ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

Size: px
Start display at page:

Download "ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS"

Transcription

1 Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t DOI: ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO d M. OUATTARA Lbortore T. N. AGATA/UFR-SEA Déprteet de Mthétques Uversté de Ougdougou Adresse.. 7 Ougdougou ur Fso e-l: bere_e@yhoo.fr ofrcose@yhoo.fr outt_e@yhoo.fr Abstrct If o ssoctve lgebr A s rght lpotet (resp. left lpotet) of degree the t s strogly lpotet of degree less or equl to 4.. Itroducto It s well ow tht ssoctve lgebr A s lpotet f for soe postve teger every product of or ore eleets of A vshes. For ossoctve lgebr A we ust dcte whch order the products re de. It follows tht the products of eleets of A could be zero for choce of rrgeets of pretheses d dfferet fro zero for Mthetcs Subect Clssfcto: 7D. Keywords d phrses: (o)ssoctve lgebr left lpotecy rght lpotecy lpotecy strog lpotecy dex of lpotecy. Receved October Scetfc Advces ublshers

2 86 C. J. A. ÉRÉ et l. other choce. Ths fct led to the defto of vrous cocepts of lpotecy ely left lpotecy rght lpotecy lpotecy d strog lpotecy.... I [5 roposto p. 8] the uthors gve the followg: roposto.. Let A be couttve (or tcouttve) lgebr. The { } A A for y. I the other words f the lgebr A s rght lpotet of dex the t s lpotet of dex ot greter th. We gve geerlzto of ths result to ll ossoctve lgebrs d by the wy we show tht the boudry of the dex s polyol ely the boudry s less or equl to 4 whch s better th. The theore s lredy doe for Mlcev d Lebz lgebrs (see [ ]). There s Lebz lgebrs tht re left lpotet d ot rght lpotet see for exple [4 Exple.]. Usg the oto of Asso -rght l (resp. Asso -left l) we prove tht f del of ossoctve lgebr A s rght lpotet (resp. left lpotet) of degree the s strogly lpotet of degree less or equl to 4. I Secto we gve soe deftos tht we wll use log the pper the the followg Secto we prove soe results o rght products of legth. The Secto 4 s devoted to rght products of weght the del. I Secto 5 we gve the results.. relres Throughout ths pper F wll be feld of chrcterstc ot. All vector spces d lgebrs wll be fte desol over F. Let A be ossoctve lgebr d let us deote the bler product o A by

3 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 87 A A A ( b) b. Let be oegtve teger d let us deote by I ( ) the set { ; ; ; }. If A s ossoctve lgebr over F the F-trler p { } : A A A A defed by ( x y z) ( xy) z x( yz) s clled the ssoctor of A. If for ll ( x y z) A we hve { x y z} the lgebr A s sd ssoctve. Let U V W be subspces of A. { U V W} s the subspce geerted by the eleets { u v w} where u U v V d w W. Note Assoc ( U ) the followg subspce: Assoc ( U ) { U A A} { A U A} { A A U}. A subspce H of ossoctve lgebr A s clled left del (resp. rght del) f for x H d A oe hs x H ( resp. x H ). A del s both left d rght del. Let Ide ( U ) be the del of A geerted by the sublgebr Assoc ( U ). For del of ossoctve lgebr we troduce the ottos d followg terologes: Let be product of fctors s s s tht hve bee ssocted rbtrry wy. We suppose tht or ore fctors belog to. We sy tht the product s of legth d of weght wth respect to the del or ore sply tht s of legth d of weght. The legth of wll be oted # ( ) d ts weght wll be oted # ( ). Whe (( (( ss ) s ) s ) s ) s where the ssocto s de lwys rght we sy tht s rght product d we wrte ss s s. Slrly f s ( s( s ( s ( ss )) )) where the ssocto s de lwys left we sy tht s left product.

4 88 C. J. A. ÉRÉ et l. Let S S S p be rght products. Oe c wrte the rght product (wth S s fctors) N S S. We cll N stdrd product. p p S Defto.. Let be subspce of the uderlyg vector spce A. A subspce s rght lpotet f {} for soe where d. y coveto we set A. Notce tht s geerted by rght products of legth d weght. A subspce s left lpotet f for soe where d ( ). y coveto we set A. Notce tht s geerted by left products of legth d weght. Defto.. Let be del of the ossoctve lgebr A. Let { } be the subspce of the uderlyg vector spce A geerted by ll the products of legth ssocted rbtrry wy. We sy tht the del s lpotet f there exsts teger such tht { } {}. Let be the subspce geerted by ll products of eleets A wth t lest eleets. A del s strogly lpotet f {} for soe. Obvously for ll oegtve teger s del of A d oe hs d A ( resp. A ) s rght del (resp. left del) of A. We hve lso tht for ll oegtve tegers.

5 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 89 Defto.. Let D be subspce of the uderlyg vector spce A d be oegtve teger. D ( L ) s the vector subspce geerted by ll rght products: d where d belogs to D d belogs to A for y teger I( ). ( L ) D s the vector subspce geerted by ll left products: ( ( ( ( d ))) ) where d belogs to D d belogs to A for y teger I( ). A. Defto.4. Let { } be del of the ossoctve lgebr We wll sy tht s Asso -rght l f there s teger such tht the del Assoc ( ) stsfes Assoc( ) ( L ) Assoc( ) LLL L { }. -tes We wll sy tht s Asso -left l f there s teger such tht the del Assoc ( ) stsfes ( L ) Assoc( ) L LLL Assoc( ) { }. -tes Defto.5. Let A be ossoctve lgebr d be del A. Let b be two eleets of A. If b we wll sy tht b (odulo ).. Rght roducts the Algebr A Le.. Let A be ossoctve lgebr be del of A d U be subspce of A. For ll x U b d for ll A xb x( b) { U A} Assoc( U ). roof. Trvl sce xb x( b) { x b } Assoc( U ). Le.. For y teger Assoc( ) d Assoc( ).

6 9 C. J. A. ÉRÉ et l. roof. ( ) ( ) Assoc( ) ( ) Assoc( ) ( ) Assoc( ) ( ) ( ) Assoc( ) ( ) Assoc( ) Assoc( ) ( ) Assoc( ) ( ) ( ) Assoc( ) ( ) ( ) Assoc( ) ( ) Assoc( ) Assoc( ) ( ) Assoc( ) ( ) ( ) Assoc( ) ( ) Assoc( ) Assoc( ) ( ) Assoc( ) ( ) ( ) Assoc( ) ( ) Assoc( ) ( ) Assoc( ) Assoc( ). Slrly we c deduce tht Assoc( ). Let us otce tht Ide( ) Ide( ) Ide( ) sce Assoc( ) Ide( ). Le.. Let A be ossoctve lgebr d be del of A. For ll teger d stsfy: A Ide( ) A d A Ide( ) A.

7 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 9 roof. For oegtve teger we hve A ( ) A ( A) { A} Ide( ) Ide( ) d A lso we hve tht A ( ) ( A ) { A } Ide( ) Ide( ) A A ( Ide( )) A Ide( ) Ide( ) Ide( ) d A ( Ide( )) A A Ide( ) Ide( ) Ide( ). Clerly we hve d fro Le. we c deduce the followg le: Le.4. Let A be ossoctve lgebr d be del of A. Let us defe A d Ide( ) Ide( ) for ll teger ; s del of A whch stsfes. roof. Nturlly we hve A. A.

8 C. J. A. ÉRÉ et l. 9 roposto.5. For gve rght product d rbtrry product of legth. Let us set for y teger ( ) I. The T { } { }. roof. Frst of ll let us defe the followg products: Let be the legth of the product. For ( ) I let us defe. So we c wrte ( ). Now we c copute the proof: If oe hs ( ) { } { } ; f d T ( ) T ( ) { } ( ) ( ) { } { } ( ) { } { } { }. Wth the ssupto tht for rght product of legth oe hs T { } { }. (.)

9 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 9 The let us cosder rght product of legth sy : T { }. (.) y the ssupto (sce the legth of s ) c be wrtte s: T { } { }. Ths to Equto (.) we hve { } T { } { } { } { } { } { }.

10 C. J. A. ÉRÉ et l. 94 It follows tht { } T { } { } { } { } { } { }. The proof s doe. Le.6. Ay product T wth legth ossoctve lgebr A s ler cobto of rght products of legth odulo the del ( ). A Ide roof. y ducto o the legth we hve: If equls or there s othg to do. If oe c otce tht bc T or ( ) bc { } c b bc for ll c b A. The le s lso obvous. Let us suppose tht the le s true for product whch legth s strctly less th. 4 Now for gve product (wth legth ) T where s rght product of legth such tht. > Ths to roposto.5 T { } { }

11 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 95 ( ) { }. Let I( ). The legth of the products ( ) re less or equl to so they re ler cobtos of rght products odulo the del Ide ( A). Ths let us ow tht T s ler cobto of rght products of legth odulo the del Ide ( A). 4. Rght roducts of Weght the Idel Le 4.. Ay product T wth legth d weght wth regrd to the del of ossoctve lgebr A s ler cobto of rght products of legth d weght odulo the del Ide ( ). roof. y ducto o the legth we hve The le s obvous f. If the there re eleets A such tht s oe of the followg: d ( ) { }. So for s ler cobto of rght products odulo the del Ide ( ). Let us suppose tht the le s true for product whch legth s strctly less th 4. Now for gve product (wth legth d weght ) T where s rght product of legth such tht >. Ths to the roposto.5 T { } { }

12 96 C. J. A. ÉRÉ et l. ( ) { }. Let I( ) we ow tht ( ) d re products whch legth re less or equl to. they re ler cobtos of rght products odulo the del Ide ( ). So by ducto Ths let us ow tht T s ler cobto of rght products odulo the del Ide ( ). Through the clculto t s cler tht the ters ( for I( ) ): ( ) d eep vrt the legth d weght of T. Le 4.. Let A be ossoctve lgebr d { } be del A. Let be rght product wth legth d weght. The belogs to. roof. Let σ be ectve p of I ( ) to ds I ( ) such tht < ples tht σ () < σ( ) d for ll I ( ) σ( ). Let us lso defe for ll teger I( ) the followg products: σ( ) σ( ) σ( ) σ( ) σ(). Clerly belogs to Ide( { A A} ) d lso belogs to.

13 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 97 Sce s del σ( ) belogs to Ide( ). y ducto let us suppose tht for teger such tht < we hve belogs to Ide( ). The let us show tht s eleet of Ide( ). Ideed we hve σ( ) σ( ) s eleet of the del d so o σ( ) belogs to Ide ( ). The we hve proved tht s eleet of. Le 4.. Let l be tegers such tht l d let A be ossoctve lgebr d be del of A whch s Es -rght l. A rght product of legth d weght ( ) greter or equl to l belogs to l ( L ). roof. The rght product s of weght greter or equls to l deed let be the weght of d be the weght of. We hve d the equlty ples tht. So l l. The Le 4. tells tht l. Ad so o ( ) ( ) l L l ( ( { } )) ( ) ( l Ide A A L L ) sce s del Assoc -rght l. Le 4.4. Let be teger such tht the del s Es -rght l. Let be product of weght t 4 wth regrd to the del the s ler cobto of rght products such tht for y we hve belogs to ( L ) or hs t lest oe fctor ( L ).

14 98 C. J. A. ÉRÉ et l. roof. Let > d t 4. Th s to the Le 4. y product of weght greter or equls to t s ler cobto of rght products of weght greter or equls to t. Let µ where s rght product of weght greter or equls to t. For y we hve s ps p s where s L (p s the legth of ). If there s oe eleet s such tht t s weght s greter or equls to the Ad so o s belogs to hs fctor Else every fctor the uber of fctors ( L ) by pplcto of the Le 4.. ( L ). s hs weght strctly less th. Let q be s wth weght greter or equls to. The oe hs q ( ) t 4 d the q >. Whe the weght of s s greter or equls to we hve s ; belogs to. So s of weght greter or equls to q. Sce q we hve ( L ) th s to Le 4.. y buse we wll sy tht hs t lest oe fctor ( L ). 5. M Theore Theore 5.. Let F be couttve feld wth chrcterstc ot A be F-ossoctve lgebr d be del of A whch s Es -rght-l. The the followg ssertos re equvlet: () s rght lpotet; () s lpotet; () s strogly lpotet.

15 ON NILOTENCY IN NONASSOCIATIVE ALGERAS 99 roof. Ideed for y teger the vectors spces s clusos {} tell us tht () () (). Furtherore suppose tht there s teger l l such tht {}. Let us defe x{ l } the for teger A such tht l 4 the Le 4.4 tells us tht y product wth weght greter or equls to l 4 s ler cobto of rght L L products whch hve t lest oe fctor ( ) ( ) ( ) ( ) {}. l Ad so o. The. The plcto () () s doe. Corollry 5.. Let F be couttve feld wth chrcterstc ot d A be ossoctve F-lgebr. The followg ssertos re equvlet: () A s rght lpotet; () A s lpotet; () A s strogly lpotet. roof. Clerly we hve () () (). Let us otce tht Assoc ( L) s subset of l A d f there s teger l such tht A {} we do hve tht Assoc ( L) s del Asso l -rght-l. The Theore 5. tells us tht () (). Corollry 5.. Let F be couttve feld wth chrcterstc ot d A be ossoctve F-lgebr. The followg ssertos re equvlet: () A s left lpotet; () A s lpotet; () A s strogly lpotet.

16 C. J. A. ÉRÉ et l. roof. Fro the lgebr A wth bler product o A by φ : A A A ( b) φ ( b) b we c obt the lgebr A op where bler product of d b s φ ( b ). The left lpotecy of A s equvlet of op rght lpotecy of A. Rer 5.4. Rght lpotecy of del of A y ot ples left lpotecy of the del d vce-vers. For the (left) Lebz lgebr A defed Exple. of [] the del I Ess( L) geerted by ll squres s Es -rght-l. ut for ll teger ( A ) Assoc( I ) A AAA Assoc( I ) { }. - tes Refereces [] C. J. A. éré N.. lbré d M. Outtr Nlpotece ds les lgebres de Mlcev sous à publcto. [] C. J. A. éré M. F. Ouedrogo d M. Outtr O lpotecy Lebz lgebrs sous à publcto. [] C. J. A. éré A. Kobbye d A. Koobo O clss of Lebz lgebrs Itertol Jourl of Advced Mthetcl Sceces () (5) Scece ublshg Corporto do:.449/s.v.59 [4] C. J. A. éré N.. lbré d A. Kobbye Le s theores o soluble Lebz lgebrs rtsh Jourl of Mthetcs & Coputer Scece 4(8) (4) [5] K. A. Zhevlov A. M. Sl o I.. Shestov d A. I. Shrshov Rgs tht re Nerly Assoctve Trslted by Hrry F. Sth Acdec ress New Yor 98 x 7 pp. ISN g

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

On the Pell p-circulant sequences

On the Pell p-circulant sequences Notes o Nuber Theory d Dscrete Mthetcs Prt ISSN 30-53, Ole ISSN 367-875 Vol. 3, 07, No., 9 03 O the Pell -crcult sequeces Yeş Aüzü, Öür Devec, d A. G. Sho 3 Dr., Fculty of Scece d Letters, Kfs Uversty

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

A Characterization of Jacobson Radical in Γ-Banach Algebras

A Characterization of Jacobson Radical in Γ-Banach Algebras Advaces Pure Matheatcs 43-48 http://dxdoorg/436/ap66 Publshed Ole Noveber (http://wwwscrporg/joural/ap) A Characterzato of Jacobso Radcal Γ-Baach Algebras Nlash Goswa Departet of Matheatcs Gauhat Uversty

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures Lecture 8 A lttle bt of fu ath Read: Chapter 7 (ad 8) Fte Algebrac Structures Groups Abela Cyclc Geerator Group order Rgs Felds Subgroups Euclda Algorth CRT (Chese Reader Theore) 2 GROUPs DEFINITION: A

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

THE TRUNCATED RANDIĆ-TYPE INDICES

THE TRUNCATED RANDIĆ-TYPE INDICES Kragujeac J Sc 3 (00 47-5 UDC 547:54 THE TUNCATED ANDIĆ-TYPE INDICES odjtaba horba, a ohaad Al Hossezadeh, b Ia uta c a Departet of atheatcs, Faculty of Scece, Shahd ajae Teacher Trag Uersty, Tehra, 785-3,

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

On Stability of a Class of Fractional Differential Equations

On Stability of a Class of Fractional Differential Equations Proceedgs of the Pkst Acdey of Sceces 49 (: 39-43 (0 Coyrght Pkst Acdey of Sceces SSN: 0377-969 Pkst Acdey of Sceces Orgl Artcle O Stblty of Clss of Frctol Dfferetl Equtos Rbh W. brh* sttute of Mthetcl

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

Further Results on Pair Sum Labeling of Trees

Further Results on Pair Sum Labeling of Trees Appled Mathematcs 0 70-7 do:046/am0077 Publshed Ole October 0 (http://wwwscrporg/joural/am) Further Results o Par Sum Labelg of Trees Abstract Raja Poraj Jeyaraj Vjaya Xaver Parthpa Departmet of Mathematcs

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions Sebastá Martí Ruz Alcatos of Saradache Fucto ad Pre ad Core Fuctos 0 C L f L otherwse are core ubers Aerca Research Press Rehoboth 00 Sebastá Martí Ruz Avda. De Regla 43 Choa 550 Cadz Sa Sarada@telele.es

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

A Study on New Sequence of Functions Involving the Generalized Contour Integral

A Study on New Sequence of Functions Involving the Generalized Contour Integral Globl Jourl of Scece Froter Reerch Mthetc d Deco Scece Volue 3 Iue Vero. Yer 23 Type : Double Bld Peer Revewed Itertol Reerch Jourl Publher: Globl Jourl Ic. (USA Ole ISS: 2249-4626 & Prt ISS: 975-5896

More information

Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang

Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang Bubblg Pheoe of Cert Pls-Sle Sequeces of -Hroc Type Systes Lb Mou d Chgyou Wg Abstrct I ths pper, we study the bubblg pheoe of wek soluto sequeces of clss of degeerte qusler ellptc systes of -hroc type

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Cauchy type problems of linear Riemann-Liouville fractional differential equations with variable coefficients

Cauchy type problems of linear Riemann-Liouville fractional differential equations with variable coefficients Cuch tpe proes of er Re-ouve frcto dfferet equtos wth vre coeffcets Mo-H K u-cho R u-so Choe Ho Cho O* Fcut of thetcs K Su Uverst Po PRK Correspod uthor E: ro@hooco Astrct: The estece of soutos to Cuch

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Expanding Super Edge-Magic Graphs

Expanding Super Edge-Magic Graphs PROC. ITB Sas & Tek. Vol. 36 A, No., 00, 7-5 7 Exadg Suer Edge-Magc Grahs E. T. Baskoro & Y. M. Cholly, Deartet of Matheatcs, Isttut Tekolog Badug Jl. Gaesa 0 Badug 03, Idoesa Eals : {ebaskoro,yus}@ds.ath.tb.ac.d

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root Suer MA 00 Lesso Sectio P. I Squre Roots If b, the b is squre root of. If is oegtive rel uber, the oegtive uber b b b such tht, deoted by, is the pricipl squre root of. rdicl sig rdicl expressio rdicd

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers.

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers. [Gol 5: M 0] ISSN: 77-9655 IJEST INTENTIONL JOUNL OF ENGINEEING SCIENCES & ESECH TECHNOLOGY O the Hetc No-Hoogeeous Euto th Four Ukos z 6 0 M..Gol * G.Suth S.Vdhlksh * Dertet of MthetcsShrt Idr Gdh CollegeTrch

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

V. Hemalatha, V. Mohana Selvi,

V. Hemalatha, V. Mohana Selvi, Iteratoal Joural of Scetfc & Egeerg Research, Volue 6, Issue, Noveber-0 ISSN - SUPER GEOMETRIC MEAN LABELING OF SOME CYCLE RELATED GRAPHS V Healatha, V Mohaa Selv, ABSTRACT-Let G be a graph wth p vertces

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information