Chapter 12-b Integral Calculus - Extra

Size: px
Start display at page:

Download "Chapter 12-b Integral Calculus - Extra"

Transcription

1 C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto

2 C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl metods just try to mke t ster d more urte Bs Numerl Itegrto Ide: Wegted sum o uto vlues to ppromte tegrl d LL - Tsk: Fd pproprte s wegts d te s odes.

3 C - Itegrl Clulus Bs Numerl Itegrto We wt to d tegrto o utos o vrous orms o te equto kow s te Newto-Cotes tegrto ormuls. Newto-Cotes ormul Assume te vlue o deed o [,] s kow t eqully sped pots,,...,, were, d. Te, d were, wt te step sze equl to / /. Te 's re lled wegts. Te 's re lled odes. Te preso o te ppromto depeds o. Te odes e eqully sped or ueqully sped. Bs Numerl Itegrto Error lyss Te error o te ppromto s te deree etwee te vlue o te tegrl d te umerl result: error ε d - Σ Te errors re requetly ppromted usg Tylor seres or. Te error lyss gves strt upper oud o te error, te dervtves o re vlle. 6

4 C - Itegrl Clulus Newto-Cotes Formul Te wegts re derved rom te Lgrge polyomls L. Tey deped oly o te 's; ot o te uto ƒ. L Deret metods use deret polyomls to get te 's. Newto-Cotes Closed Formule -- Use ot ed pots Trpezodl Rule : Ler Smpso s /-Rule : Qudrt Smpso s /8-Rule : Cu Boole s Rule : Fourt-order Newto-Cotes Ope Formule -- Use oly teror pots mdpot rule 7 Trpezod Rule Strgt-le ppromto Te trpezod rule ppromtes te rego uder te grp o te uto s trpezod d lultg ts re. Appromte tegrl y te trpezod s re. d [ ] L 8

5 C - Itegrl Clulus Trpezod Rule - Dervto We use te Lgrge ppromto or uto over te tervl - Lgrge terpolto, gve y L L... L For te se,, wt te tervl - : L d let,,, d ; L Te, we tegrte to ot te trpezod rule 9 Trpezod Rule - Dervto Itegrtg: d L d L d d d > Te wegts deped oly o! [ ] Ts ppromto my e poor. Te ppromto error s: ε d - Σ - / η, η Є [, ]. Tus, te tegrd s ove.e., postve seod dervtve-, te error s egtve. Tt s, te trpezodl rule overestmtes te true vlue o te tegrl.

6 C - Itegrl Clulus Trpezod Rule - Emple Evlute te tegrl Et soluto e d e Grp d e e e Trpezod Rule - Emple Evlute te tegrl e d Trpezodl Rule: Appromto Error ε - / η η s umer etwee d. Let s tke η. Te ε - /*[*ep**ep***ep*] -9.8 Trpezodl Rule I e 8 d [ ] e ε 7.% 6.96

7 C - Itegrl Clulus Smpso s /-Rule Kepler s Rule Appromte te uto y prol [ ] d L d d,,,, let L L Smpso s /-Rule - Dervto Use qudrt Lgrge terpolto:

8 C - Itegrl Clulus Smpso s /-Rule - Dervto Itegrte te Lgrge terpolto d L d d d d d [ ] Ag, te wegts deped oly o! Toms Smpso 7 76, Egld Smpso s /8-Rule Appromte y u polyoml d 8 [ ] L 6

9 C - Itegrl Clulus 7 L [ ] 8 - ; Ld d Lgrge terpolto Itegrte to ot te rule Smpso s /8-Rule 8 Emple: Smpso s Rules Evlute te tegrl Smpso s /-Rule: Appromto Error ε - /88 η η s umer etwee d. Se η >, te error s egtve oversootg. Let s tke η.. Te, ε - /88 [ ep*.*[6*.] Smpso s /-Rule d e [ ] % I e d e e ε

10 C - Itegrl Clulus Emple: Smpso s Rules Evlute te tegrl Smpso s /8-Rule e 8 I e d 8 / [ ] ε.7% 6.96 d Smpso s /8-Rule: Appromto Error ε - /68 η η s umer etwee d. 9 Mdpot Rule Newto-Cotes Ope Formul d were η Є [,]. m η Te mdpot rule mouts to ompute te re o te retgle Note: Ts rule does ot mke y use o te ed pots. m

11 C - Itegrl Clulus Two-pot Newto-Cotes Ope Formul Appromte y strgt le d 8 [ ] η Tree-pot Newto-Cotes Ope Formul Appromte y prol d 7 [ ] η

12 C - Itegrl Clulus Better Numerl Itegrto Composte tegrto Composte Trpezodl Rule Composte Smpso s Rule Rrdso Etrpolto Romerg tegrto Composte Trpezod Rule To mprove te Trpezod Rule, rst splts te tervl o tegrto [,] to N smller, uorm sutervls, d te pples te trpezodl rule o e o tem. 7 Two segmets 7 Tree segmets Four segmets 7 My segmets

13 C - Itegrl Clulus Composte Trpezod Rule Use te Trpezod Rule tervls. Te, dd tem togeter. d d d [ ] [ ] L [ ] [ L L ] LL d Composte Trpezod Rule Evlute te tegrl I e d, I [ ] ε 7.%, I [ ]. ε.7%, I [ ] ε 9.7% 8,. I [.... ] ε.% 6,. I [.. L..7 ].9 ε.66% 6

14 C - Itegrl Clulus Composte Trpezod Rule wt Uequl Segmets Evlute te tegrl I e d Use te ollowg s: {,,.,.} I. d d d [ ] [ ]. [.] [. ] d [ e ] [ e e ] [ e.e ] 7 8 [.e e ] 97.8 ε.%. 7 Composte Smpso s Rule Peewse Qudrt ppromtos

15 C - Itegrl Clulus Composte Smpso s Rule Evlute te tegrl Usg, I Usg, I [ ] e d 8 [ e e ] 8. ε 7.96% I [ ] 6 8 [ e e e e ] ε 8.7% 9 Composte Smpso s Rule wt Uequl Segmets Evlute te tegrl Usg.,. I e d I d d [. ].. ε.76% [. ] [.e e ] [ e.e e ]

16 C - Itegrl Clulus Guss Qudrtures Newto-Cotes Formule - Nodes: Use evely-sped utol vlues - Wegts: Derved rom ppromto requred to e equl or polyoml o order lower or equl to te degree o te polyomls used to ppromte te uto. Gve odes, est! - Prolem: C eplode or lrge Ruge s peomeo Q: C we use more eet wegts d odes? Yes! Guss Qudrtures - Guss qudrture sets te odes d te wegts su wy tt te ppromto s et we. s low order polyoml. Best oe or ot, odes d wegts! Guss Qudrtures I t, Guss qudrture s more geerl t smple tegrto, t omputes ppromto to te wegted tegrl: d Guss Qudrtures - Selet utol vlues t o-uormly dstruted pots to eve ger ury. Te vlues re ot predetermed, ut ukows to e determed. - Cge o vrles > te tervl o tegrto s [-,]. - Guss-Legedre ormule or odes d wegts - Wt odes, delvers et swer s - t -order polyoml, s lose to - t -order.

17 C - Itegrl Clulus Guss Qudrtures Te Guss-Legedre qudrture rule s geerl stted s: d te 's re lled te wegts, te 's re lled te qudrture odes. Te ppromto error term, ε, s lled te truto error o tegrto. Te gol s to get et swer s - t -order polyoml. Wt, we get et swer s 9 t -order polyoml. For Guss-Legedre qudrture, te odes re ose to e zeros o ert Legedre polyomls. Tey re ot trvl to ompute. Guss Qudrtures Nodes d Wegts To get rgt swer or To get rgt swer or To get rgt swer or d d d ψ d / ψ To get rgt swer or j or j,..., - j d ψ j >A system o equtos ukows.

18 C - Itegrl Clulus By ostruto we get rgt swer or j, j,..., j j-, > eoug to get te rgt swer or y polyoml o order -. Emple: > system o equtos d ukows: Guss Qudrtures Nodes d Wegts d d d d 6 Cge o Itervl or Guss Qudrture Coordte trsormto rom [,] to [-,] Ts e doe y e trsormto o t d ge o vrles. t t d dt t t t d dt t

19 C - Itegrl Clulus 7 Guss Qudrture o [-, ] For, we ve our ukows,,,. Tese re oud y ssumg tt te ormul gves et results or tegrtg geerl rd order polyoml. It lso e doe y oosg,,, su tt t yelds et tegrl or,,,. d L d : - Guss Qudrture Geerl ormulto: 8 Guss Qudrture o [-, ] Et tegrl or,,, Four equtos or our ukows d Cse d d d d d I

20 C - Itegrl Clulus 9 Guss Qudrture o [-, ] Now, oose,,,,, su tt te metod yelds et tegrl or,,,,,. Ag,,,,,, re lulted y ssumg te ormul gves et epressos or tegrtg t order polyoml. : Cse d - Guss Qudrture o [-, ] d d d d d d / / 9 / 8 / 9 / 9

21 C - Itegrl Clulus Guss Qudrture o [-, ] Appromto ormul or 8 I d Emple : Guss Qudrture Evlute I te t dt Coordte trsormto t t I te dt ; dt d e d d Two-pot ormul I d e e ε.%

22 C - Itegrl Clulus Emple : Guss Qudrture Tree-pot ormul 8 I d e e.6 e ε.79% Four-pot ormul I d.78.6 [ ] [ ] 97.7 ε.7% Emple : Guss Qudrture. 6 Evlute I. 997 e d π Coordte trsormto t I π.6 e ; dt. 8d t [.8 ].8.8 dt e d π π d

23 C - Itegrl Clulus Emple: Guss Qudrture Two-pot ormul I d e π π π.767* [.8 ] e ε.6% [.8 ] Tree-pot ormul I.8 π.8 [.8.6 ] 8 [.8] [.8 e e e π * d.8 π 9 ε.7% ] Multdmesol Itegrls So r, we oetrted o oe-dmesol tegrls. To ompute tegrls multple dmesos, oe ppro s to prse te multple tegrl s repeted oe-dmesol tegrls. But, evetully, we ru to te so-lled urse o dmesolty. Four or more dmesos re omplted d, ote, mprese. Tere re two metods tt work well:.mote Crlo: Bsed o repeted uto evlutos, ot repeted tegrtos usg oe-dmesol metods. Populr lgortm: Mrkov Mote Crlo MCMC, w lude te Metropols-Hstgs lgortm d Gs smplg.. Sprse grds: Bsed o oe dmesol qudrture rule, ut uses reursve omto o uvrte results. 6

24 C - Itegrl Clulus Q: Wt's te tegrl o /d? A: A turl log! 7

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

Numerical differentiation (Finite difference)

Numerical differentiation (Finite difference) MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numerl Alss Dr Murrem Merme INTEROLATION ELM Numerl Alss Some of te otets re dopted from Luree V. Fusett Appled Numerl Alss usg MATLAB. rete Hll I. 999 ELM Numerl Alss Dr Murrem Merme Tod s leture

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 7/8 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 7 MASA : 3 JAM KOD KURSUS : KKKQ33/KKKF33 TAJUK : PENGIRAAN BERANGKA ARAHAN :.

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS Jourl o Mtemtcl Sceces: Advces d Alctos Volume Number - Pges -9 FRMULAE FR FINITE DIFFERENCE APPRXIMATINS QUADRATURE AND LINEAR MULTISTEP METHDS RAMESH KUMAR MUTHUMALAI Dertmet o Mtemtcs D G Vsv College

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial Jour o omputtos & Modeg vo o -5 ISSN: 79-75 prt 79-5 oe Scepress Ltd cutg te Vues o Mutpe Itegrs by Repcg te Itegrds Iterpoto by Iterpoto Poyom S Nzrov d bduzzov bstrct Te or des t te costructo o mutdmeso

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL Bullet of te Trslv Uversty of Brşov Vol 5 (54-1 Seres 1: Specl Issue No 1 MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL M BOTIŞ 1 Astrct: I te ler lyss of structures troug modl

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им. Н.И. Лобачевского Численные методы К.А.Баркалов Учебно-методическое пособие Рекомендовано методической

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU Part 4 Capter 6 Sple ad Peewe Iterpolato PowerPot orgazed y Dr. Mael R. Gutao II Duke Uverty Reved y Pro. Jag CAU All mage opyrgt Te MGraw-Hll Compae I. Permo requred or reproduto or dplay. Capter Ojetve

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Computational Modelling

Computational Modelling Computtol Modellg Notes orfeeg Desg d Computg Oct t v.d Computtol Modellg b Pro Smo J. Co sjc@soto.c.uk Wt s Computtol Modellg? Computtol modellg d te use o ssocted umercl metods s bout coosg te rgt lgortm

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Numerical Analysis Third Class Chemical Engineering Department University of Technology Assoc. Prof. Dr. Zaidoon Mohsin shakor

Numerical Analysis Third Class Chemical Engineering Department University of Technology Assoc. Prof. Dr. Zaidoon Mohsin shakor Numercl Alss Thrd Clss Chemcl Egeerg Deprtmet Uverst o Techolog Assoc. Pro. Dr. Zdoo Mohs shkor Itroducto to Numercl Alss U. Alss versus Numercl Alss The word lss mthemtcs usull mes who to solve problem

More information

CHAPTER 6 CURVE FITTINGS

CHAPTER 6 CURVE FITTINGS CHAPTER 6 CURVE FITTINGS Chpter 6 : TOPIC COVERS CURVE FITTINGS Lest-Squre Regresso - Ler Regresso - Poloml Regresso Iterpolto - Newto s Dvded-Derece Iterpoltg Polomls - Lgrge Iterpoltg Polomls - Sple

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration Computatioal Metods CMSC/AMSC/MAPL 6 Quadrature: Itegratio Ramai Duraiswami, Dept. o Computer Siee Some material adapted rom te olie slides o Eri Sadt ad Diae O Leary Numerial Itegratio Idea is to do itegral

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs WSEAS TRANSACTIONS o MATHEMATICS Fudzh Isml Dgoll Implt Ruge-Kutt Nstrom Geerl Method Order Fve for Solvg Seod Order IVPs FUDZIAH ISMAIL Deprtmet of Mthemts Uverst Putr Mls Serdg Selgor MALAYSIA fudzh@mth.upm.edu.m

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Math 1313 Final Exam Review

Math 1313 Final Exam Review Mth 33 Fl m Revew. The e Compy stlled ew mhe oe of ts ftores t ost of $0,000. The mhe s depreted lerly over 0 yers wth srp vlue of $,000. Fd the vlue of the mhe fter 5 yers.. mufturer hs mothly fed ost

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD VOL. NO. JULY ISSN 898 ARPN Jourl o Egeerg d Appled Sees As Reserh Pulshg Networ ARPN. All rghts reserved. www.rpourls.om SOLVING INITIAL VALUE PROBLEM USING RUNGEUTTA th ORDER METHOD As Fdhl As AlShmmr

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Some Unbiased Classes of Estimators of Finite Population Mean

Some Unbiased Classes of Estimators of Finite Population Mean Itertol Jourl O Mtemtcs Ad ttstcs Iveto (IJMI) E-IN: 3 4767 P-IN: 3-4759 Www.Ijms.Org Volume Issue 09 etember. 04 PP-3-37 ome Ubsed lsses o Estmtors o Fte Poulto Me Prvee Kumr Msr d s Bus. Dertmet o ttstcs,

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL Jourl o See d rs Yer 5, No., pp. 5-, 5 ORIGINL PPER TECHERS SSESS STUDENT S MTHEMTICL CRETIVITY COMPETENCE IN HIGH SCHOOL TRN TRUNG TINH Musrp reeved: 9..5; eped pper:..5; Pulsed ole:..5. sr. ssessme s

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information