tht follows. r - s Mod r s, d - Log[+]e /. r!! E / - (+) +,s! Sg[] 4. The Cse 3 For prme -vlues eyod the method tht works so well whe pple fls ecuse the tructo error s roughly whle the power of!, the crux of

8 INTEGERS: 6 (06) 8 the cogruetl method whe pple, s oly out /. We c stll exted the method so tht t mproves clssc lgorthms, ut the g s less strkg th the smller cses. The followg method pples to y rtol, cludg composte. For smplcty we wll use the Lgrge error oud, whch s vld ll cses: B = e / + (+). We eed modulus m B. If we try for oe of the form m = w!, the the smllest w s esy to fd d t s geerlly (ut ot lwys) less th. For exmple, ths method for K (3) hs w = 969 s the smllest possle modulus, well uder. But for K 900 (000) the smllest w tht works s 87; eg lrger th, t s useless. A good estmte of w ecuse l(!) > l, ths estmte s ever less th the smllest w d so c e used drectly lgorthm s e +W (log(b)/e), where W s the Lmert W -fucto (whch, comed wth Strlg s pproxmto l(!) l, c serve s pproxmte verse to the fctorl). Ths pproxmto gves 969. d 87.5 for the two precedg log. exmples. Some symptotc lyss shows tht w To fsh, we eed R, the mod-w! resdue of K (/). Wth w d R hd d usg s = sg() + d r =! e /, we the hve sgle formul tht pples to ll cses: K = r s mod w! (s(r R)). Becuse ech of the tl w + terms of the sum defg K re dvsle y w!, computg R requres summg oly the terml w terms of the sum, d ths s where the tme g rses. The sum computto for K 00,000 (3) requres ddtos, so the reducto to 969 terms s susttl svgs. We summrze the method the followg theorem. Theorem 7. For y tegers,, wth, 0, d d reltvely prme, K = r s mod w! (s(r R)), where s = sg() +, =, B 0 = / + ( + ) l l l( + ), r =! e /, w = e +W ( B0/e), d R = mod w!! P k= w+ k k!. Whle some reducto the modulus s possle y tkg ddtol cogrueces to ccout, the g s smll. The smple lgorthm just descred requres out oe secod to compute K (3). Drect computto of the Mclur polyoml tkes te secods. Here s Mthemtc code tht works for ll rtols (though whe pple the work of the erler sectos should e used sted). It s frly smple d s fster th kow lgorthms. K[,,] computes K y smple ddto of + terms. y ddto of the rel- KTlModFctorl[,,,w] computes mod w! K evt tl terms oly. KGeerl[,,] computes K (ssumg gcd(, ) = ) y usg fctorl cogruece to overcome the tructo error. If < 0, the ltertg seres error

9 INTEGERS: 6 (06) 9 s used; otherwse ether the geometrc seres oud s used (whe t coverges) or the Lgrge oud. Ad the Roud the defto of r hs ee dropped, sce the modulr reducto of oteger vlues of r yelds the sme thg. K[,, ]:=K h Numertor h, Deomtor h, /;GCD[,] 6= ; K[,, ]:=Module {sum, t}, sum = t =! ; Do[sum+=(t*=/( k)), {k,}]; sum ; h KTlModFctorl[,,, w ]:=Module {0, t, =0}, 0 = -w+;t=powermod[, 0, w!]! w-. 0!; Do[ +=t;t*=/((k+)), {k, 0, }]; Mod[, w!] ; h KGeerl[,, ]:=Module = As[],s=Sg[] + o,l,logb,w,r, L=(+)Log[]; logb = Whch[<0,L-Log[(+)], (+), / +L-Log[(+)], True, L-Log[(+)-] ; m le +ProductLog[logB/E] ; h If LogGmm[]<logB, K[,,],w= s=sg[] + ; r=!e / ; r-s Mod[s(r-KTlModFctorl[,,,w]),w!] /; GCD[,]== KGeerl[3,,00000]//Short//Tmg {.787, << >> } For K 0 6(3) the precedg code tkes 90 secods to fd the 5.5-mllo-dgt teger; the modulus defg the umer of terms the tl sum s w = 040. There re umer of trcks tht c e used to mprove the lgorthm. Oe c reduce the tructo error tervl y ddg more terms or cosderg lower oud o the error s well, d oe c cosder ddtol cogrueces (such s, whe s prme, the oe from Lemm 5); ut these des mprove thgs oly lttle. So the questo rems whether there re formuls or lgorthms tht would compute the symolc vlue of K (z) for y rtol z more quckly th the modulr method of Theorem 7. Ackowledgemets. The uthor thks Smo Plou e d the lte Joth Borwe for some vlule suggestos, d Roert Isrel for fdg the key de the proof of Lemm 4 the geerl cse. Refereces. The O-Le Ecycloped of Iteger Sequeces, Lrry Crter d St Wgo, The Mes Correctol Fclty, preprto.

10 INTEGERS: 6 (06) 0 3. Smo Plou e, Exct formuls for teger sequeces, Notes (993), 4. Erc Wesste, Lmert W -fucto, from MthWorld A Wolfrm we resource, 5. A. M. Legedre, Théore des Nomres, Frm Ddot Frères, Prs, 830, 0.

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme The solvblty of egtve Pell equto Jq Wg, Lde C Metor: Xgxue J Bejg Ntol Dy School No66 Yuqu Rod Hd Dst Bejg Ch PC December 8, 013 1 / 4 Pge - 38 Abstrct Pell equto s mportt reserch object elemetry umber

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

PATTERNS IN CONTINUED FRACTION EXPANSIONS

PATTERNS IN CONTINUED FRACTION EXPANSIONS PATTERNS IN CONTINUED FRACTION EXPANSIONS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SAMUEL WAYNE JUDNICK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Section 7.2 Two-way ANOVA with random effect(s)

Section 7.2 Two-way ANOVA with random effect(s) Secto 7. Two-wy ANOVA wth rdom effect(s) 1 1. Model wth Two Rdom ffects The fctors hgher-wy ANOVAs c g e cosdered fxed or rdom depedg o the cotext of the study. or ech fctor: Are the levels of tht fctor

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Z = = = = X np n. n n. npq. npq pq

Z = = = = X np n. n n. npq. npq pq Stt 4, secto 4 Goodess of Ft Ctegory Probbltes Specfed otes by Tm Plchowsk Recll bck to Lectures 6c, 84 (83 the 8 th edto d 94 whe we delt wth populto proportos Vocbulry from 6c: The pot estmte for populto

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information