Integration by Parts for D K

Size: px
Start display at page:

Download "Integration by Parts for D K"

Transcription

1 Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv, Vsv-Brt, Stet West Begl,Id I PRELIMINERIES Let f e rel vlued fucto defed o set E Let c, d E, c d, d 2 te oscllto of f o [ c, E of order s defed to e O f,[ c, E sup d c[ f, c, x, x2, x, were te sup s te over ll pots x,x,x o 2 - [c, E d [f,c,x,,x, represets te - t order dvded dfferece of f t te + pots c,x,,x -,d Te we vrto of f of order s defed s follows, V f, E sup O f,[ c, d ] E were te sup s te over ll sequeces {c,d } of o overlpg tervls wt ed pots o E Te f s sd to e of t vrto te wde sese f V f, E d t s wrtte s f BV E Te fucto f s sd to e t solutely cotuous o E f for y 0 tere s 0 suc tt for every sequece of o overlpg tervls c,d wt ed pots o E d wt d c we ve ABSTRACT: I ts per we ve defed D tegrl d proved te tegrto y prts formul Key Words d prses: Asolutely Cotuous fucto, Geerlsed solutely cotuous fucto, Dejoy tegrto 2000 Mtemtcs suject Clssfcto: Prmry 26A24 Secodry 26A2, 26A48, 44A0 O f,[ c, d ] E d we wrte t s f AC E Te fucto F s sd to e geerlsed solutely t cotuous resp of geerlsed ouded t vrto o E f E E were ec E s closed d f AC E resp f BV E for ec d we wrte t s f AC GE resp f BV GE II AUXILIARY RESULT Followg result wll e eeded wc re proved [2] Lemm 2 Let E e closed set Te f ACGE resp f BVGE f d oly f every closed suset of E s porto o wc f s AC respbv Lemm 22 Te clsses of fuctos AC E,BV E,AC GE,BV GE re ll ler spces Teorem 23 If f BV E of f Teorem 24 Let 2 d te f f :[, ] R e suc tt exsts ftely e o E, were f s repeted proxmte dervtve Te reserc wor of frst utor s fclly supported y UGC, MRP 2 Correspodg uter IJMER ISSN: wwwjmercom Vol 5 Iss J 205 6

2 Itegrto By Prts For D K Itegrl f ACG[, ] D[, ] f exsts [,] 2 f for r=0,,,-2 d x, oe of f r + 'x d fr - 'x exsts te fr 'x exststs codto s weer t te smootess codto of f r v f 0 e Te f - exsts d s odecresg [,] d f AC [, ] Te followg teorem s proved for =2 Teorem-4 of [2], d smlrly c e proved y Teorem 25 Let F d G e AC respbv o E Te FG s AC respbv o E Te FG s AC respbv o E Corollry 26 If F d G re AC G respbv G o [,] te FG s so [,] Te proof s smlr of te corollry of Teorem-4 of [2] A fucto :[, ] R suc tt f AC G[, ] 2 exsts [,] III THE D INTEGRAL f :[, ] R s sd to e D tegrle o [,] f tere exsts cotuous fucto r s smoot, for r=0,,,-2, v,, exsts d,, f e [,] Were d deote rgt d proxmte dervtve of t of order - d left d proxmte dervtve of t of order - Te exstece of e [,] s gurteed y Teorem-23 Te fucto f exsts s clled t prmtve of f o [,] If D tegrl of f d,, F F s clled te defte D tegrl of f over [,]d s deoted y F we cll F to e defte D ftdt Te defte D tegrl s uque y Teorem-24 Te defte D tegrl s uque upto ddtve costt d te t prmtve s uque upto ddto of polyoml of degree - Teorem 3 Let f e D tegrle o [,] d o [,c] d let d e t prmtves of f [,], d [,c] respectvely If, d exsts te f s D tegrle [,c] d c c D f+d f=d f,, Proof: Sce d exsts, te prevous dervtve exsts some left d rgt egourood of Let IJMER ISSN: wwwjmercom Vol 5 Iss J

3 Itegrto By Prts For D K Itegrl Te H s cotuous [,c] We sow tt H s te t prmtve of f [,c] Clerly H AC G[, c] Also for 0 r 2, H r x Ad ece H exsts [,c] We re to sow tt 2 H s smoot t for 0 r 2 Let 0 d 0 r 2 Te r r r r r r r H H 2H H H H H r r, r, r r, r, O r, r, Te frst term teds to 0 So r r, r, d te secod term teds to s r H s smoot t for 0 r 2 Hece H r x s smoot o,c for 0 r 2 Te proof of oter propertes of t prmtve re esy Hece H s te t prmtve of f o [,c] So f s tegrle o [,c] Also D c f H { {,,, c H D f D,,, c f c} { } {,, c,, } } Teorem 32 Let f e D tegrle [,] d let <c< Let te t prmtve of f [,] If c exsts te f s D tegrle o [,c] d o [c,] d c c D f+d f=d f Te proof s mmedte Teorem 33 Let f d g e D tegrle [,] d, re costts te f g s D tegrle [,] d D f g D f D g D IJMER ISSN: wwwjmercom Vol 5 Iss J

4 Itegrto By Prts For D K Itegrl Te proof follows from te defto of te tegrl d Lemm 22 Teorem 34 If f e D tegrle o [,], te f s mesurle d fte e o [,] Proof: Sce f s r D tegrle o [,], tere s cotuous fucto AC G[, ] suc tt r s smoot for r,2, 2 d f, e o [,] Let [,]= E, were E s closed d s AC o E for ec Let E P D were P s perfect d D s coutle Sce AC G E, ACG D d so y Teorem-6 of [3], s AC o P were te dervtve s te wt respect to P Let x x for x P d e ler te closure of ll tervls cotguous to P Te BV [, ] d so exsts e o [,] Also f x x e E Sce dervtve of fucto of ouded vrto s fte e d mesurle, f s fte e d s mesurle o E for ec Te rest s cler Teorem 35 If f s D tegrle d f 0 [,], te f s Leesgue tegrle d te tegrls re equl Proof: Let e te t prmtve of f So f 0 e [,] Te from Teorem-24, exsts d s odecresg [,] d [ AC, ] Hece exsts e [,] d s Leesgue tegrle [,] Hece f s Leesgue tegrle [,] Teorem 36 Itegrto y prts Let f :[, ] R s D tegrle [,], F e ts defte D tegrl d F s D tegrle Let G - e solutely cotuous [,], te fg s D tegrle [,] d D fg [ FG] D FG Proof: Let e te t prmtve of f [,] Let x xgx, x [, ] Te sce for r=0,,,-2 d G - r exsts ftely so s smoot for r=0,,,-2 Sce G - s solutely cotuous,g s AC [,] d sce s AC G [,] Ad e [,] r So G Let G G c G c G c G G FG fg FG fg s D 2 H x G c G G 2 tegrle [,] Te smlr wy s tt of Teorem-4 of [] t c e proved tt H ACG [, ] Ag sce d G exsts e [,],we ve, H x G c c G G 0 = G c G FG G r s smoot So G c G FG s D tegrle [,] d so D tegrle d H s defte D tegrl Sce F s D tegrle d G s solutely cotuous [,], FG s D tegrle y Teorem25p246 of [4] d ece FGs D tegrle [,] Ag sce, G c G FG fg, G c G FG d FG re D tegrle, y Teorem33, fg s D tegrle [,] d IJMER ISSN: wwwjmercom Vol 5 Iss J

5 Itegrto By Prts For D K Itegrl D fg D = = G c G FG fg D G c G FG D FG [ D FG ] [ H] 2 2 G c G G FG] [ 2 2 c G G [ G ] D FG = [ FG] D FG REFERENCES [] SNMuopdyy d SKMuopdyy,"A geerlsed tegrl wt plcto to trgometrc seres" Alyss Mt, [2] S N Muopdyy d S Ry, "Geerlsed Asolutely t Cotuous Fucto" Id Jourl of Mtemtcs, Vol 53, No [3] SKMuopdyy d SNMuopdyy,"Fuctos of ouded t vrto d solutely t cotuous fuctos" BullAustrlMtSoc 46992,9-06 [4] SSs,"Teory of te tegrl",dover,newyor937 IJMER ISSN: wwwjmercom Vol 5 Iss J

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Numerical differentiation (Finite difference)

Numerical differentiation (Finite difference) MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994 Ž JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 197, 9259 1996 ARTICLE NO 0062 Oreted Mesures* Rphel Cerf CNRS, Uerste Prs Sud, Mthemtque, Btmet ˆ 25, 9105 Orsy Cedex, Frce d Crlo Mrcod Dprtmeto d Mtemtc

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Supplementary Material for Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices

Supplementary Material for Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices Joata Scarlett ad Volka Cever Supplemetary Materal for Lmts o Sparse Support Recovery va Lear Sketcg wt Radom Expader Matrces (AISTATS 26, Joata Scarlett ad Volka Cever) Note tat all ctatos ere are to

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

On Stability of a Class of Fractional Differential Equations

On Stability of a Class of Fractional Differential Equations Proceedgs of the Pkst Acdey of Sceces 49 (: 39-43 (0 Coyrght Pkst Acdey of Sceces SSN: 0377-969 Pkst Acdey of Sceces Orgl Artcle O Stblty of Clss of Frctol Dfferetl Equtos Rbh W. brh* sttute of Mthetcl

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Numerical Solution of Second order Integro- Differential Equations(Ides) with Different Four Polynomials Bases Functions

Numerical Solution of Second order Integro- Differential Equations(Ides) with Different Four Polynomials Bases Functions Numercl Soluto of Secod order Itegro- Dfferetl Equtos(Ides) wth Dfferet Four Polyomls Bses Fuctos wo O A R M Deprtmet of Mthemtcs Uersty of Ilor Deprtmet of Mthemtcs d Sttstcs he Poly Id Astrct: - I ths

More information

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms Joural of Matematcs ad Statstcs Orgal Researc Paper Nolear Pecewse-Defed Dfferece Equatos wt Recprocal Quadratc Terms Ramada Sabra ad Saleem Safq Al-Asab Departmet of Matematcs, Faculty of Scece, Jaza

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Square Difference Labeling Of Some Path, Fan and Gear Graphs

Square Difference Labeling Of Some Path, Fan and Gear Graphs Iteratoal Joural of Scetfc & Egeerg Research Volume 4, Issue3, March-03 ISSN 9-558 Square Dfferece Labelg Of Some Path, Fa ad Gear Graphs J.Shama Assstat Professor Departmet of Mathematcs CMS College of

More information

Some Unbiased Classes of Estimators of Finite Population Mean

Some Unbiased Classes of Estimators of Finite Population Mean Itertol Jourl O Mtemtcs Ad ttstcs Iveto (IJMI) E-IN: 3 4767 P-IN: 3-4759 Www.Ijms.Org Volume Issue 09 etember. 04 PP-3-37 ome Ubsed lsses o Estmtors o Fte Poulto Me Prvee Kumr Msr d s Bus. Dertmet o ttstcs,

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering.

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering. ecture Metos for sov te rtve trsfer equto. rt 3: Dscreteorte eto. Obectves:. Dscrete-orte eto for te cse of sotropc sctter..geerzto of te screte-orte eto for ooeeous tospere. 3. uerc peetto of te screte-orte

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A unified matrix representation for degree reduction of Bézier curves

A unified matrix representation for degree reduction of Bézier curves Computer Aded Geometrc Desg 21 2004 151 164 wwwelsevercom/locate/cagd A ufed matrx represetato for degree reducto of Bézer curves Hask Suwoo a,,1, Namyog Lee b a Departmet of Mathematcs, Kokuk Uversty,

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Chapter 3. Differentiation 3.3 Differentiation Rules

Chapter 3. Differentiation 3.3 Differentiation Rules 3.3 Dfferetato Rules 1 Capter 3. Dfferetato 3.3 Dfferetato Rules Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof. From te efto: f (x) f(x + ) f(x) o c c 0 = 0. QED

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients 3.2 Dfferetato Rules 1 Capter 3. Dfferetato 3.2 Dfferetato Rules for Polyomals, Expoetals, Proucts a Quotets Rule 1. Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof.

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

A New Method for Decision Making Based on Soft Matrix Theory

A New Method for Decision Making Based on Soft Matrix Theory Joural of Scetfc esearch & eports 3(5): 0-7, 04; rtcle o. JS.04.5.00 SCIENCEDOMIN teratoal www.scecedoma.org New Method for Decso Mag Based o Soft Matrx Theory Zhmg Zhag * College of Mathematcs ad Computer

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information