Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang

Size: px
Start display at page:

Download "Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang"

Transcription

1 Bubblg Pheoe of Cert Pls-Sle Sequeces of -Hroc Type Systes Lb Mou d Chgyou Wg Abstrct I ths pper, we study the bubblg pheoe of wek soluto sequeces of clss of degeerte qusler ellptc systes of -hroc type We prove tht, uder pproprte codtos, the eergy s preserved durg the bubblg process The results pply to -hroc ps fro fold Ω to hoogeeous spce, d to -hroc ps wth costt volues, d lso to cert Pls-Sle sequeces Itroducto d M Results The Pls-Sle P-S codto for fuctol E s turl ssupto for the exstece of crtcl pot of E; ths codto sys tht y Pls-Sle sequece {u } e, sup E u < d DE u 0, s hs strogly coverget subsequece I y terestg cses where Pls-Sle codto fls, people dscovered the bubblg pheoe of cert Pls-Sle sequeces Geerlly spekg, the flure of strog covergece s due to the loss of eergy, d bubblg pheoeo refers tht the lost eergy ws recovered or cptured by few bubbles solutos of the blow-up equto developed durg the lt process or bubblg process For refereces o bubblg pheoe d relted probles, see [SU] [Jj] [S] [Pt] [Qj] o hroc ps o surfces; [BN] [S2] o seler ellptc equtos, d [Wh] [BC] [S3] o H-systes, whch descrbe surfces of costt e curvtures Suppose Ω, g s Re fold The spce W, Ω, R k cossts of ll fuctos u : Ω R k wth fte eergy: E u = Du dω, Ω where dω deotes the volue eleet of Ω, ofte beg otted Du = Du,, Du k s the dfferetl of u We ssue tht, k 2 tegers, d Ω = We re terested bubblg pheoe of zg sequeces d Pls-Sle sequeces of the eergy E subject to cert costrts The Euler-Lgrge equto c ofte be wrtte s dv Du 2 Du = f u, Du, where u W, Ω, R k We ssue the followg hypotheses Mthetcs Subject Clssfcto:35J60, 58E20, 46E35 Key Words: Wek covergece, Pls-Sle sequece, -hroc p, volue costrt, hoogeeous spce, Hrdy spce, BMO spce

2 H-I f : R k R k R k s sooth fucto tht c be wrtte s: 2 f u, Du = q α u, Du Db α u, α= where α, : R k R k R k2 d b α : R k R k2 re sooth vector-vlued fuctos such tht u, Du C Du, b u C for soe costt C Here C y deped o u Copoetwse, 2 becoes f u, Du = k q j= α= l= l αj u, Du x l b αj u, =,, k Ths ssupto wll be used, together wth others, to show tht fu, Du s the locl Hrdy spce, better th L I few terestg cses, ths ssupto turlly holds; see [Wh] [Hf] [El] [MY] [TW], d the exples below Equto s uderstood the wek sese: For ll φ C 0 Ω, R k, there holds 3 Du 2 DuDφ = f u, Du φ Ω We ssue tht s coforlly vrt the followg sese H-II Suppose Φ : Ω, h Ω, g s coforl dffeoorphs, the 3 holds wth u replced by u Φ, φ by φ Φ d Ω by Ω Note tht, sce the eergy Ω Du s coforlly vrt, the Euler-Lgrge equto of Ω Du subject to costrt s coforlly vrt the sese of H-II, s log s the costrt s closed uder coforl trsfortos The -hroc p equtos d the H-systes, defed below, re two such exples Ths property ples tht the equto keeps the se for uder coforl trsfortos, especlly uder dltos d trsltos We cosder sequece {u } = W, Ω, R k stsfyg perturbed equtos of : Ω 4 dv Du 2 Du = f u, Du + h, h 0 W,, for =, d u u W,, but u u W, The study of the covergece behvor of {u } leds to the below-up equto: 5 dv Du 2 Du = f u, Du, for u W, R, R k Ths equto s obted s lt of the equtos stsfed by properly rescled {u } see 45 Here R plys the role of tget spces of Ω A otrvl soluto u of 2

3 5 s clled bubble By the coforl vrce of the equto 5 d the coforl equvlece of R d S uder the stereogrphc projecto, bubble u s detfed wth ũ W, S, R k, whch stsfes 5 o S Suppose u s regulr sy C ; ths s the cse f dv u, Du = 0, by Th 26 d Prop 3 [MY], the ũ s regulr o S except t the orth pole of the projecto Suppose f u, Du Du = 0, the by Theore 5 [MY], ũ c be exteded cross the orth s regulr soluto o the whole S The vlue of ũ t the orth pole wll be deoted sply by u Note tht both codtos dv u, Du = 0 d f u, Du Du = 0 re turlly stsfed by the two exples below A uque property of the bubbles s ufor lower boud for ther eergy Tht s, there s µ > 0 such tht for y otrvl bubble u, R Du dx µ It s well-kow tht for wekly covergece sequece {u } W, Ω, R k, u u strogly f d oly f the eergy coverges: E u E u, see [El] for exple Our result descrbes the covergece behvors of cert wekly coverget sequeces, d ccouts for ll the eergy loss wth fte uber of bubbles Theore Suppose tht H-I d H-II re stsfed If {u } W, Ω, R k s sequece tht stsfes 4 d for soe p >, h, dv u, Du 0 W,p, s, the there exst soluto u C Ω, R k of, fte uber l of bubbles ω C S, R k, l sequeces of pots { } Ω, l sequeces of postve ubers { λ }, l, d subsequece of {u }, stll deoted by {u }, such tht l E u = E u + l = E ω, { } λ 2 For j, x s, 3 u l = λ j, λj λ ω λ, j λ +λj ω W 0 s, We ow pply ths result to two exples: -hroc ps to hoogeeous spce d - hroc ps wth costt volue Applcto to -Hroc Mps Let Ω d N q be two closed Re folds Assue N s hoogeeous, d soetrclly ebedded to soe R k, k 2 Deote by W, Ω, N the set of ll v W, Ω, R k wth v x N for e x Ω Slrly, for gve u W, Ω, N, W, Ω, T u N deotes the spce of ll v W, Ω, R k wth v x T ux N for e x Ω A -hroc p s crtcl pot of E u W, Ω, N, whch stsfes E u dv Du 2 Du + Du 2 A u Du, Du = 0, 3

4 [ ], W, Ω, T u N = W, 0 Ω, T u N where = R k A Pls-Sle sequece {u } W, Ω, N of E the stsfes, d A s secod fudetl for of N d l sup E u < where h 0 W, Ω, R k dv Du 2 Du = Du 2 A u Du, Du + h, Uder slghtly stroger codto o h, Theore ples the followg Theore 2 Suppose tht Ω s closed fold, N s hoogeeous fold d {u } W, Ω, N s Pls-Sle sequece such tht for soe p >, sup h W,p < The there exst -hroc p u C Ω, N d fte uber l of -hroc ps ω C S, N, l sequeces of pots { } Ω, l sequeces { λ } of postve ubers, l, d subsequece of {u }, stll deoted s {u }, such tht l E u = E u + l = E ω, { } λ 2 For j, x, λj λ j λ, j s, λ +λj 3 u l W = ω λ ω 0 s, The codto tht h s bouded W,p for soe p > c ot be droped, s show by the exple [Pt] I poeer work, Scks-Uhlebeck frst developed [SU] the blow-up ethod to study perturbed eergy fuctol As pplcto, they obted the exstece of l ersos to Re fold Struwe [S] obted slr result for clss of solutos of hroc p het flows o surfces Jost [Jj] descrbed the bubblg process of -x schee for ps fro surfce to closed fold; see lso the pper of Prker [Pt] Bethuel [Bf] showed tht the wek lts of Pls-Sle sequeces of eergy of ps o surfce re lso hroc ps, but he dd ot descrbe the bubblg process Qg [Qj] descrbed the bubblg behvor of cert Pls-Sle sequeces of ps fro surfce to stdrd spheres Our result c be cosdered s geerlzto of these results to hgher deso cses I forthcog pper [Wc], the secod uthor proves the se result s Theore 2 for ps fro surfce to geerl copct fold N As corollry, we obt the strog covergece of cert Pls-Sle sequeces Corollry 3 Suppose tht Ω s closed fold, N s hoogeeous fold d {u } W, Ω, N s Pls-Sle sequece stsfyg the codtos Theore 2 The there exsts 4

5 subsequece of {u } strogly coverget to -hroc p u C Ω, N, provded y oe of the followg codtos holds: If l sup Ω Du dx < Ω Du + µ, where µ > 0 s the lrgest lower boud of -eergy of o-costt -hroc ps fro S to N 2 N supports strctly covex fucto f, ely, there exsts uber c 0 > 0 such tht where h s the etrc o N Hess f c 0 h, Applcto to -Hroc Mps wth Costt Volues Let Ω R be sooth do A -hroc p u W, Ω, R + wth costt volue s crtcl pot of Ω Du subject to costt volue eclosed by the coe geerted by u Ω wth vertex 0 R + The volue c be expressed s V u = u u u, + R where u u s the cross product of dervtves u = u x A -hroc p wth costt volue stsfes the equto 6 dv Du 2 Du = Hu u, for soe costt H See [MY] for detls It hs bee otced tht the rght hd sde f u, Du = Hu u c be wrtte the for 2 Specfclly, we hve u,, f = H + û,, u + x,, x = l= where =,, + u +2 = u, d It s esy to check tht l u+, x l u,, l = H +l û, u + ˆ,, u + x,, ˆx l, x dv = l= l x l = 0 for y u W, R, R + ; see [Db] I the cse Ω = R, W, S, R + c be detfed wth W, R, R + through the stereogrphc projecto π : R S Suppose u stsfes 6 o R, 5

6 the d u π lso stsfes 6 o S \ {orth pole} By the regulrty results [MY], both u d u π hve to be regulr C,α, 0 < α < o R d o S respectvely, d u = u πorth pole essts We stte result of pplcto of Theore to the cse Ω = S : Theore 4 Suppose {u } W, S, R + s bouded sequece of solutos of 7 dv Du 2 Du = Hu u + h, wth h 0 W,p, s, for soe p > The there exst soluto u C S, R k of 6, fte uber l of bubbles ω C S, R k, l sequeces of pots { } S, l sequeces of postve ubers { λ }, l, d subsequece of {u }, stll deoted by {u }, such tht l E u = E u + l = E ω { } λ 2 For j, x, λj λ j λ, j s λ +λj 3 u l W = ω λ ω 0 s, Rerk I the cse Ω, bubblg pheoe lso occur d c be descrbed the slr er s Theore I such cse, oe hs to clude bubbles o the hlf spce or equvletly, o the ut bll B, through coforl trsforto, whch re solutos of 5 o R + R or o B, resp d costt o R + {0} o B, resp For soe equtos, there re o otrvl bubbles o the hlf spce or the ut bll d the coclusos of Theore hold for Ω wth or wthout boudry Ths s the cse for 6 whe = 2, where Wete [Wh2] proved tht the oly soluto of u = 2u u 2 W,2 0 D, R 3 s 0, where D = { x R 2 : x < } Wete s ths result ws used the pper of Brezs d Coro [BC], whch estblshed the bubblg pheoe of soluto sequeces {u } W,2 0 D, R 3 stsfyg u = 2u u 2 + f wth f 0 W,2 For hroc ps o dsc wth costt boudry vlues, Lere proved tht they ust be costt [Ll] It would be terestg to kow whether the results of Lere d Wete hold hgher desol cses For exple, suppose u W, B, R + stsfes 6 or d u = u = 0 o B, where B = {x R : x < } Is u 0? Ths s closely relted to the uque cotuto proble for -Lplc equtos The de of proof for ll these Theores s bsed o two steps: frst, we prove the so-clled ɛ- copctess le whch s cosequece of the ɛ-cotuty esttes; secod, we study the proble bout bubbles over bubbles d show tht there s o eergy cocetrtg eck regos to be specfed below Sectos 2, 3, 4 The pper s orgzed s follows I 2, we prove the ɛ-cotuty estte As corollry, we prove the regulrty of the solutos beg cosdered I 3, we obt ɛ-copctess le d soe coprso les tht re ecessry for the proof of Theore I 4, we prove the results, by lyzg the cocetrto desty of the eergy, usg vrous esttes we obted Sectos 2 d 3 Sce we oly cosder the cses wthout boudry, ll the eeded esttes re of locl verso For ths reso d for splcty, Sectos 2 d 3, we ssue Ω s sooth do R wth 6

7 stdrd etrc As for ottos, costts re geerclly deoted by C or C ; they y chge fro le to le We wll deote by o qutty or sequece tht goes to 0 s the vrble dex goes to fty B r x deotes the bll R cetered t x d of rdus r; B r = B r 0 2 ɛ-cotuty Esttes The hypothess I o f s used to show tht f u, Du s Hrdy spce Hloc For the defto d propertes of Hloc Ω, R d BMOR, R, plese see [Ss] or [CLMS] d the refereces there Here we hve Proposto 2 Suppose u W, Ω, R k such tht h dv u, Du W,p for soe p > The u, Du Db u H loc Ω, R k Moreover, for y copct subset K Ω, there s costt C K such tht 2 u, Du Db u H K C K [ Du,Ω + h W,p ] Proof Ths ws essetlly proved [CLMS] To trce the estte, we sketch the proof Tke φ C0 R, R such tht φ = d spt φ B 0, For gve K Ω, x K d R r < d x, Ω, we defe φ r y = r φ y x r The by tegrto of prts, = R [ u, Du Db u] φ x = [ u, Du Db u] y φ r y dy R b u b u x,r h φr + b u b u x,r u, Du Dφ r = I + II R Here b u x,r = B r b u We estte I d II seprtely x II Cr + CM B rx Du b u b u x,r Du q q x M Du s s x, where q d s re chose so tht < q <, s = xl fucto defed by { M f x = sup B r x q +q B rx d < s < Here M f s the locl f : B r x Ω } By the soorphs theore of : W,p 0 W,p, we fd H W,p 0 Ω, R k such tht H = h wth H W,p C h W,p It follows 7

8 I = b u b u x,r Hφ r R = DHDb u φ r DH R R b u b u x,r Dφ r Therefore, I Cr DH Du + Cr + DH b u b u x,r = III + IV B r x B r x For IV, choose < q < p, < s < such tht s = q +q The [ ] IV C M q DH q M s Du s As for III, tke < α < d β = α such tht < β < p The III CM Du α α M DH β β By the Hrdy-Lttlewood xu theore see Ste [Se], Hölder equlty, d the defto of H K, we hve u, Du Db u H K C Du + C DH + C Ω C Du,Ω + C K K C Du,Ω + C K h W,p K K M DH β /β /p DH p + C K K M DH β p β /p It ws proved Toro-Wg [TW] tht y -hroc p to Re hoogeeous spce hs Hölder cotuous grdet The se result ws show [MY] for the solutos u of tht stsfy H- d dv u, Du = 0 Now we prove eergy decy le, whch wll be used to show C 0 cotuty of solutos u of 4 Le 22 Suppose u W, B, R k s soluto of 22 dv Du 2 Du = f u, Du + h, wth h = dv u, Du, where f stsfes H- d h, h W,p for soe p > The there exst postve ubers ɛ 0, θ 0 <, α 0 < d C 0, depedet of u, such tht for every x B d r < 4, f Du ɛ B 2 0, the [ 23 Du θ 0 Du + C 0 h W + ] h r α 0,p W,p B r x B 2r x 8

9 Proof For gve x B 2 d r < 4, tke η C 0 B 2r x, [0, ] such tht η = B r x Deote A x, r = B 2r x \ B r x d u x,2r = Ax,r u Multplyg 22 by η u u x,2r d tegrtg, we get tht 24 Du 2 Du D η u u x,2r = B f u, Du η u u x,2r + B hη u u x,2r = I + II B Deote Eu, 2r = B 2r x Du By Pocre equlty, Hölder equlty d the defto of BMO, we hve η u u x,2r W CEu, 2r;, η u u x,2r BMO C Eu, 2r Cɛ 0 ; It follows η u u x,2r Cr η u u x,2r R B 2r x / Cr B 2r x D η u u x,2r Cr Eu, 2r Cɛ 0 25 II C h W, B 2r x η u u x,2r W, C h W, B 2rx Eu, 2r Cɛ 0 h W, B 2r x I order to estte I, we defe f u, Du = Eu, 2r f u, Du d pck up p, p The Le 2 ples tht f u, Du Hloc B d for K = spt η we hve [ f u, Du H K C Eu, 2r Du + ] h 26 W,p B 2r x B 2rx C + C Eu, 2r h W,p B 2r x The we hve I = Eu, 2r f u, Du η u u x,2r B = Eu, 2r η f u, Du µ η u u x,2r R + µeu, 2r η u u x,2r R 9

10 Here µ = η f u, Du / η Use Proposto [S] [TW] to coclude tht η f u, Du µ H R wth 27 η f u, Du µ H R C + f u, Du H K C [ + Eu, 2r h µ Cr f u, Du H K By the dulty of H d BMO, I c be estted s follows W,p B 2r x I CEu, 2r η f u, Du µ H η u u x,2r BMO + µ Eu, 2r η u u x,2r CɛEu, 2r + Cɛ h W,p B 2r x For the left hd sde of 24, we hve η Du + η Dη Du 2 Du u u x,2r B B Du C Du B r Ax,r Here we used Hölder d Pocre equltes Use Hölder equlty for the h d h ters 25 d 27 d cobe We obt Du C { α 0 = p B r x Ax,r Du + Cɛ 0 B 2r x Du + Cɛ 0 h W,p B rα0, }, p p Add C B Du rx to the bove equlty We hve Du θ 0 Du + Cɛ 0 h, h W,p B rα0, B r x B 2r x where θ 0 = C+Cɛ 0 C+ <, f we choose ɛ 0 < 2C Hece 23 holds Theore 23 There exst postve costts ɛ 0, δ 0 < d C such tht f u W, B, R k stsfes the codtos Le 22, d B Du ɛ 0, the u C δ0 B/2, R k d u C δ 0B/2 C Proof For every x B 2 d r < 4, f we defe F x, r = B rx Du the Le 22 ples tht F x, r θ 0 F x, 2r + Cr α 0, where C depeds o p, p, ɛ 0, h, h W,p B By Le 823 Glbrg-Trudger [GT], there re ubers β 0 0, d R 4, such tht for ll r R, r β0 r α0 F x, r C F x, R + r R 0 ]

11 By the Morrey s decy le see Morrey [Mc], u C δ0 B/2 for δ0 u C δ 0B/2 C = {α 0, β 0 } d Corollry 24 Suppose u W, Ω, R k s soluto of 22 dv Du 2 Du = f u, Du + h, wth h = dv u, Du, where f stsfes H- d h, h W,p for soe p > The there exsts postve uber δ 0, such tht for every u C,δ 0 Ω, R k Proof For every pot Ω, sy 0 Ω, we tke sll uber r > 0 such tht B r Du < ɛ 0 s Theore 23 Cosder u r W, B, R k defed by u r x = urx The u r stsfes 22 wth f beg replced by fu r, Du r d h by r h wth B Du r < ɛ 0 Therefore, Theore 23 ples tht u r C δ 0 B /2 for soe δ 0 So u C δ 0 B r/2 C,δ 0 regulrty c be obted by cosderg the equto stsfed by Du, s expled [MY] We ed ths secto wth suffcet codto for strog covergece of Pls-Sle sequeces Proposto 25 Let {u } W, Ω, R k be sequece stsfyg 4 If u u L loc Ω, R k, the u u W, loc Ω, R k I prtculr, u s soluto of Proof It suffces to prove tht {u } s Cuchy sequece W, I order to do tht, let ξ be y loc cut-off fucto Ω Multplyg both equtos of u d u l by ξ 2 u u l d subtrctg oe fro the other, we get Du 2 Du Du l 2 Du l D ξ 2 u u l 28 = Ω It s esy to see tht the rght hd sde stsfes + f u, Du f u l, Du l ξ 2 u u l Ω Ω h h l ξ 2 u u l RHS h h l W, ξ 2 u u l W, + Du + Du l ξ 2 u u l L 0, s, l Therefore, by the covexty of tegrd d the strog covergece of u L see [HLM], for exple, the left hd sde of 28 B r Du Du l + o s l, It follows Du Du l 0, s l, B r 3 ɛ-copctess Les Ths secto cossts of soe preprtory les for the proof of the Theore

12 Le 3 Suppose the hypotheses H-I d H-II hold The there s ɛ 0 > 0 such tht f {u } W, B, R k stsfes 3 dv Du 2 Du = f u, Du + h, wth both h dv u, Du, h W, 0, sup h, h W,p < for soe p > d B Du ɛ 0, the u cots subsequece tht coverges to u W, loc B, R k u C B, R k d stsfes Proof By pssg to subsequece, we y ssue tht u u wekly W, d strogly L By Theore 23, for y 0 < r <, u C δ 0 Br C for soe δ 0 d C depedet of Therefore, by Arzel-Ascoll s copctess theore, we c extrct subsequece of {u } deoted by {u } such tht u u C 0 B r, R k Now pply Proposto 25 to get the cocluso We wll copre the eergy of the solutos to 4 wth the eergy of -hroc fuctos Frst, we clculte the eergy of the hroc fucto o ulus wth costt boudry vlues We hve For 0 < R < R 2, let A R, R 2 = {x R : R x R 2 } d A R, R 2 = B R B R2 Le 32 Suppose tht u W, A R, R 2, R k stsfes 32 dv Dv 2 Dv = 0, A R, R 2, u BR =, u BR2 = b Here d b re costts R k The 33 AR,R 2 Dv = b log R 2 R Proof Fro the covexty of AR,R 2 Dv, we kow tht the soluto of 32 s uque Sce the vlues of v o boudry re costt, we cosder the rdl soluto v x = v x The the equto of v becoes 34 v r + r v r = 0, v R =, v R 2 = b It follows v x = C + b log R 2 R log x for soe C d AR,R 2 Dv = R2 R v r r dr b = log R log R 2 2 R R 2

13 Le 33 Suppose f stsfes hypotheses H-I d H-II d u W, Ω, R k stsfes dv Du 2 Du = f u, Du + h wth h dv u, Du, h W,p for soe p > Ω Du ɛ 0, d for Ω Ω, defe There exst ɛ 0 > 0 d C such tht f dv Dv 2 Dv = 0, Ω ; v Ω = u Ω The 35 Du,Ω C Dv,Ω + C h W,p, Proof Multplyg both equtos of u d v by u v d subtrctg the, we get tht Du 2 Du Dv 2 Dv 36 D u v = h u v + f u, Du u v = I + II Ω Ω Ω Wth the detfcto of h wth H for H W,p 0, by Hölder equlty d Sobolev ebeddg theore, we hve I C DH D u v Ω C DH,Ω D u v,ω C h W, Ω D u v,ω Let ξ C 0 Ω, R be such tht ξ o Ω The g by Proposto [S] [TW], we hve II = f u, Du ξ u v R C f u, Du µ H R u v BMO R + µ ξ u v C Du,Ω + h D u v W,p,Ω Here µ = ξ ξf u, Du, d we used Sobolev equlty d the fct tht µ s less th the Hrdy or of f u, Du Therefore 36 ples D u v,ω C Du,Ω + h, h D u v W,p,Ω e, 37 D u v,ω C Du,Ω + h, h W,p 3

14 O the other hd, Du,Ω 2 D u v,ω + Dv,Ω Usg 37, we get Du,Ω C Du,Ω + C Dv,Ω + C h, h W,p Ω Choose ɛ 0 sll eough, the 35 follows Flly, we gve the proof tht the eergy of bubbles hs lower boud Proposto 34 Suppose tht H-I d H-II re stsfed { } µ = f Du : u : S R k s o-costt soluto of 5 > 0 S Proof Suppose µ = 0, the by ts defto, there exsts sequece of o-costt solutos {u } : S R k such tht Du S 0 By the regulrty results [MY][TW], {u } re C,α wth u C,α C wth 0 < α <, C depedet of Sce u re ot costt, there exst {p } S such tht Du p 0 Usg the coforl vrce of -eergy, we c ssue, by coposg u wth sutble coforl trsforto of S, tht Du p = for soe fxed p S By pssg to subsequece, we c ssue u u C W, Ths ples tht u =costt d Du p =, cotrdcto 4 Proofs of M Theores Proof of Theore Wthout loss of geerlty, we ssue tht there exsts u W, Ω, R k such tht u u wekly W, d strogly L For clrty, we dvde the proof to four steps Step Defe the cocetrto set Σ Ω by } Σ = r>0 {x Ω : l f Du > ɛ 0, B r x where ɛ 0 s the se uber s Theore 23 It follows fro stdrd rguet tht Σ s fte subset of Ω; see [SU] or [TW] Furtherore, for y x 0 / Σ, there exsts r 0 > 0 such tht l f Du ɛ 0 B r0 x 0 Thus the ɛ-copctess Le 3 ples tht subsequece of {u }, stll deoted by {u }, stsfes u u W, loc B r 0 x 0 C 0 loc B r0 x 0 It follows u u W, loc C 0 loc Ω \ Σ 4

15 I prtculr, u stsfes the equto o Ω \ Σ d so o Ω solted sgulrtes re reovble By the regulrty results [TW][MY], u s C,α o Ω Step 2 As Brezs-Coro [BC], we defe, for 0 < δ < 2 {d x, x : 2 l}, 4 Q t = sup Du x B δ x x+tb It s esy to see tht there exst sequeces { } Bδ x x d λ 0 such tht 42 Q λ = Defe the resclg fuctos by +λ B Du = ɛ 0 2 v : λ Ω \ { } R k by v x = u + λ x, the by coforl vrce of the eergy, 43 Dv = λ Ω\{ } Ω Du 44 B x Dv ɛ 0 2, for ll x R d wth equlty whe x = 0 Moreover, 45 dv Dv 2 Dv = f v, Dv + λ h Fro 43 to 45, Le 3 pples to v We hve for soe ω W, R, R k, 46 v ω Cloc 0 W, loc R, R k I prtculr, B Dω = ɛ 0 2 So ω s otrvl bubble Repetg ths process to x 2,, x l, we get bubble solutos ω : S R k d sequeces { } x, d λ 0, s, such tht 47 u + λ ω Cloc 0 W, loc R, R k Step 3: Defe w = u l = λ exp We cl tht ] [ω λ ω, where deotes orth pole S d λ = 48 Dw = Du l Ω Ω = R Dω + o 5

16 I fct, for 0 < δ < 2 {d x, x j : j} we hve 49 Dw = B δ x Dw + B R λ Dw B δ x \B R λ = I + II / Note tht ω d ω j hve dsjot supports for j It follows by chge of vrbles, 40 Dω j = o B R λ Hece 4 I = Dw B R λ = D u ω B R λ λ + o = D u + λ ω B R O the other hd, by locl strog covergece of u + λ to ω W,, we hve the followg detty see pge Evs [El] provded tht R s chose to be suffcetly lrge 42 D w + λ ω = Du + λ Dω + o B R B R B R 49 = Du B R λ Dω + o R It follows fro tht 40 I = Du B R λ Dω + o R O the other hd, for j 44 B δ x \B R λ j Dω j λ j B δ x Dω j = o R \B j δλ j Dω j λ j We choose R suffcetly lrge so tht 45 R \B R Dω = o 6

17 44 d 45 ply tht 46 II Du + o B δ x \B R λ Cobg 40 wth 46, we get, for l, tht B δ x Dw = B δ x Du Dω + o R O Ω \ l = B δ x, we hve u u W, Whch ples tht Ω\ l = B δx Dw = Ω\ l = B δx So, the cobto of 47 d 48 ples the cl 48 Step 4 Du + o Cse : If l Ω Dw = Ω Du, the we lredy coclude tht w u W, Ω, R k Otherwse, we hve Cse 2: l Ω Dw > Ω Du Let Σ Ω be the set of cocetrto of w I fct, fro 48 we kow tht Σ Σ We ssue tht Σ = {x,, x l } for soe l l Pck x Σ, the we hve 49 l sup t 0 l / Defe Q for w, the there exst { 420 Q λ = +λ B t x Dw = ɛ > 0 } Bδ x d { } λ R such tht { ɛ Dw = B 2, ɛ 0 2 It s esy to see tht λ λ d λ 0 otherwse, there exsts λ 0 > 0 such tht Dw ɛ x +λ 0 B 2, whch cotrdcts wth 49; oreover, x otherwse, there exsts cocetrte pot outsde Σ We defe w : λ Ω \ R k by w x = w + λ x, s Step 2 The 42 sup λ Ω\ Dw = sup Ω } Dw < 422 B x { ɛ Dw 2, ɛ 0 2 }, x R ; wth equlty for x = 0 We y ssue tht w ω wekly W, loc R, R k We ow prove the followg 7

18 Cl : For l, 423 x { λ λ, λ λ, } λ + λ 2: w ω W, loc R, R k d ω s o-trvl bubble Proof of the Cl: It suffces to prove 423 for = Suppose t dd ot hold, there would exst R < such tht R λ λ +λ R d R The λ +λ Dω Dω B +R2 +2Rλ B = D u + λ ω B R 2 +2R 0, whch cotrdcts to 420 So 423 holds To prove the Cl 2, we cosder the two cses of 423 Cse : There exsts M > 0 such tht 424 ether M λ λ M, λ + λ, or λ λ, λ + λ I ths cse, + λ B R + λ B R = for lrge R > 0 Therefore, Dω + λ Dω o R \B R d B x B R λ { Du ɛ + λ 2, ɛ 0 2 } + o, x R, wth equlty for x = 0 So we pply le 3 to coclude tht u + λ ω W, loc R, R k for soe ω : R R k, whch s bubble Cse b: There exsts M < such tht λ λ = = x The, for ll α > 0 d l 425 R \B α Dω + λ λ, M For the splcty, we ssue tht λ R \B αλ /λ λ Dω = o, whch ples { Du ɛ + λ B x\b α 2, ɛ 0 2 } + o, x R, wth equlty t x = 0 Ag, by Le 3, we get u + λ ω W, loc R \ B α d ω s o-costt soluto, whch exteds to R by lettg α Moreover, for y R > 0, 426 B R D w + λ ω = 8 B α D w + λ ω + o

19 = O the other hd, for β > B αλ D w ω + o λ B βλ Dw = o, 428 B βλ Dω λ = Dω = o B βλ /λ Therefore, f we deote A, βλ, αλ = Bαλ \ Bβλ, the 429 D w + λ ω = D B R A,βλ,αλ We choose α so sll d β so lrge tht 430 Dω = o, D ω ω 0 = o B α B α w ω + o λ 43 B β D u + λ ω = o The 432 B R D w + λ ω = If we defe v o A, βλ, αλ { ɛ 2, ɛ 0 2 A,βλ,αλ Du + o, } + o dv Dv Dv = 0, v = u, o A, βλ, αλ The, fro le 33, we hve 434 A,βλ,αλ Du C A,βλ,αλ Dv + C h W,p I prtculr, 435 D w + λ ω C B R A,βλ,αλ Dv + o 9

20 Now, we defe f d g o A, βλ, αλ by dv Df Df = 0, f = u ω 0, o Bαλ f = u ω, o B βλ dv Dg Dg = 0, g = ω 0, o Bαλ g = ω, o B βλ The, fro d Proposto 32, we hve, wth A = A, βλ, αλ, 438 Df = o, Dg = ω ω 0 A A log αλ βλ By the lty of v, we kow tht Dv A A Df + Dg A It follows fro 438 d λ /λ, for fxed α d β, 439 A,βλ,αλ Dv = o Now 439 d 435 ply B R D w + λ ω = o Ths copletes proof of the cl We c repet ths rguet for w er other pots Σ to get bubbles ω j : R R k d { } j Ω, λ j R for l + j l + l such tht 2 Theore holds d 48 holds wth l replced by l + l, w j + λ j ω j W, loc [ R ], R k Sce ech ω : S R k hs t lest eergy µ, ths bubblg process tertes fter tes, where C = l Ω Du Notce tht the rguet keeps ll eergy durg the bubblg process The coclusos of theore follow C µ Proof of Corollry 3 Suppose the cocluso were ot true The, fro theore, there exsts t lest oe o-costt -hroc p ω : R N such tht l Ω Du Ω Du + µ, whch cotrdcts to the ssupto 2: I ths cse, we wll show tht y -hroc p ω fro S to N s costt I fct, f f s the gve covex fucto o N, the we hve the followg ch rule see, Jost [Jj]: 430 dv Dω 2 D f ω c 0 Dω 20

21 The we tegrte ths equlty over S to coclude tht E ω = 0 Proof of Theore 2 We strt by recllg tht o Re hoogeeous fold for detls, we refer to Hele [Hf] or Toro-Wg [TW], tht there exst q felds Y α α q d q sooth kllg vector felds X α α q o N such tht for y y N d v T y N, we hve q v = X α, v Y α I prtculr q Du 2 Du = Du 2 Du, X α u Y α u / Note the property of X α α q tht for α q 43 dv Du 2 Du, X α u = h, X α u α= α= Therefore, we c wrte the -hroc equto s dv Du 2 Du = Sce h 0 W,p for soe p > + q h, X α u Y α u α= q Du 2 Du, X α u Y α u α= = h + q α u, Du b α u α= d X α, Y α re sooth u, t follows tht h 0 W,p The coforl vrce of the -hroc p equto follows fro tht of for soe p > Ω Du Therefore, the codtos of Theore re stsfed, d so the coclusos of Theore 2 hold Proof of Theore 4 I ths cse, we lredy observed tht f = Hu u c be wrtte s f = l= l u+ x l wth dv = 0 Moreover, the blow-up equto s coforlly vrt I prtculr, codtos of Theore re stsfed d hece the coclusos follow 2

22 REFERENCES [Bf] F Bethuel, Wek lts of Pls-Sle sequece for clss of crtcl fuctols Preprt [BC] H Brezs, J M Coro, Covergece of solutos of H-systes or how to blow bubbles Arch Rt Mech Al [BC2] H Brezs d J -M Coro, Multple solutos of H-systes d Rellch s cojecture Co Pure Appl Mth [BN] H Brezs d L Nreberg, Postve solutos of oler ellptc equtos volvg crtcl Sobolev expoets Co Pure Appl Mth [CLMS] R Cof, P L Los, Y Meyer d S Sees, Copested copctess d Hrdy spces J Mth Pures Appl, [Db] B Dcorog, Drect ethods the clculus of vrtos Sprger, Berl-Heldelberg-New York 989 [El] L C Evs, Wek covergece ethods for oler prtl dfferetl equtos, CBMS 74, AMS, 990 [El2] L C Evs, Prtl regulrty for sttory hroc ps to spheres Arch Rt Mech Al [GT] D Glbrg d N S Trudger, Ellptc prtl dfferetl equtos of secod order, Sprger- Verlg 983 [Hf] F Héle, Regulrte des pplctos fbleet hroques etre ue surfce et vrete reee, CRAS, Prs [HLM] R Hrdt, F -H L d L Mou, Strog covergece of p-hroc ppgs To pper [Jj] J Jost, Two desol geoetrc vrtol probles New York, Wley 99 [Ll] L Lere, Applctos hroques de surfces Reees J Dff Geo [Mc] C B Morrey, Jr, Multple tegrls the clculus of vrtos, Sprger-Verlg 966 [MY] L Mou d P Yg, Regulrty of -hroc ps Jourl of Geoetrc Alyss To pper [MY2] L Mou d P Yg, Multple solutos d regulrty of H-systes Preprt [Pt] T Prker, Bubble tree covergece for hroc ps Preprt [Qj] J Qg, O Sgulrtes of the het flow for hroc ppg fro surfce to spheres Preprt [Se] E M Ste, Sgulr tegrls d dfferetblty propertes of fuctos, Prceto Uversty Press,

23 [S] M Struwe, Vrtol ethods Sprger-Verlg, Berl, Hedelberg, New York 990 [S2] M Struwe, A globl copctess result for ellptc boudry vlue probles volvg ltg olertes Mth Z [S3] M Struwe, Lrge H-surfces v the out-pss-les Mth A [Ss] S Sees, A prer o Hrdy spces, d soe rerks o theore of Evs d Müller Co Prtl Dff Eq [SU] R Schoe d K Uhlebeck, A regulrty theory for hroc ps Jour Dff Geo [SU] J Scks, K Uhlebeck, The exstece of l ersos of 2-spheres A Mth 3-24 [TW] T Toro, C Y Wg, Copctess propertes of wekly p-hroc ppg to hoogeeous spces Preprt [Uk] K Uhlebeck, Regulrty for clss of oler ellptc systes Act Mth [Wc] CYWg, Bubblg pheoe of cert Pls-Sle sequeces fro surfce to geerl trgets Preprt [Wh] H C Wete, A exstece theore for surfce of costt e curvture J Mth Al Appl , [Wh2] H C Wete, The dfferetl equto x = 2Hx u x v wth vshg boudry vlues AMS Proc [Wh3] H C Wete, Lrge solutos to the volue costred Plteu proble Arch Rt Mech Al Deprtet of Mthetcs, Uversty of Iow, Iow Cty, Iow ou@thuowedu Deprtet of Mthetcs, Rce Uversty, Housto, Texs 7725 cywg@thrceedu 23

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index

Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index J. Dfferetl Equtos 39 007 5 www.elsever.com/locte/jde Asymptotc behvor of rdl solutos for semler ellptc problem o ulus through Morse dex P. Esposto,G.Mc,, Sjb Str b,p.n.srkth c Dprtmeto d Mtemtc, Uverstà

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

On Stability of a Class of Fractional Differential Equations

On Stability of a Class of Fractional Differential Equations Proceedgs of the Pkst Acdey of Sceces 49 (: 39-43 (0 Coyrght Pkst Acdey of Sceces SSN: 0377-969 Pkst Acdey of Sceces Orgl Artcle O Stblty of Clss of Frctol Dfferetl Equtos Rbh W. brh* sttute of Mthetcl

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

, we would have a series, designated as + j 1

, we would have a series, designated as + j 1 Clculus sectio 9. Ifiite Series otes by Ti Pilchowski A sequece { } cosists of ordered set of ubers. If we were to begi ddig the ubers of sequece together s we would hve series desigted s. Ech iteredite

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS Jourl of Al-Nhr Uersty Vol.1 (), Deceber, 009, pp.13-17 Scece NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS L. N. M. Tfq I. I. Gorl Deprtet of Mthetcs, Ib Al Hth College Eucto,

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Hypercyclic Functions for Backward and Bilateral Shift Operators. Faculty of Science, Ain Shams University, Cairo, Egypt 2 Department of Mathematics,

Hypercyclic Functions for Backward and Bilateral Shift Operators. Faculty of Science, Ain Shams University, Cairo, Egypt 2 Department of Mathematics, Jourl of themtcs d Sttstcs 5 (3):78-82, 29 ISSN 549-3644 29 Scece ublctos Hyercyclc Fuctos for Bcwrd d Blterl Shft Oertors N Fred, 2 ZA Hss d 3 A orsy Dertmet of themtcs, Fculty of Scece, A Shms Uversty,

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

24 Concept of wave function. x 2. Ae is finite everywhere in space.

24 Concept of wave function. x 2. Ae is finite everywhere in space. 4 Cocept of wve fucto Chpter Cocept of Wve Fucto. Itroucto : There s lwys qutty sscocte wth y type of wves, whch vres peroclly wth spce te. I wter wves, the qutty tht vres peroclly s the heght of the wter

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

A Damped Guass-Newton Method for the Generalized Linear Complementarity Problem

A Damped Guass-Newton Method for the Generalized Linear Complementarity Problem Itertol Jourl of Comuter d Iformto Techology (ISSN: 79 764 olume Issue 4 July 3 A Dmed Guss-Newto Method for the Geerlzed Ler Comlemetrty Problem Huju L Houchu Zhou Dertmet of Mthemtcs Ly Uversty L Shdog

More information

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers.

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers. [Gol 5: M 0] ISSN: 77-9655 IJEST INTENTIONL JOUNL OF ENGINEEING SCIENCES & ESECH TECHNOLOGY O the Hetc No-Hoogeeous Euto th Four Ukos z 6 0 M..Gol * G.Suth S.Vdhlksh * Dertet of MthetcsShrt Idr Gdh CollegeTrch

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994 Ž JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 197, 9259 1996 ARTICLE NO 0062 Oreted Mesures* Rphel Cerf CNRS, Uerste Prs Sud, Mthemtque, Btmet ˆ 25, 9105 Orsy Cedex, Frce d Crlo Mrcod Dprtmeto d Mtemtc

More information

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi Faculty of Sceces ad Matheatcs, Uversty of Nš, Serba Avalable at: http://wwwpfacyu/float Float 3:3 (009), 303 309 DOI:098/FIL0903303J SUBCLASS OF ARMONIC UNIVALENT FUNCTIONS ASSOCIATED WIT SALAGEAN DERIVATIVE

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON Probblstc pproch to the dstrbuto of prmes d to the proof of Legedre d Ellott-Hlberstm cojectures VICTOR VOLFSON ABSTRACT. Probblstc models for the dstrbuto of prmes the turl umbers re costructed the rtcle.

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information