UNIT I. Definition and existence of Riemann-Stieltjes

Size: px
Start display at page:

Download "UNIT I. Definition and existence of Riemann-Stieltjes"

Transcription

1 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte umer of sutervls, sy, the k th sutervl hvg legth x k, d we cosder sums of the form f ( t k k ) x 1 k where t k s some pot the k th sutervl. Such sum s pproxmto to the re y mes of rectgles. If f s suffcetly well ehved [, ] cotuous. The two cocepts, dervtve d tegrl, rse etrely dfferet wys d t s remrkle fct deed tht the two re tmtely coected. If we cosder the defte tegrl of cotuous fucto f s fucto of ts upper lmt, sy we wrte F ( x) f ( t) dt. The F hs dervtve d F'(x) = f(x). Ths mportt result shows tht dfferetto d tegrto re, sese, verse opertos. I ths ut we study the process of tegrto some detl. Actully we cosder more geerl cocept th tht of Rem mely Rem-Steltjes tegrl, whch volves two fuctos f d α. The symol for such tegrl s f ( x) d ( x) or somethg smlr, d the usul Rem tegrl occurs s the specl cse whch α(x) = x. Whe α hs cotuous dervtve, the defto s such tht the Steltjes tegrl ecomes the Rem tegrl. However, the Steltjes tegrl stll mkes sese whe α s ot dfferetle or eve whe α s dscotuous. Prolems physcs whch volve mss dstrutos tht re prtly dscrete d prtly cotuous c lso e treted y usg Steltjes tegrls. I the mthemtcl theory of prolty ths tegrl s very useful tool tht mkes possle the smulteous tretmet of cotuous d dscrete rdom vrles. Ojectve: The Rem-Stelges Itegrl s sed o the defto of Rem Itegrl whch we hd studed prevous clsses for the ske of coveece we re gvg the defto d prelmres of Rem Itegrls. Accordgly, we eg y dscussg tegrto of relvlued fuctos o tervls The Rem-Steltjes Itegrl Deftos: Let [, ] e gve tervl. The set P = {x 0, x 1,, x -1, x } of [, ] such tht = x 0 x 1 x -1 x = s sd to e Prtto of [, ]. The set of ll prttos of [, ] s deoted y P([, ]). The tervls [x 0, x 1 ], [x 0, x 1 ], [x 1, x 2 ],, [x -1, x ] re clled the sutervls of [, ]. Wrte x = x x -1 s clled the legth of the tervl [x -1, x ] ( = 1,, ) d mx x s clled the orm of the prtto P d s deoted y P or (P). A prtto Q of [, ] such tht P Q s clled the refemet or fer of the prtto P. Suppose f s ouded rel vlued fucto defed o [, ] d x

2 2 M = sup f(x), m = f f(x) (x -1 x x ) for ech P P( [, ]). The U(P, f ) = M x d L(P, f ) = m x re clled the Upper d Lower Rem sums =1 =1 or Upper d Lower Droux sums of f o [, ] wth respect to the prtto P. Further wrte - f dx = f U(P, f) d f dx = sup L(P, f) - where the f d the sup re tke over ll prttos P of [, ] re clled the Upper d Lower Rem tegrls of f over [, ], respectvely. If the upper d lower Rem tegrls re equl, we sy tht f s Rem-tegrle o [, ] d we wrte f R[, ] d we deote the commo vlue of these tegrls y f d(x), -.e., f dx = f dx = f dx. - Aother defto of Rem Itegrl : A ouded fucto f : [, ] R s Rem Itegrle f for > 0 there exsts > 0 such tht for y prtto P = {x 0, x 1, x 2, x } wth P < d [x -1, x ] f( )( x x -1 ) - f < Lemm. If f : [, ] R s ouded fucto the the upper d lower Rem tegrls of f re ouded. Sce f s ouded, there exst two umers m d M such tht m f(x) M ( x ). Hece, for every prtto P of [, ] we hve m m M M m x m x M x M x, = 1, 2, 3,,. m( ) L(P,f) U(P,f) M(-), so tht the umers L(P,f) d U(P,f) form ouded set. Therefore y the defto of lower d upper Rem tegrls ths shows tht the upper d lower tegrls re defed for every ouded fucto f re ouded lso. The questo of ther equlty, d hece the questo of the tegrlty of f, s more delcte oe. Here we stte some other vestgtos of Rem tegrls Lemm. If f : [, ] R s ouded fucto, P s y prtto of [, ] d P* s the refemet of P, the L(P, f) L(P*, f) d U(P*, f) U(P, f) Lemm. If f : [, ] R s ouded fucto d P 1, P 2 re y two prttos of [, ] the L(P 1, f) U(P 2, f) d L(P 2, f) U(P 1, f).

3 Lemm. If f, g : [, ] R re ouded fuctos d P s y prtto of [, ] the () L(P, f + g) L(P, f) + L(P, g) () U(P, f + g) U(P, f) + U(P, g) Theorem. If f : [, ] R s ouded fucto the - f dx f dx Theorem (Droux). If f : [, ] R s ouded fucto the for > 0 there exsts > 0 such tht - U(P, f) < f + d L(P, f) > f dx Theorem. If f : [, ] R s ouded fucto s Rem Itegrle f the osclltory sum <,.e. (P, f) = U(P,f) L(P,f) <, for > 0 d y prtto P of [, ] Theorem. Every cotuous fucto f : [, ] R s Rem Itegrle Theorem. Every mootoe fucto f : [, ] R s Rem Itegrle. Studets you studed the propertes gve ove d other propertes of Rem Itegrls prevous clsses therefore we re ot terested to vestgte these here. However we shll mmedtely cosder more geerl stuto Defto. Let f : [, ] R s ouded fucto d e mootoclly cresg fucto o [, ]. Let P = {x 0, x 1,, x -1, x } such tht = x 0 x 1 x -1 x = e y Prtto of [, ]. We wrte =(x ) - (x -1 ), = 1, 2, 3,,. By the defto of mootoe fucto () d () re fte therefore s ouded o [, ], lso sce s mootoclly cresg fucto the clerly 0, = 1, 2, 3,,. Let M = sup f(x), m = f f(x) (x -1 x x ) for ech P P( [, ]). We defe U(P, f, ) = M, d L(P, f, ) = m, =1 =1 re clled the Upper d Lower Rem Steltjes sums respectvely. Further we defe - f d = f U(P, f, ) d f d = sup L(P, f, ), - where the f d the sup re tke over ll prttos P of [, ], re clled the Upper d Lower Rem Steltjes tegrls of f over [, ], respectvely. If the upper d lower Rem Steltjes tegrls re equl, we sy tht f s Rem Steltjes tegrle o [, ] d we wrte f R() d deote the commo vlue of these tegrls y f d or f(x) d(x).

4 4 Ths s the Rettm-Steltjes tegrl (or smply the Slelljes tegrl of f wth respect to over [,]. If we put (x) = x we see tht the Rem tegrl s the specl cse of the Rem- Stetjes tegrl Lemm If f: [, ] R s ouded fucto d e mootoclly cresg fucto o [, ]. Let P e y Prtto of [, ].The the upper d lower Rem-Stetjes tegrls of f wth respect to re ouded. Proof. Sce f s ouded, there exst two umers m d M such tht m f(x) M ( x ). Hece, for every prtto P of [, ] we hve m m M M m m M M, = 1, 2, 3,,. m[() ()] L(P, f, ) U(P, f, ) M[() ()], so tht the umers L(P, f, ) d U(P, f, ) form ouded set. Therefore y the defto of lower d upper Rem-Stetjes tegrls ths shows tht the upper d lower tegrls re defed for every ouded fucto f re ouded lso Lemm. If P* s refemet of the prtto P of [, ], the L(P, f, ) L(P*, f, ) d U(P*, f, ) U(P, f, ). Proof. Let P = {x 0, x 1,, x -1, x } such tht = x 0 x 1 x -1 x = e y Prtto of [, ] d P* the refemet of P cots just oe pot X* more th P such tht x -1 < x* <x where x -1 d x re two cosecutve pots of P. Let m, m, m re the fmum of f(x) [x -1, x ], [x -1, x*] d [ x*, x ] respectvely the clerly m m d m m. Therefore L(P*,f,) - L(P,f, ) = m [(x*) - (x -1 )] + m [(x ) - (x*)] - m [(x ) - (x -1 )] = m [(x*) - (x -1 )] + m [(x ) - (x*)] - m [(x ) - (x*) + (x*) - (x -1 )] = (m - m )[(x*) - (x -1 )] + (m - m )[(x ) - (x*)] 0. Hece L(P, f, ) L(P*, f, ). If P* cots k pots more th P the y repetg the sme process we rrve t the sme result. The proof of U(P*, f, ) U(P, f, ) s logous Lemm. If P 1, P 2 re y two prttos of [, ] the L(P 1, f, ) U(P 2, f, ) d L(P 2, f, ) U(P 1, f, ). Proof. We hve P 1, P 2 re y two prttos of [, ]. Let P = P 1 P 2, the P s the commo refemet of P 1, P 2. The L(P 1, f, ) L(P, f, ) ; U(P, f, ) U(P 1, f, ), d L(P 2, f, ) L(P, f, ) ; U(P, f, ) U(P 2, f, ). Hece L(P 1, f, ) U(P 2, f, ) d L(P 2, f, ) U(P 1, f, ) Theorem: f dα f dα - Proof. Sce f P s the commo refemet of two prttos P 1 d P 2 of [, ]. The

5 5 L(P 1, f, α) L(P*, f, α) U(P*, f, α) U(P 2, f, α). Therefore for ll prttos P 1 d P 2 of [, ], sup L(P 1, f, α) f U(P 2, f, α), mples tht - f dα f dα Theorem. f R(α) o [, ] f d oly f for every ε > 0 there exsts prtto P such tht U(P, f, α) - L(P, f, α ) < ε.... () Proof. Let for prtto P of [, ], () holds. The y the defto of Rem Stetjes tegrls - L(P, f, α ) f dα f dα U(P, f, α ). - Ths mples tht - 0 f dα - f dα U(P, f, α) - L(P, f, α ) < ε - - Hece f dα = f dα.e., tht s f R(α). - - Coversely suppose tht f R(α), the f dα = f dα = f dα. Now f ε > 0 e gve y defto of Rem Stetjes tegrls there exst prttos P 1 d P 2 such tht f dα < L(P 1, f, α ) + ε/2 d U(P 2, f, α ) - ε/2 < f dα. Let P = P 1 P 2 e the commo refemet of P 1 d P 2. The U(P, f, α ) U(P 2, f, α ) < f dα + ε/2 < L(P 1, f, α ) + ε L(P, f, α ) + ε. Yelds, U(P, f, α) - L(P, f, α ) < ε Theorem. () If for every ε > 0 there exsts prtto P such tht U(P,f, α) - L(P, f, α ) < ε holds the t s holds (wth the sme ) for every refemet of P. () If for every ε > 0 there exsts prtto P = {x o, x 1,..., x } such tht U(P, f, α) - L(P, f, α) < ε holds d f s, t, re rtrry pots [x -1, x ], the f(s ) f(t ) I. =1 (c) If f R() d the hypotheses of () hold, the f(t ) f d. =1 Proof: () Let P* e y refemet of the prtto P, the we kow tht L(P, f, ) L(P*, f, ) d U(P*, f, ) U(P, f, ), therefore U(P*, f, ) - L(P*, f, ) U(P, f, ) - L(P, f, ) < ε. Sce P* s rtrry, hece the cocluso holds for ll refemets of P. () Let M = sup f(x), m = f f(x) x -1 x x the for rtrry pots s, t [x -1, x ], m f(s ) M d m f(s ) M, so tht f(s ) - f(t ) M - m. Thus f(s ) f(t ) M m = U(P, f, ) - L(P, f, ) < ε.

6 6 =1 (c) Sce f f R() the y the ovous equltes L(P, f, ) f(t ) I U(P, f, ) d L(P, f, ) f d U(P, f, ), mples tht f(t ) f d U(P, f, ) - L(P, f, ) < ε. = Theorem. If f s cotuous o [, ] d s mootoc cresg o [, ] the f R() o [, ]. Proof. Let > 0 e gve. Choose η > 0 so tht () - () < ε/ η. Sce f s cotuous the tervl [, ] so t s uformly cotuous o [, ], there exsts δ > 0 such tht f(x) - f(t) η ; x - t δ x, t [, ]. (*) If P = {x 0, x 1,, x -1, x } prtto of [, ] such tht P < δ d M = sup f(x), m = f f(x) (x -1 x x ) the x < δ for ll, therefore y (*), we hve M - m η ( = 1,, ). Yelds tht U(P, f, ) - L(P,f,) = (M I - m ) η = η[() - ()] <. =1 =1 Hece f R() Theorem. If f s mootoc o [, ] d f s cotuous o [,], the f R(). (We stll ssume, of course, tht s mootoc.) Proof. Let > 0 e gve. Sce s cotuous o [, ] d so t tkes ll vlues etwee () d () lo t s mootoclly cresg. Therefore for postve teger there exts prtto P = {x 0, x 1,, x -1, x } of [, ] such tht =[() - ()] / ( = 1,, ). We suppose tht f s mootoclly cresg the M = supf(x) = f(x ) d m = f(x) = f(x -1 ) (x -1 x x ) so tht U(P, f, ) - L(P, f, ) = (M m ) = [{() - ()} /] {f (x ) f(x -1 ) } =1 =1 Hece f R(). = [{() - ()}{f() f()}] / < s s tke lrge eough Theorem. Suppose f s ouded o [,], f hs oly ftely my pots of dscotuty o [, ], d s cotuous t every pot t whch f s dscotuous. The f R(). Proof. Let > 0 e gve. Let M = sup f(x), x d let E e the set of pots t whch f s dscotuous. So E s fte d s cotuous t every elemet of E, we c cover E y ftely my dsjot tervls [u j, v j ] [, ] such tht the sum of the correspodg dffereces (v j ) - (u j ) s less th, m.e., [(v j ) - (u j )] <. =1

7 7 Furthermore wthout loss geerlty we my plce these tervls such wy tht every pot of E (, ) les the teror of some [u j, v j ],.e., x E [u j, v j ] x s teror pot of [u j, v j ]. m Let K = [, ] - (u j, v j ) the the set K s compct. Hece f s uformly cotuous o K so =1 there exsts δ > 0 such tht f(s) - f(t) < ; s - t < δ, s, t K. (1) Cosder prtto P = {x o, x,..., x } of [, ] such tht () ech u j, v j P () ll x (u j, v j ) x P () f x -1 u j the x < δ for ll. The M m = M m M + m 2 M = 2 sup f(x) 2 sup f(x) M 2M. Now y (), we hve M m f x [, ] d x -1 u j. Hece U(P, f, ) - L(P, f, ) = (M m ) = 1 (M m ) (x = u j ) + 2 (M m ) (x u j ) =1 =1 =1 2M M + [() - ()] =. Hece f R(). =1 =1 Questo: Is f f d hve commo pot of dscotuty, the f R()? Theorem. Suppose f R() o [, ], m f M, s cotuous o [m, M], d h(x) = (f(x)) o [, ]. The h R() o [, ]. Proof. Choose > 0. Sce s uformly cotuous o [m, M], there exsts δ > 0 such tht δ < d (s) - (t) < f s - t δ s, t [m, M]. Further sce f R(), there s prtto P = {x o, x 1, x 2,, x } of [, ] such tht U(P, f, ) - L(P, f, ) < δ 2 () Let M, m d M *, m * re the supremum d fmum of f d h respectvely [x -1, x ]. Cosder two clsses : A f M - m < δ, M *- m * d B f M - m δ, M *- m * 2K, where K= sup (t), m t M. By (), we hve δ (M - m ) I < δ 2 mples tht < δ. It follows tht B B B U(P, h, ) - L(P, h, ) = (M *- m *) + ( M * - m *) B B 1.2. Propertes of Rem-Stetjes Itegrls [() - ()] + 2Kδ < [() - () + 2K] =. Hece h R().

8 Theorem () lf f 1, f 2 R() o [, ], the f 1 + f 2 R(), cf R() for every costt c, d (f 1 +f 2 )dα = f 1 dα + f 2 dα ; cf dα = c f dα. () If f 1 (x) f 2 (x) o [,], the f 1 dα f 2 dα. (c) If f R() o [, ] d f < c <, the f R() o [, c] d o [c, ], d c f dα + f dα = f dα. c (d) If f R() o [, ] d f f(x) M o [, ], the f dα M[() - ()]. (e) If f R( 1 ) d f R( 2 ), the f R( ) d f d( ) = f dα 1 + f dα 2 ; If f R() d c s postve costt, the f R(c) d f d(cα) = c f dα. Proof. () Sce f 1, f 2 R() the for gve > 0 there re prttos P j (j = 1, 2) such tht U(P j, f j, ) - L(P j, f j,) < /2, j = 1, 2. () If P = P 1 P 2 the () rems true for P, U(P j, f j, ) - L(P j, f j,) < /2, j = 1, 2. () Now f f = f 1 + f 2, M, M, M, m, m, m re the supremum d fmum x [x -1, x ] of f, f 1, f 2 respectvely the M M I + M, m m + m so tht U(P, f, ) = M (M + M ) = M + M =1 =1 =1 =1 U(P, f 1, ) + U(P, f 2, ). Smlrly, L(P, f, ) L(P, f 1, ) + L(P, f 2, ). Therefore U(P, f, ) L(P, f, ) [U(P, f 1, ) + U(P, f 2, ) {L(P, f 1, ) + L(P, f 2, )}] [U(P, f 1, ) - L(P, f 1, )] + [U(P, f 2, ) - L(P, f 2, )}] <, y () whch proves tht f = f 1 + f 2 R() so tht Further for y > 0 d prtto P of [, ] - f d = f dα = f dα. - U(P, f 1, ) < f 1 d + /2 d U(P, f 2, ) < f 2 d + /2 the o ddg these, we hve

9 9 U(P, f 1, ) + U(P, f 2, ) < f 1 d + f 2 d + U(P, f, ) < f 1 d + f 2 d + - Sce fd = fd < f 1 d + f 2 d + fd f 1 d + f 2 d () O replcg f 1 d f 2 () y - f 1 d -f 2, we hve fd f 1 d + f 2 d (v) From () d (v), we hve (f 1 + f 2 )d = f 1 d + f 2 d. Smlrly t c e prove tht f = f 1 - f 2 R() d (f 1 +f 2 )dα = f 1 dα + f 2 dα ; cf dα = c f dα. Next for the secod prt f c = 0 the the proof s trvl, ut f c 0, the sy c > 0 d let f R() the for gve > 0 there s prtto P of [, ] such tht U(P, f, ) L(P, f, ) < /c, (v) Also we defe (cf)(x) = cf (x) so tht, sup(cf)(x) = c supf (x), d f(cf)(x) = c f f(x),x -1 x x of [, ]. Whch mples tht, U(P, cf, ) = c U(P, f, ) d L(P, cf, ) = cl(p, f, ). Therefore U(P, cf, ) - L(P, cf, ) = c[u(p, cf, ) - L(P, cf, )] <, y (v). Hece cf R().Further f c < 0 the U(P, cf, ) - L(P, cf, ) = (-c)[u(p, cf, ) - L(P, cf, )] <, y (v). Hece cf R(). - Therefore (cf)dα = (cf) dα = (cf) dα d for l c 0, (cf) dα = (cf)dα = f U(P, cf, α) = c f U(P, f, α) = c f dα = c f dα.. () Let P e y prtto of [, ] d f(x) 0 for ll x, s mootoclly cresg fucto o [, ] the = (x ) - (x -1 ) 0 lso f m = f f(x) x -1 x x, the L(P, f, ) 0. Cosequetly fd = sup L(P, f, ) 0. Therefore f f 1 (x) f 2 (x) o [,] the f 2 (x) f 1 (x) = (f 2 f 1 )(x) 0 mples tht 0 (f 2 f 1 )d = f 2 d - f 1 d f 1 dα f 2 dα. (c) Sce f R() the for gve > 0 there exst prtto P = {x 0, x 1,, x -1, x } of [, ] such tht U(P, f, ) - L(P, f, ) < (v) where U(P, f, ) = M, d L(P, f, ) = m,, M = sup f(x), m = f f(x)(x -1 x x ) =1 r =1 Let x r = c, the U(P, f, ) = M, + M, d L(P, f, ) = m, + m. r

10 10 Therefore =1 r =r+1 =1 =r+1 U(P, f, ) - L(P, f, )= (M m ), + (M m ) <, y (v) r =1 =r+1 whch mples tht (M m ), < d (M m ), <. =1 =r+1 Hece f R() o [, c] d o [c, ]. Further sce f R() o [, c] d o [c, ] therefore for > 0, we hve c f(t ) - fd < /3, f(t ) - fd < /3 d f(t ) - fd < /3. [, c] [c, ] c [, ] Therefore, c c fd - fd - fd = f(t ) - fd - [f(t ) - fd]- [f(t ) - fd] c [, ] [, c] [c, ] c Lettg 0, we hve (d) Sce c f(t ) - fd + f(t ) - fd + f(t ) - fd <. [, ] [, c] [c, ] c c fd = fd + fd. c fd f d (we wll prove ths result ext theorem). If f(x) M o [, ], the fd Md = M[() - ()]. (e) We hve gve tht f R( 1 ) d f R( 2 ) the for gve > 0 there exsts prttos P 1 d P 2 of [, ] such tht U(P, f, ) - L(P, f, ) < /2, j = 1, 2 () If P = P 1 P 2 the U(P, f, ) - L(P, f, ) < /2, j = 1, 2 () Suppose tht = the, we c wrte M [(x ) - (x -1 )] = M [( )(x ) ( )(x -1 )] =1 =1 = M [ 1 (x ) - 1 (x -1 )] + M [ 2 (x ) - 2 (x -1 )] =1 =1.e., U(P, f, ) = U(P, f, 1 ) + U(P, f, 2 ), smlrly L(P, f, ) = U(P, f, 1 ) + L(P, f, 2 ). So, U(P, f, ) - L(P, f, ) = [U(P, f, 1 ) - L(P, f, 1 )] + [U(P, f, 2 ) - L(P, f, 2 )] < y (). Hece f R( ). Further f f R( = ) d c s y postve costt the for prtto P of [, ], we hve U(P, f, ) - L(P, f, ) < cu(p, f, ) - L(P, f, ) < c U(P, f, c) - L(P, f, c) < c f R(c) Further f d(c) = fu(p, f, c) = c fu(p, f, ) = c f dα.

11 Theorem. If f R() d g R() o [, ] the () fg R() ; () f R() d f dα f dα. Proof. () Sce f f R(), g R() o [, ] the f + g, f - g R() o [, ]. lso f theorem f we tke (t) = t 2 the h(x) = (f(x)) [f(x)] 2 R() o [, ]. Therefore y detty 4fg = (f + g) 2 - (f - g) 2 R() or fg R(). () Sce f R() the for gve > 0 there s prttos P such tht U(P, f, ) - L(P, f, ) <, () (M - m ) <, where M, m re the supremum d fmum of f x [x -1, x ]. =1 Now f M, m re the supremum d fmum of f x [x -1, x ]. The for x r, x s [x -1, x ] we hve f(x r ) f(x s ) f(x r ) f(x s ) mples tht M - m M - m (M - m ) (M - m ) <, =1 =1 U(P, f, ) - L(P, f, ) <. Hece f R(). Also sce M M therefore M M f dα f dα.. =1 =1 Note : Here we ote the verse of ths theorem 1.2.2() s ot true lwys Defto. (step fucto) The ut step fucto I s defed y I(x) = 0, (x 0), 1, (x > 0) Theorem. If < s <, f s ouded o [, ], f s cotuous t s d (x) = I(x - s), the f dα = f(s). Proof. Let P = {x 0, x 1, x 2, x 3 ), where x o = d x 1 = s < x 2 < x 3 = e y prtto of [, ]. The M = supf(x) = f(s) d m = ff(x) = f(s), x [x -1, x ], = 1, 2, 3 s f s cotuous t s. 3 3 Therefore U(P, f, α) = M = M [(x ) - (x -1 )] = M 1 [(x 1 ) - (x 0 )] + M 2 [(x 2 ) - (x 1 )] =1 =1 + M 3 [(x 3 ) - (x 2 )] = M 1 [I(x 1 - s) I(x 0 s)] + M 2 [I(x 2 - s) I(x 1 s)] + M 3 [I(x 3 - s) I(x 2 s)] = M 2. Smlrly L(P, f, α) = m = m 2. Sce f s cotuous t s so tht M 2 d m 2 coverge to f(s) s x 2 s. Therefore - f dα = f U(P, f, α) = f(s) d f dα = supl(p, f, α) = f(s). Hece

12 f dα = f dα = f dα = f(s) Theorem. Suppose c 0 for = 1, 2, 3,..., c coverges, {s } s sequece of dstct pots (, ), d (*) α(x) = c I(x - s ). Let f e cotuous o [, ]. The =1 f dα = c f(s ). =1 Proof. Sce c I(x - s ) c, the y the comprso test the seres (*) s coverges for every x. Also ts sum α (x) s evdetly mootoc d α() = 0, α() = c. Also sce c coverges the for gve > 0 choose N so tht c <, N Put α 1 (x) = c I(x - s ) d α 2 (x) = c I(x - s ). =1 N+1 By theorem & 1.2.3, we hve f dα 1 = c f(s ) d f dα 2 M. =1 where M = sup f(x). Sce α = α 1 + α 2 N fdα - c f(s ) M. =1 Lettg N, we hve f dα = c f(s ). =1 N+1 the α 2 = α α 1, t follows tht Theorem.(Relto etwee Rem tegrl d Rem-Stelges tegrl) Assume α creses mootoclly d α R[, ]. Let f e ouded rel fucto o [, ]. The f R(α) f d oly f f α R[, ]. Moreover f dα = f (x) α(x)dx () Proof. Let > 0 e gve, sce α R[, ] therefore there s prtto P = {x 0,..., x } of [, ] such tht U(P, α') - L(P, α') < () Now y me vlue theorem for rel vlued fucto for t [x -1, x ] such tht α (x ) - α (x -1 ) = α'(t )(x - x ) or α (x ) = α '(t ) x, for = 1,...,. () Ag sce equto () s true for s [x -1, x ], the α '(s )- α '(t ) x < (v) =1 If M = sup f(x), the y (), we hve f(s ) α = f(s ) α '(t ) x t follows tht =1 =1

13 13 f(s ) α - f(s ) α '(t ) x = f(s ) α '(t ) x - f(s ) α '(t ) x =1 =1 =1 =1 = f(s )[α '(t ) - α '(t )]x f(s ) α '(t ) - α '(t ) x =1 =1 sup f(x ) α'(t ) - α'(t ) x = M α'(t ) - α'(t ) x < M [y(v)] =1 =1 I prtculr, f(s )α U(P, f, α') + M s [x -1, x ]. The =1 U(P, f, α) U(P, f, α') + M or U(P, f, α) - U(P, f, α') M. Smlrly y the sme rgumet we hve U(P, f, α ') U(P, f, α) + M or - [U(P, f, α) - U(P, f, α ')] M. Thus U(P, f, α) - U(P, f, α') M (v) Here we ote tht () d (v) rems true f P s replced y y refemet. We coclude tht - - f dα - f(x)α'(x)dx M. - - Sce s rtrry. Hece f dα = f(x)α'(x)dx (v) Smlrly, f dα = f(x)α'(x)dx (v) - - From (v) d (v) we hve f dα = f(x)α'(x)dx Theorem.(chge of vrle). Suppose s strctly cresg cotuous fucto tht mps tervl [A, B] oto [, ]. Suppose α s mootoclly cresg o [, ] d f R(α) o [, ]. Defe d g o [A, B] y (y) = α ((y)), g(y) = f((y)) () The g R() d B g d = f d. A Proof. Let to ech prtto P = {x 0,...,x } of [, ] correspods prtto Q = {y 0,,y } of [A,B], the x = (y ). All prttos of [A, B] re oted ths wy. Sce the vlues tke y f o [x -1, x ] re exctly the sme s those tke y g o [y -1, y ], we see tht U(Q, g, ) = U(P, f, ) d L(Q, g, ) = L(P, f, ). Sce f R(α) the for gve > 0, U (P, f, ) - L(P, f, ) <. Hece for the prtto Q U(Q, g, ) - L(Q, g, ) <. Whch shows tht g R(). Furthermore B g d = f d. A

14 14 Note: Cosder the followg specl cse: Tke (x) = x, the =. Assume R [A, B]. The y theorem 1.2.5, we hve B f(x)dx = f((y)) (y) dy. A 1.3. Itegrto d Dfferetto. I ths secto we dscuss the fmous the fudmetl theorem of clculus, whch stted tht tegrto d dfferetto re, cert sese, verse opertos. We shll mde ths study for Rem tegrls Defto. Itegrl Fucto. If f s Rem tegrle fucto o [, ] the fucto x F(x) = f(t) dt s clled tegrl fucto. Further f f(x) s dfferetle o [, ] d F(x) = f(x), the F(x) s clled the prmtve or t-dervtve of f o [, ]. Here we ote tht the prmtve of f(x) s ot uque lso tegrle fucto s ot ecessrly cotuous ut the fucto ssocted to f s lwys cotuous s show the followg theorem x Theorem. Let f R[, ]. For x, put F(x) = f(t) dt. The F s cotuous o [, ] Furthermore, f f s cotuous t pot x 0 of [, ], the F s dfferetle t x 0, d F'(x 0 ) = f(x 0 ). I other word The tegrl of Rem tegrle fucto s cotuous d s dfferetle f f s cotuous. Proof. Sce f R[, ] so y defto f s ouded therefore there exsts postve costt M such tht f(t) M for t. Now for x y, we hve y x y y F(y) - F(x) = f(t) dt - f(t) dt = f(t) dt + f(t) dt = f(t)dt M(y - x). x x Suppose tht for gve > 0 such tht y x < /M. The we hve F(y) - F(x) <. Ths proves cotuty (d, fct, uform cotuty) of F. Next suppose f s cotuous t x 0. The for gve > 0, choose δ > 0 such tht f(t) f(x 0 ) < ; f t x 0 < δ, where t. Hece, f x 0 δ < s x o t < x o + δ d s < t, we oserve tht t {1/(t - s)} dt = 1. Therefore s [{F(t) F(s)}/(t - s)] f(x 0 ) = {1/(t - s)} [f(u)du - {1/(t - s)} f(x 0 )du s s t t t

15 15 {1/ t s } f(u) - f(x 0 ) du < s It follows tht F I dfferetle t x 0 d F'(x 0 ) = f(x 0 ). Sce here x 0 s rtrry so tht here we oserve tht the cotuty of f mples the dfferetlty of F. Some tme ths theorem s clled the frst fudmetl theorem of tegrl clculus Theorem (The fudmetl theorem of clculus). If f R[, ] d f there s dfferette fucto F o [, ] such tht F ' = f, the f(x) dx = F() - F(). Proof. Let > 0 e gve, sce F' = f R[, ] therefore there exsts P = {x 0,..., x } of [, ] wth P < such tht F '(t ) x - F '(x)dx < where t [x -1, x ] () Now y Lgrge s me vlue theorem for pot t [x -1, x ] such tht F(x ) - F(x -1 ) = F '(t )x for = 1,...,. Therefore F '(t )x = [F(x ) - F(x -1 )] = F() - F(). =1 =1 Therefore y equto (), we hve F() - F() - F '(x)dx <. Whch mples tht F() - F() = F '(x)dx = f(x)dx or f(x)dx = F() - F() Theorem (tegrto y prts). Suppose F d G re dfferetle fuctos o [, ], F ' = f R[, ] d G' = g R[, ]. The F(x)g(x)dx = F()G() - F()G() - f(x)g(x)dx. Proof. Put H(x) = F(x)G(x), sce F d G re dfferetle so H(x) s lso dfferetle d H'(x) = F(x)G'(x) + G(x)F '(x) R[, ]. The usg fudmetl theorem of tegrl clculus, we hve H'(x) dx = H() - H() = F()G() - F()G(). F(x)G'(x) + G(x)F '(x) dx = H() - H() = F()G() - F()G(). F(x)g(x) = H() - H() = F()G() - F()G() - G(x)f(x) dx Itegrto of vector- vlued fuctos.

16 Defto Let f 1,...,f k e rel fuctos o [, ], d let f = (f,...,f k ) e the correspodg mppg of [, ] to R k. If creses mootoclly o [,], we sy tht f R() f f j R() for j = 1,..., k. I ths cse, we hve f dα = ( f 1 dα,, f k dα)..e., f dα s the pot R k whose j th co-ordte s f j dα Theorem () lf f, F R() o [, ], the f + F R(), cf R() for every costt c, d (f + F)dα = f dα + F dα ; cf dα = c f dα. () If f R() o [, ] d f < c <, the f R() o [, c] d o [c, ], d c f dα + f dα = f dα. c (c) If f R( 1 ) d f R( 2 ), the f R( ) d f d( ) = f dα 1 + f dα 2 ; If f R() d c s postve costt, the f R(c) d f d(cα) = c f dα. Proof. Sce y the defto of vector vlued fucto these propertes holds good. We smply pply the results (), (c), d (e) of Theorem to ech co-ordte of f Theorem. () Let α creses mootoclly d α R[, ]. Let f e ouded rel fucto o [, ]. The f R(α) f d oly f f α R[, ]. Moreover f dα = f (x) α(x)dx x () Let f R[, ]. For x, put F(x) = f(t) dt. The F s cotuous o [, ]. Furthermore, f f s cotuous t pot x 0 of [, ], the F s dfferetle t x 0, d F'(x 0 ) = f(x 0 ). Here f dα = ( f 1 dα,, f k dα) = (F 1, F 2, F 3, F k,) = F(x) Proof. If we pply the theorems d o ech co-ordte of f, the the results re vld. Therefore y the defto of vector vlued fucto these results holds good.

17 If f d F re s theorem 1.4.2() f R() d f F s dfferette fucto [, ] such tht F' = f, the f(t) dt = F() - F(). Proof. Let > 0 e gve, sce F' = f R[, ] therefore there exsts prtto P = {x 0,..., x } of [, ] wth P < such tht yelds tht F j '(t ) x - F j '(t)dt < where t [x -1, x ] for ech j. F'(t ) x - F'(t)dt < where t [x -1, x ] () Now y Lgrge s me vlue theorem for pot t [x -1, x ] such tht F j (x ) - F j (x -1 ) = F j '(t )x for = 1,..., d ech j yelds tht F(x ) - F(x -1 ) = F'(t )x for = 1,...,. Therefore F '(t )x = [F(x ) - F(x -1 )] = F() - F(). =1 =1 Therefore y equto (), we hve F() - F() - F '(t)dt <. Whch mples tht F() - F() = F'(t)dt = f(t)dt or f(t)dt = F() - F() Theorem If f mps [, ] to R k d f f R() for some mootoclly cresg fucto o [, ], the f R(), d f dα f dα. Proof. If f 1,, f k re the compoets of f, the f = (f f f 2 k) 1/2. Sce f R(), mples tht f j R() for ech j so ther sum s lso elogs to R(). Sce x 2 s cotuous fucto of x, the the squre-root fucto s cotuous lso cotuous t dom. Hece y theorem f R(). Let we put y = (y 1,..., y k ), where y j = f j d, the we hve y = f d d y 2 2 = y j = y j f j d = (y j f j )d. By the Schwrz equlty y j f j (t) y f(t) ( t ). Hece, we hve y 2 y f d or y f d or f dα f dα Rectfle Curves.

18 Defto. A cotuous mppg of tervl [, ] to R k s sd to e curve R k. We my lso sy tht s curve o [, ]. If (1) s oe-to-oe the t clled rc. (2) If () = () the t s sd to e closed curve. (3) Here we ote tht wth ech curve R k there s ssocted suset of R k, clled the rge of, ut dfferet curves my hve the sme rge. Now we ssocte to ech prtto P = {x 0,..., x } of [, ] d to ech curve o [, ] the pots (x 0 ), (x 1 ), (x 2 ),, (x ) re the vertces of scred polygo. We deote the legth of the polygo y (P, ) d defe y (P, ) = (x ) - (x -1 ), where the th =1 term ths sum s the dstce ( R k ) etwee the. pots (x -1 ) d (x ). As our prtto ecomes fer d fer, ths polygo pproches the rge of more d more closely d the polygol legth teds to the legth of whch s deoted y () d defed y () = sup (P, ), where the supremum s tke over ll prttos of [, ]. If () < the s sd to e rectfle. Here () s gve y Rem tegrl cert cses. Our ext theorem devote to ths for cotuously dfferetle curves Theorem. If ' s cotuous o [, ], the s rectfle, d () = '(t) dt. Proof. If x - 1 < x, the (x ) - (x -1 ) = '(t) dt '(t) dt. Hece (P, ) '(t) dt for every prtto P of [, ]. Cosequetly (P, ) '(t) dt. () x x -1 x x -1 Now for rtrry > 0, sce ' s uformly cotuous o [, ], there exsts δ > 0 such tht ' (s) - ' (t) < for s t < δ, s, t [, ]. () Let P = {x 0,, x } e y prtto of [, ], wth x < δ, for ll, the for x -1 t x, we hve ' (t) ' (x ) +. Hece x ' (t) dt '(x )x + x. x -1 x = [' (t) + ' (x ) - ' (t)] dt + x. x -1 x x ' (t)dt + ['(x ) - ' (t)] dt + x.

19 19 x -1 x -1 (x ) - (x -1 ) + 2 x. O ddg these equltes, we ot ' (t) dt (P, ) + 2 ( - ) () + 2 ( - ). Sce ws rtrry therefore, ' (t) dt (). () From () d (), we hve ' (t) dt = () Rerrgemets of terms of Seres, Rem theorem. As we hve studed the cocept of covergece d solute covergece of seres d other relted propertes erler clsses. I ths secto we study the ture of coverget seres, whe ts terms re rerrged dfferet mer. For ths frst we kow wht s the rerrgemet of terms of gve seres Defto. Let {k }, = 1, 2, 3, e sequece whch every postve teger s orepetg (I other words {k } s jectve mp o the set of postve teger to tself). We put ' = k, = 1, 2, 3,, the ' s clled the rerrgemet of the gve. If we suppose tht {s } d {s' } re the prtl sums of, ' respectvely, the t c e esly see tht the terms of thee sequeces re etrely dfferet umers d {s } s coverget wheever the seres s coverget. The there rse turl questo out the ture of the sequece {s' } (s well s the seres ' lso),.e., t s coverget or dverget. Furthermore, thus led to the prolem of determg uder wht codto ll rerrgemets of coverget seres wll coverget d where the sums re ecessrly the sme. We c uderstd ths y the followg exmple: Exmple. Cosder the coverget seres 1 ½ + 1 / 3 ¼ + d ts rerrgemet / 3 ½ + 1 / / 7 - ¼ + 1 / / 11-1 / 6 d f {s } d {s' } re ther prtl sums respectvely, the s = lms < 1- ½ + 1 / 3 = 5/6. Now sce fore k 1, we se tht {1/(4k 3)} +{1/(4k 1)} (1/2k) > 0, we se tht s' 3 < s' 6 < s' 9 <, mples tht lm sup s' > s' 3 = 5/6. Hece s' does ot coverge to s. Ths exmple llustrte the ext theorem due to Rem Theorem.(Rem theorem) Let e seres of rel umers whch s coverges, ut ot solutely. Suppose there re umers, such tht -. The there exsts rerrgemet ' of wth prtl sum s' such tht

20 20 lm f s' = d lm sup s' =. () I other words the terms of codtolly coverget seres c e rerrge such tht the ew seres my e coverget, dverget or osclltory. Proof. Cosder p = ( + )/2 d q = ( )/2 ( = 1, 2, 3, ). The p - q = d p + q = d sce p 0, q 0 lso f the seres p d q re coverget the the seres (p + q ) = s coverget cotrdcts the fct tht the seres coverget codtolly. Hece the seres p d q must e dverge. Ag sce = (p - q ) = p - q the the dvergece of p d covergece of q (or vce vers) mples dvergece of g cotrdcts the fct tht the seres s coverget. Now suppose tht P 1, P 2, P 3, deote the oegtve terms of the order whch they occur d Q 1, Q 2, Q 3, deote the solute vlues of egtve terms of d they re lso ther orgl order. I such wy we see tht the seres P, Q re dffer from the seres p, q y zero terms d hece dverget lso. Now we costruct sequeces {m } d {k } such tht the seres P P m1 - Q Q k1 + P m P m2 Q k Q k2 +, () s rerrgemet of the seres d stsfes lm f s' = d lm sup s' =. Further choose sequeces { } d { } such tht d, <, 1 > 0. I such wy tht, let m 1 d k 1 e the smllest tegers for whch P P m1 > 1, P P m1 - Q Q k1 < 1 ; let m 1 d k 1 e the smllest tegers for whch P P m1 - Q Q k1 + P m P m2 > 2, P P m1 - Q Q k1 + P m P m2 Q k Q k2 < 2 ; d cotue ths wy, sce t s possle ecuse of P, Q re dverge. If s d t re the prtl sums of () whose lst terms re P m d - Q k, the s - P m d t - Q k. Sce s coverget the P, Q 0 s, we hve s d t. Flly we see tht o umer less th or greter th c e su-sequetl lmt of the prtl sum of (). Hece lm f s' = d lm sup s' = Theorem. Let e seres of complex umers whch s solutely coverget the every rerrgemets of re coverges d ll coverges to sme sum.. Or, The sum of every rerrgemets of solutely coverget seres s rems uchged. Proof. Let e y rerrgemet of d s, s e the prtl sums of, respectvely. Sce covergece solutely therefore y Cuchy s crtero of coverget of seres for gve > 0 there exsts postve teger N such tht m

21 21 r <, m N. () r= Now we choose p such tht the tegers 1, 2, 3,, N les the set {k 1, k 2,, k p }. The for > p the umers 1, 2,, N wll ccel the dfferece s s, therefore s s < y (). Cosequetly {s } coverges to the sme sum s {s } Uty Summry Deftos : Let [, ] e gve tervl. The set P = {x 0, x 1,, x -1, x } of [, ] such tht = x 0 x 1 x -1 x = s sd to e Prtto of [, ]. The set of ll prttos of [, ] s deoted y P([, ]). The tervls [x 0, x 1 ], [x 0, x 1 ], [x 1, x 2 ],, [x -1, x ] re clled the sutervls of [, ]. Wrte x = x x -1 s clled the legth of the tervl [x -1, x ] ( = 1,, ) d mx x s clled the orm of the prtto P d s deoted y P or (P). A prtto Q of [, ] such tht P Q s clled the refemet or fer of the prtto P. Let f : [, ] R s ouded fucto d e mootoclly cresg fucto o [, ] d P e y Prtto of [, ]. We wrte =(x ) - (x -1 ), = 1, 2, 3,,. Let M = sup f(x), m = f f(x) (x -1 x x ) for ech P P( [, ]). We defe U(P, f, ) = M, d L(P, f, ) = m, =1 =1 re clled the Upper d Lower Rem Steltjes sums respectvely. Further we defe - f d = f U(P, f, ) d f d = sup L(P, f, ), - where the f d the sup re tke over ll prttos P of [, ], re clled the Upper d Lower Rem Steltjes tegrls of f over [, ], respectvely. If the upper d lower Rem Steltjes tegrls re equl, we sy tht f s Rem Steltjes tegrle o [, ] () If f : [, ] R s ouded fucto d e mootoclly cresg fucto o [, ]. Let P e y Prtto of [, ].The the upper d lower Rem-Stetjes tegrls of f wth respect to re ouded. () If P* s refemet of the prtto P of [, ], the L(P, f, ) L(P*, f, ) d U(P*, f, ) U(P, f, ). () If P 1, P 2 re y two prttos of [, ] the L(P 1, f, ) U(P 2, f, ) d L(P 2, f, ) U(P 1, f, ). - (v) f dα f dα - (v) f R(α) o [, ] f d oly f for every ε > 0 there exsts prtto P such tht U(P, f, α) - L(P, f, α ) < ε (v) If for every ε > 0 there exsts prtto P = {x o, x 1,..., x } such tht U(P,f, α) - L(P, f, α) < ε holds d f s, t, re rtrry pots [x -1, x ], the

22 22 f(s ) f(t ) I. =1 Further f f R(), the f(t ) f d. =1 (v) If f s cotuous o [, ] d s mootoc cresg o [, ] the f R() o [, ]. (v) If f s mootoc o [, ] d f s cotuous o [, ], the f R(). (x) Suppose f s ouded o [, ], f hs oly ftely my pots of dscotuty o [, ], d s cotuous t every pot t whch f s dscotuous. The f R(). (x) Suppose f R() o [, ], m f M, s cotuous o [m, M], d h(x) = (f(x)) o [, ]. The h R() o [, ] Propertes of Rem-Stetjes () lf f 1, f 2 R() o [, ], the f 1 + f 2 R(), cf R() for every costt c, d () If f 1 (x) f 2 (x) o [,], the (f 1 +f 2 )dα = f 1 dα + f 2 dα ; cf dα = c f dα. f 1 dα f 2 dα. (c) If f R() o [, ] d f < c <, the f R() o [, c] d o [c, ], d c f dα + f dα = f dα. c (d) If f R() o [, ] d f f(x) M o [, ], the f dα M[() - ()]. (e) If f R( 1 ) d f R( 2 ), the f R( ) d f d( ) = f dα 1 + f dα 2 ; If f R() d c s postve costt, the f R(c) d f d(cα) = c f dα. (f) If f R() d g R() o [, ] the fg R(), f R() d f dα f dα.

23 23 (g) If < s <, f s ouded o [, ], f s cotuous t s d (x) = I(x - s), the f dα = f(s). (h) Suppose c 0 for = 1, 2, 3,..., c coverges, {s } s sequece of dstct pots (, ), d α(x) = c I(x - s ). Let f e cotuous o [, ]. The =1 f dα = c f(s ). =1 () Assume α creses mootoclly d α R[, ]. Let f e ouded rel fucto o [, ]. The f R(α) f d oly f f α R[, ]. Moreover f dα = f (x) α(x)dx (j) Suppose s strctly cresg cotuous fucto tht mps tervl [A, B] oto [, ]. Suppose α s mootoclly cresg o [, ] d f R(α) o [, ]. Defe d g o [A, B] y (y) = α ((y)), g(y) = f((y)). B The g R() d g d = f d. A x (k) Let f R [, ]. For x, put F(x) = f(t) dt. The F s cotuous o [, ]. Furthermore, f f s cotuous t pot x 0 of [, ], the F s dfferetle t x 0, d F'(x 0 ) = f(x 0 ). I other word The tegrl of Rem tegrle fucto s cotuous d s dfferetle f f s cotuous. (l) If f R[, ] d f there s dfferette fucto F o [, ] such tht F ' = f, the f(x) dx = F() - F(). (m) Suppose F d G re dfferetle fuctos o [, ], F ' = f R[, ] d G' = g R[, ]. The F(x)g(x)dx = F()G() - F()G() - f(x)g(x)dx Itegrto of vector- vlued fuctos. Let f 1,...,f k e rel fuctos o [, ], d let f = (f,...,f k ) e the correspodg mppg of [, ] to R k. If creses mootoclly o [,], we sy tht f R() f f j R() for j = 1,..., k. I ths cse, we hve f dα = ( f 1 dα,, f k dα)..e., f dα s the pot R k whose j th co-ordte s f j dα.

24 Rectfle Curves. A cotuous mppg of tervl [, ] to R k s sd to e curve R k. We my lso sy tht s curve o [, ]. If (1) s oe-to-oe the t clled rc. (2) If () = () the t s sd to e closed curve. (3) The legth of whch s deoted y () d defed y d f f () < the s sd to e rectfle. (4) If ' s cotuous o [, ], the s rectfle, d () = '(t) dt Rerrgemets of terms of Seres : Let {k }, = 1, 2, 3, e sequece whch every postve teger s o-repetg (I other words {k } s jectve mp o the set of postve teger to tself). We put ' = k, = 1, 2, 3,, the ' s clled the rerrgemet of the gve. () The terms of codtolly coverget seres c e rerrge such tht the ew seres my e coverget, dverget or osclltory. () The sum of every rerrgemets of solutely coverget seres s rems uchged Assgmets/Check your Progress. 1. Suppose creses o [, ], f(x) = k x [, ]. The prove tht f R() d fd = () - () 2. If f(x) = x d (x) = x 2 o [0, 1]. Is f R(), f yes the fd ts vlue of 0 1 fd. As 2/3. 3. If f(x) = (x) = x 2 o [0, 1]. Is f R(), f yes the fd ts vlue of 0 1 fd. As 1/2. 4. Suppose creses o [, ] d s cotuous t x 0, x 0, f(x 0 ) = 1, d f(x) = 0 f x x 0. Prove tht f R() d tht f d = Suppose f 0,f s cotuous o [, ], d f(x)dx = 0. Prove tht f(x) = 0 for ll x [, ]. 6. () If f, g R(), f, g 0 d f p d = 1 = g q d, the f g d 1. where 1/p + 1/q = 1. () If f d g re complex fuctos R(), the f g d { f p d} 1/p { g q d} 1/q. 7. Suppose creses mootoclly o [, ], g s cotuous, d g(x) = G (x) for x. Prove tht (x) g(x)dx = G() () - G() () - Gd 8. Let 1, 2, 3 e curves the complex ple, defed o [0, 2] y 1 (t) = e t, 2 (t) = e 2t, 3 (t) = e 2ts(1/t) Show tht these three curves hve the sme rge, tht 1 d 2 re rectfle, tht the legth of 1 s 2, tht the legth of 2 s 4, d tht 3 s ot rectfle.

25 25 9. Let e cotuous fucto of ouded vrto o [, ], ssume g R() o [, ] d defe (x) = x gd f x [, ] the prove tht f f s cresg o [, ] there exts pot x 0 [, ] such tht fd = f() x 0 gd + f() x0 gd. Furthermore f f s cotuous o [, ] the fg d = f() x 0 gd + f() x0 gd Pots for dscusso/ Clrfcto Suggested Study mterl 1. H. L. Royde, Rel Alyss, Mcmll Pu. Co. 4 th Edto, New York Apostl T.M. Mthemtcl Alyss, Nros Pulshg House, New Delh, P.K. J d V.P. Gupt Leesgu Mesure d Itegrto,New ge Itertol (P) Lmted pulcto, New Delh Wlter Rud, Prcples of Mthemtcl lyss McGrw Hll, Kogkush, 1976, Itertol studet edto. 5. H.K. Pthk - Rel Alyss 6. Lecture Notes o Rel lyss Rchrd F. Bss

26 26 Sequeces d seres of Fuctos Itroducto: The sequeces {f } whose terms re rel or complex-vlued fuctos hvg commo dom o the rel le R or the complex ple C. For ech x the dom we c form other sequece {f (x)} whose terms re the correspodg fucto vlues. Let S deote the set of x for whch {f (x)} coverges. The fucto f defed y the equto f ( x) lm f ( x), f x S s clled the lmt fucto of the sequece {f }, d we sy tht {f } coverges pomwse to f o the set S. If ech fucto of sequece {f } hs cert property, such s cotuty, dfferetlty, or tegrlty, to wht extet s ths property trsferred to the lmt fucto? For exmple, f ech fucto f s cotuous t c, s the lmt fucto f lso cotuous t c? We shll see tht, geerl, t s ot. I fct, we shll fd tht potwse covergece s usully ot strog eough to trsfer y of the propertes metoed ove from the dvdul terms f to the lmt fucto f. Therefore we re led to study stroger methods of covergece tht do preserve these propertes. The most mportt of these s the oto of uform covergece. Ojectve: As prevous clsses we hve ee studed the cocept d propertes of sequeces. I ths ut we del wth sequeces {f } of rel or complex vlued fuctos hvg dom R or C. For every x the dom we c form sequece {f (x)}. For exmple f f : [0, 1] R defed y f (x) = x, N, the we c form dfferet sequeces s {0,0,0 }, {1/2, 1/2 2, 1/2 3, }, etc., d the propertes lke covergece of these sequeces deped o s well s x the dom. Here we shll dscuss the pot wse d uform covergece d other relted cocepts of sequeces d seres of fuctos Sequece d Seres of Fuctos: Defto2.1.1: Let E e y o-empty set of R d N d f : E R e y fucto the {f } s sd to e sequece of fuctos from E to R d f s sd to e seres of fuctos from E to R. Clerly, for ech x E, we hve sequece {f (x)} d seres f (x). For some vlues of x ths sequece (or seres) s coverget d dverget o the other vlues of x, for exmple f f : N R defed y f (x) = x, N, the {f (x)} s coverget oly whe x = 1 d dverget for other vlues of x N. However the seres x s dverget for ll vlues of x N Potwse d Uform Covergece: Potwse covergece: Defto2.2.1: Let {f } e sequece of fuctos defed o set E d suppose tht for ech x E the sequece of umers {f (x)} coverges to fucto f(x),.e., f(x) = lm f (x), for ech x E... () The we sy tht {f } coverges o E d f s the lmt or lmt fucto of {f } d the covergece of {f } s clled potwse covergece of {f } o E. I other words the sequece {f } s sd to e potwse coverges to f f for > 0 d ech x E, 0 = 0 (, x) N

27 27 such tht f (x) f(x) <, 0. Rememer tht here 0 s deped o x d oth. Smlrly f the seres f (x) coverges for ech x E d = 1f (x) = f(x) the the fucto f s clled the sum (or potwse sum) fucto of the seres f. For exmple f f : [0, 1] R defed y f (x) = x, N d f f(x) s the lmt fucto of f (x) the f(x) = 0 f x (0, 1) d f(x) = 1 f x = 1. Therefore {f } coverges potwse. Smlrly for ll rel x cosder the geometrc seres 0 {x 2 /(1 + x 2 ) } d f f(x) s the sum fucto of the seres the f(x) = 0 f x = 0 d f(x) = 1 + x 2 f x 0, therefore the seres s potwse coverges to f(x). Here questo rses f ech fucto of the sequece {f } hs cert property lke cotuty, dfferetlty or tegrlty etc; s the sme property s true for the lmt (or sum) fucto?. Cosder f ech fucto of the sequece {f } s cotuous t pot c,.e., lm f (x) = f (c), the lm f(x) = f(c) or lm xc lm f (x) = lm lm xc f (x) s true? () Therefore t ths stge the questo rses out cotuty s tht c we terchge the order of lmts ()? We shll see tht, geerl tht we c ot.e. ether the lmt does ot exsts or f t dose exst, t eed ot e equl to f(c). We shll dscuss ths stuto y mes of some exmples tht lmt processes c ot e terchged geerl wthout ffectg the result. Exmple 2.2.1: Cosder the doule sequece s m, = m/(m + ); m, = 1, 2, 3,. Clerly t s the potwse coverget sequece. Keepg fxed d lettg m, s m, 1 mples tht lm lm m s m, = 1. O the other hd, keepg m fxed d lettg, s m, 0 mples tht lm m lm s m, = 0. Hece lm lm m s m, lm m lm s m,. Exmple 2.2.2: Cosder the sequece f m (x) = lm (cos m!x) 2 ; m = 1, 2, 3,. Clerly t s the potwse coverget sequece of cotuous fuctos. Whe m!x s teger the f m (x) = 1 d for ll other vlues of x f m (x) = 0. If we suppose f(x) = lm m f m (x), the f(x) = 0 f x s rrtol d f(x) = 1 f x s rtol. Thus we hve oted dscotuous lmt fucto. Exmple 2.2.3: Cosder the sequece f (x) = s x/ (x s rel d = 1, 2, 3, ). Clerly t s the potwse coverget sequece. Sce f(x) = lm f (x) = 0 for ll x. The lm f (0) = lm cos x = lm f (0) = 0. Exmple 2.2.4: Cosder the sequece f (x) = 2 x(1 x 2 ) (0 x 1, = 1, 2, 3, ). Clerly t s the potwse coverget sequece. If f(x) = lm f (x), the f(x) = 0 for ll x [0, 1]. Now y smple clculto we hve x(1 x 2 ) dx = 2 /(2 + 2) s, wheres 0 1 [lm f (x)]dx = 0. Hece lm 0 1 f (x)dx 0 1 [lm f (x)]dx. From the ove exmples we coclude tht the potwse covergece s ot suffcet to llow us to terchge the order of lmts, lmt d dfferetto, lmt d tegrto. Therefore potwse covergece s usully ot strog eough to trsfer y of the propertes metoed ove from the dvdul term f to the lmt fucto f. Hece we re led to the study stroger

28 28 method of covergece tht do preserve these propertes. A cocept of gret mportce ths regrd s the oto of uform covergece. Uform Covergece: Defto2.2.2: A sequece {f } of fuctos defed o set E s sd to e coverges uformly o E to fucto f f for > 0 0 = 0 () N such tht f (x) f(x) <, 0, for ll x E. Symolclly t s wrtte s f f uformly o E or lm f (x) = f(x) uformly o E or f f or f (x) f(x), x E. Clerly uform covergece mples potwse covergece ut ot coversely. The dfferece etwee these cocepts s ths: If {f } coverges potwse o E, the there exsts fucto f such tht, for every > 0 d ech x E 0 = 0 (, x) N depedg o d x such tht f (x) f(x) < 0. But f {f } coverges uformly o E t s possle, for every > 0 0 = 0 () N depedg oly o such tht f (x) f(x) < 0. Smlrly seres f (x) coverges uformly o E f the sequece {s } of prtl sums defed y = 1f (x) = s (x) coverges uformly o E. Suppose s s uformly o E, the we wrte = 1f (x) = s(x) uformly o E. I other words the seres f (x) s sd to e uformly coverget to s(x) f for > 0 0 = 0 () N depedet of x, such tht s (x) s(x) < 0 for ll x E. Let ech term of the uformly coverget sequece {f } s rel-vlued the y f (x) f(x) < 0 we me tht f(x) - < f (x) < f(x) +, 0 mples tht the etre grph of f (.e. the set [{(x, y) : y = f (x), x E}] les wth d of heght 2 stuted symmetrclly out the grph of f s show fg (). Ths s geometrcl terpretto of uform covergece. y =f(x) + y = f(x) A sequece {f } s sd to e uformly ouded o the set E f there exsts costt M > 0 such tht f (x) M, x E d ll d the umer M s clled the uform oud for {f }. Clerly f ech dvdul fucto s ouded d f f uformly o E, the the sequece {f } s uformly ouded o E. If there s pot x E s such tht sequece {f } s ot coverget uformly y eghorhood of x the x s clled the pot of o-uform covergece of the sequece {f }. Now we llustrte the oto of uform covergece through some exmples: Exmple 2.2.6: Show tht the sequece {f } where f : R R defed y f (x) = x/ x R, N, coverget potwse ut ot uformly.

29 29 Soluto: Let for rtrry > 0 there exsts m N such tht f (x) f(x) < m. Sce here f (x) = x/ 0 = f(x) x R, therefore x/ 0 < m, I prtculr x /m < or, m > x /. Clerly m depeds o x d oth. Hece the sequece {f } coverget potwse ut ot uformly. But t coverget uformly o [0, 1], sce here m > x / > 1/, clerly m depeds oly o. Exmple 2.2.7: Show tht the sequece {f } where f : [0, 1] R defed y f (x) = x x [0, 1], N, coverget potwse ut ot uformly. Soluto: Clerly ths sequece s potwse coverget, sce f(x) = lm f (x) = 0 f x [0, 1) 1 f x =1. Let for rtrry > 0 there exsts m N such tht f (x) f(x) < m. Or, x 0 < m d x [0, 1). I prtculr x m < or 1/ x m > 1/ m log(1/x) > log(1/) m > [log(1/) / log(1/x)]. Clerly m depeds o x d oth d t s ot possle to determe m N such tht f (x) f(x) < m x [0, 1]. Hece the sequece {f } coverget potwse ut ot uformly. Exmple 2.2.8: Show tht the sequece {f } where f : (0, ) R defed y f (x) = 1 + {x / (1 + x)} x (0, ), N, coverges uformly. Soluto: Sce f(x) = lm f (x) = lm [1 + {x / (1 + x)}] = 1 x (0, ) d N. Let for rtrry > 0 there exsts m N such tht f (x) f(x) < m. Or, [1 + {x / (1 + x)}] - 1 < m. I prtculr {x / (1 + mx)} < Or, (1 + mx) / x > 1/ or, 1 > 1/x > (1/) m mples tht m > (1/) 1. Here m s deped oly o. Hece the sequece {f } coverget uformly. Exmple 2.2.9: Show tht the sequece {f } where f :XR defed y f (x)= 1/(1+ x 2 ), N, ot coverget uformly f X = R ut coverget uformly f X = (0, ). Soluto: Sce f(x) = lm f (x) = lm {1 / (1 + x 2 )} = 1 f x = 0 0 f x 0. Hece s exmples d the sequece {f } ot coverget uformly f X = R ut coverget uformly f X = (0, ) Cuchy Crtero for uform covergece: Followg s the Cuchy crtero for uform covergece Theorem (Cuchy Crtero for uform covergece for sequece) Ay sequece {f } of fuctos defed o set E s coverges uformly o E to fucto f ff the followg codto (clled the Cuchy codto) hold: For every > 0, p N such tht f (x) f m (x) <, m p d x E () Proof. Suppose tht f f uformly o E, the for every > 0, p = p() N such tht f (x) f(x) < /2 p d x E. Therefore,

30 30 f (x) f m (x) f (x) f(x) + f(x) f m (x) < /2 + /2 =, m, p d x E. Coversely, suppose tht the codto (1) stsfed for ll x E. The y Cuchy crtero of covergece of sequeces for fxed x E the sequece {f (x)} s coverget d sy coverges to fucto f(x). Now for > 0 usg the codto (), we hve f (x) f +k (x) < p, k > 0 d x E () Lettg k, y (), we hve f (x) f(x) < p x E, yelds f f uformly o E. Note: Sometme s the mmedte cosequece of defto of uform covergece f lm k f (x) = f(x) (x E ) d put M = sup xe f (x) f(x). The f f uformly o E ff M 0 s. Theorem (Cuchy Crtero for uform covergece for seres) A seres f of fuctos defed o set E s coverges uformly o E to fucto f ff the followg codto (clled the Cuchy codto) hold: +p For every > 0, m N such tht f k (x) < m, p = 1, 2, 3, d x E k=+1 Proof. Cosder the sequece {s (x) of prtl sum of the f, where s (x) = f 1 (x) + f 2 (x) + f 3 (x) + + f (x). +p The s +p (x) - s (x) = f +1 (x) + f +2 (x) + f +3 (x) + + f +p (x) = f k (x) k=+1 Suppose tht the seres f coverges uformly to f o E ff s (x) f(x) uformly. Now y Cuchy crtero for uformly covergece of sequece of fuctos sequece {s (x)} coverges uformly to f(x) ff for every > 0, m N such tht s +p (x) s (x) < m d x E +p ff f k (x) < m d x E. k= Test for uform covergece: Here we gve some test for uform covergece. Theorem (M -test for sequece): A sequece {f } of fuctos defed o set E d f lm k f (x) = f(x) (x E ) d M = sup xe f (x) f(x). The f f uformly o E ff M 0 s. Proof. Suppose tht f f uformly o E, the for every > 0, p = p() N such tht f (x) f(x) <, p d x E. M = sup xe f (x) f(x) <, p. M 0 s. Coversely, suppose tht M 0 s, the for > 0, p N such tht M < p d x E M <. p d x E, sup xe f (x) f(x) <, p f (x) f(x) <, p d x E, yelds f f uformly o E.

31 31 Theorem (Werstrss M-test for seres): A sequece {f } of fuctos defed o set E d suppose tht f (x) M (x E, = 1, 2, 3, ). The seres f coverges uformly (d solutely) o E f M coverges. Proof. Suppose tht f M coverges, the y Cuchy s crtero for covergece of seres for every > 0, m N such tht +p M k <, m, p = 1, 2, 3,. k= +1 Sce f (x) M (x E, = 1, 2, 3, ). Therefore, +p f k (x) = f +1 (x) + f +2 (x) + f +3 (x) + + f +p (x) k=+1 f +1 (x) + f +2 (x) + f +3 (x) + + f +p (x) +p M +1 + M +2 + M M +p = M k < m, p = 1, 2, 3, x E, k=+1 whch mples tht f coverges uformly o E. Exmple Show tht the sequece {f } where f (x) = x(1 x) does ot coverge uformly o [0, 1]. Soluto. Here f(x) = lm f (x) = lm [ x /(1 x) - ] [/ form] = - lm [x /(1 x) - log(1 x)] [y L Hosptl Lw] = - lm [x (1 x) / log(1 x)] 0, sce (1 x) 0 s. Hece f(x) = 0, x [0, 1]. Now M = sup{ f (x) f(x) : x [0, 1]} = sup{ x(1 x) : x [0, 1]} (1/)[1 (1/)] [ for x = 1/ [0, 1]] = [1 (1/)] e 0 s. Hece y theorem the gve sequece s ot coverges uformly. Exmple Show tht the seres f where f (x) = cos x / p, = 1, 2, 3, coverge uformly o R for p > 1. Soluto. Here sce f (x) = cos x / p 1/ p, x R. Now the seres o rght hd sde coverget for p > 1. Hece y Weerstrss s M-test the gve seres covergece uformly o R, for p > 1. Note : Weerstrss s M-test s oly suffcet ut ot ecessry.e., o-covergece of M does ot mply the ture of f. Although Weestrss s M- Test s pplcle to restrcted clss of seres,.e., seres whch re solutely coverget s well, yet t s of gret prctcl mportce s ths test c e ppled to erly ll seres whch re frequetly used the lterture. I ll other cses we hve to mke use of more delcte tests, whch we costruct y logy wth those for seres of rtrry terms- Ael s d Drchlet s test. Theorem (Ael s test for seres): A seres u (x)v (x) coverges uformly o [,] f () u (x) s uformly coverget [, ] () the sequece {v (x)} s mootoc for every x [, ]

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994 Ž JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 197, 9259 1996 ARTICLE NO 0062 Oreted Mesures* Rphel Cerf CNRS, Uerste Prs Sud, Mthemtque, Btmet ˆ 25, 9105 Orsy Cedex, Frce d Crlo Mrcod Dprtmeto d Mtemtc

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers SECTION 8. SERIES 8. SERIES A Clck here for aswers. S Clck here for solutos. ; Fd at least 0 partal sums of the seres. Graph both the sequece of terms ad the sequece of partal sums o the same scree. Does

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

PATTERNS IN CONTINUED FRACTION EXPANSIONS

PATTERNS IN CONTINUED FRACTION EXPANSIONS PATTERNS IN CONTINUED FRACTION EXPANSIONS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SAMUEL WAYNE JUDNICK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information