Catalytic performance of a dicopper-oxo complex for methane hydroxylation

Size: px
Start display at page:

Download "Catalytic performance of a dicopper-oxo complex for methane hydroxylation"

Transcription

1 Supporting Information Catalytic performance of a dicopper-oxo complex for methane hydroxylation Yuta Hori, Yoshihito Shiota, * Tomokazu Tsuji, Masahito Kodera, and Kazunari Yoshizawa * Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Fukuoka , Japan Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto , Japan * To whom all correspondence should be addressed ( shiota@ms.ifoc.kyushu-u.ac.jp, k azunari@ms.ifoc.kyushu-u.ac.jp). S1

2 Table of Contents: Figure S1. Computed energy diagram including the solvent effect of water for the methane hydroxylation catalyzed by 1. Relative energies respect to reactant complex (RC), measured from 1 and methane in the triplet and open-shell singlet states, are in kcal/mol. The implicit solvent effect of water (dielectric constant = 78.39) was predicted by using the polarized continuum model (SCRF = PCM) implemented with the Gaussian 09 package. Figure S2. Computed energy diagrams for methyl intermediate (MI) to product complex (PC) with another pathway via radical intermediate (RI) in the triplet state. Relative energies respect to MI are in kcal/mol. The parenthesis values are energies including the solvent effect of water. Figure S3. Computed energy diagram for the methane hydroxylation catalyzed by 1 in the quintet state. Relative energies respect to reactant complex (RC) measured from 1 and methane are in kcal/mol. Table S1. Cartesian coordinates of B in the triplet state. Table S2. Cartesian coordinates of B in the singlet state. Table S3. Cartesian coordinates of C in the triplet state. Table S4. Cartesian coordinates of C in the singlet state. Table S5. Cartesian coordinates of 1 in the triplet state. Table S6. Cartesian coordinates of 1 in the singlet state. Table S7. Cartesian coordinates of RC in the triplet state. S2

3 Table S8. Cartesian coordinates of RC in the singlet state. Table S9. Cartesian coordinates of TS1 in the triplet state. Table S10. Cartesian coordinates of TS1 in the singlet state. Table S11. Cartesian coordinates of TS1 in the triplet state. Table S12. Cartesian coordinates of TS1 in the singlet state. Table S13. Cartesian coordinates of MI in the triplet state. Table S14. Cartesian coordinates of MI in the singlet state. Table S15. Cartesian coordinates of TS2 in the triplet state. Table S16. Cartesian coordinates of TS2 in the singlet state. Table S17. Cartesian coordinates of PC in the triplet state. Table S18. Cartesian coordinates of PC in the singlet state. Table S19. Cartesian coordinates of FC in the triplet state. Table S20. Cartesian coordinates of FC in the singlet state. Table S21. Cartesian coordinates of RI in the triplet state. Table S22. Cartesian coordinates of RI in the singlet state. Table S23. Cartesian coordinates of TS2 in the triplet state. Table S24. Cartesian coordinates of TS2 in the singlet state. S3

4 Figure S1. Computed energy diagram including the solvent effect of water for the methane hydroxylation catalyzed by 1. Relative energies respect to reactant complex (RC), measured from 1 and methane in the triplet and open-shell singlet states, are in kcal/mol. The implicit solvent effect of water (dielectric constant = 78.39) was predicted by using the polarized continuum model (SCRF = PCM) implemented with the Gaussian 09 package. S4

5 Figure S2. Computed energy diagrams for methyl intermediate (MI) to product complex (PC) with another pathway via radical intermediate (RI) in the triplet state. Relative energies respect to MI are in kcal/mol. The parenthesis values are energies including the solvent effect of water. S5

6 Figure S3. Computed energy diagram for the methane hydroxylation catalyzed by 1 in the quintet state. Relative energies respect to reactant complex (RC) measured from 1 and methane are in kcal/mol. The energy of TS2 was calculated by using the obtained structure in the triplet state. S6

7 Table S1. Cartesian coordinates of B in the triplet state. angstrom Atom x y z Cu Cu O O N N N N N N N N C H C H C H C H C C H H C H C H C H S7

8 C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C H C H S8

9 C H C H C C H H C C H C H C H C C H H C H H C H H S9

10 Table S2. Cartesian coordinates of B in the singlet state. angstrom Atom x y z Cu Cu O O N N N N N N N N C H C H C H C H C C H H C H C H C H S10

11 C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C H C H S11

12 C H C H C C H H C C H C H C H C C H H C H H C H H S12

13 Table S3. Cartesian coordinates of C in the triplet state. angstrom Atom x y z Cu Cu O O O H O N N N N N N N N C H C H C H C H C C H H C H C S13

14 H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C S14

15 H C H C H C H C C H H C C H C H C H C C H H C H H C H H H S15

16 Table S4. Cartesian coordinates of C in the singlet state. angstrom Atom x y z Cu Cu O O O H O N N N N N N N N C H C H C H C H C C H H C H C S16

17 H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C S17

18 H C H C H C H C C H H C C H C H C H C C H H C H H C H H H S18

19 Table S5. Cartesian coordinates of 1 in the triplet state. angstrom Atom x y z Cu Cu O O O N N N N N N N N C H C H C H C H C C H H C H C H C S19

20 H C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C H C S20

21 H C H C H C C H H C C H C H C H C C H H C H H C H H S21

22 Table S6. Cartesian coordinates of 1 in the singlet state. angstrom Atom x y z Cu Cu O O O N N N N N N N N C H C H C H C H C C H H C H C H C S22

23 H C H C C H H C C H C H C H C C H H C H C H C H C H C C H H C H C S23

24 H C H C H C C H H C C H C H C H C C H H C H H C H H S24

25 Table S7. Cartesian coordinates of RC in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S25

26 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S26

27 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S27

28 Table S8. Cartesian coordinates of RC in the singlet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S28

29 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S29

30 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S30

31 Table S9. Cartesian coordinates of TS1 in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S31

32 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S32

33 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S33

34 Table S10. Cartesian coordinates of TS1 in the singlet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S34

35 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S35

36 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S36

37 Table S11. Cartesian coordinates of TS1 in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S37

38 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S38

39 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S39

40 Table S12. Cartesian coordinates of TS1 in the singlet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S40

41 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S41

42 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S42

43 Table S13. Cartesian coordinates of MI in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S43

44 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S44

45 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S45

46 Table S14. Cartesian coordinates of MI in the singlet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S46

47 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S47

48 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S48

49 Table S15. Cartesian coordinates of TS2 in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S49

50 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S50

51 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S51

52 Table S16. Cartesian coordinates of TS2 in the singlet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S52

53 C H C H C H C H C C H H C C H C H C H C C H H C H C H C H C H C C S53

54 H H C H C H C H C H C C H H C C H C H C H C C H H C H H C H H S54

55 Table S17. Cartesian coordinates of PC in the triplet state. angstrom Atom x y z Cu Cu O O O C H H H H N N N N N N N N C H C H C H C H C C H H S55

Supporting Information

Supporting Information Supporting Information Roles of Zeolite Confinement and Cu O Cu Angle on the Direct Conversion of Methane to Methanol by [Cu 2 (µ-o)] 2+ -exchanged AEI, CHA, AFX, and MFI Zeolites M. Haris Mahyuddin,,

More information

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the H C Si 2.492 (2.348) 1.867 (2.005) Fe O 2.106 (2.077) 2.360 (2.497) N 1.126 (1.115) 2.105 (2.175) I quintet (triplet) 0.0 (+4.1) kcal/mol II triplet (quintet) 0.0 (+4.3) kcal/mol 1.857 (2.076) 2.536 (2.351)

More information

Supporting Information

Supporting Information Supporting Information Roles of Water Molecules in Modulating the Reactivity of Dioxygen-bound - ZSM-5 toward Methane: A Theoretical Prediction Takashi Yumura,,* Yuuki Hirose, Takashi Wakasugi, Yasushige

More information

Electronic Supplementary Information (ESI): First Principles Study of Photo-oxidation Degradation Mechanisms in P3HT for Organic Solar Cells

Electronic Supplementary Information (ESI): First Principles Study of Photo-oxidation Degradation Mechanisms in P3HT for Organic Solar Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI): First Principles Study of

More information

DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase

DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase Asian Journal of Chemistry; Vol. 25, No. 1 (2013), 89-94 http://dx.doi.org/10.14233/ajchem.2013.12753 DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase YONG WANG 1,2 and GUO-LIANG

More information

Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions

Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions Kazuya Arashiba, Aya Eizawa, Hiromasa Tanaka, Kazunari Nakajima,

More information

The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular Iodine

The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular Iodine Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular

More information

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Authors: Jay A. Kroll 1,2,#, Benjamin N. Frandsen 3,#, Henrik G. Kjaergaard 3,*, and Veronica Vaida 1,2,*

More information

Introduction to Computational Chemistry for Experimental Chemists... (Part 2/2)

Introduction to Computational Chemistry for Experimental Chemists... (Part 2/2) 12 th PhD seminar, Garching, October 31 st 2008 Introduction to Computational Chemistry for Experimental Chemists... (Part 2/2) Dr. Markus Drees, TU München Universität Regensburg Universität Augsburg

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2 environment

The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2 environment Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information For The Innocent role of Sc 3+ on Non-Heme Fe catalyst in O 2

More information

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Supporting Information Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents Yun-Fang

More information

Supporting Information for. Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction

Supporting Information for. Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction S1 Supporting Information for Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction Manjaly J. Ajitha, a Fathima Pary, b Toby L. Nelson b, *, and Djamaladdin

More information

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination Prasoon Saurabh, Kelcey Anderson, Joseph Scanlon Ripon College Why we want C-N C N bonds More chemically reactive than

More information

Thiourea Derivatives as Brønsted Acid Organocatalysts

Thiourea Derivatives as Brønsted Acid Organocatalysts Supporting Information Thiourea Derivatives as Brønsted Acid Organocatalysts Ádám Madarász, Zsolt Dósa, Szilárd Varga, * Tibor Soós, Antal Csámpai, Imre Pápai * Institute of Organic Chemistry, Research

More information

Modelling of Reaction Mechanisms KJE-3102

Modelling of Reaction Mechanisms KJE-3102 Modelling of Reaction Mechanisms KJE-3102 Kathrin H. Hopmann Kathrin.hopmann@uit.no Outline Potential energy surfaces Transition state optimization Reaction coordinates Imaginary frequencies Verification

More information

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Supporting Information for Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Claudia Kupper, ǁ Bhaskar Mondal, ǁ Joan Serrano-Plana, Iris Klawitter, Frank Neese,

More information

Polymer Chemistry SUPPORTING INFORMATION

Polymer Chemistry SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Polymer Chemistry Thiol-Maleimide Click Chemistry: Evaluating the Influence of Solvent,

More information

Investigation of the Role and Form. Formation. Michael Enright

Investigation of the Role and Form. Formation. Michael Enright Investigation of the Role and Form of Silver Catalysts in C N Bond Formation Michael Enright Ripon College Importance Carbon Nitrogen Bonds Medicine Biological compounds Make C N bonds whenever we want

More information

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions Fei Ye,, Shuanglin Qu,, Lei Zhou,, Cheng Peng, Chengpeng Wang, Jiajia

More information

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 05 Supporting Information Mechanistic Insight to Selective Catalytic Reduction

More information

Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl Nitrite

Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl Nitrite 1502 Notes Chem. Pharm. Bull. 50(11) 1502 1506 (2002) Vol. 50, No. 11 Ab Initio Molecular Orbital Study of the Reactivity of Active Alkyl Groups. V. Nitrosation Mechanism of Acetone with syn-form of Methyl

More information

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Supplementary Materials Mikolaj Feliks, 1 Berta M. Martins, 2 G.

More information

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Margarita M. Vallejos a* and Silvina C. Pellegrinet b* a Laboratorio de Química Orgánica, IQUIBA-NEA,

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org Postprint This is the accepted version of a paper published in Journal of Chemical Theory and Computation. This paper has been peer-reviewed but does not include the final publisher

More information

Is Vitamin A an Antioxidant or a Prooxidant?

Is Vitamin A an Antioxidant or a Prooxidant? Supporting Information Is Vitamin A an Antioxidant or a Prooxidant? Duy Quang Dao 1,*, Thi Chinh Ngo 1, Nguyen Minh Thong 2, Pham Cam Nam 3,* 1 Institute of Research and Development, Duy Tan University,

More information

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Supporting Information: Dostie, Prévost and Guindon S-1 Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Starr Dostie,, Michel Prévost *,, Philippe Mochirian,

More information

DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG, AI-GUO ZHONG

DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG, AI-GUO ZHONG J. Chil. Chem. Soc., 55, Nº 1 (010) CARBON DIOXIDE ACTIVATION BY Y ATOM AND Y + CATION IN THE GAS PHASE: A DENSITY FUNCTIONAL THEORETICAL STUDY DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG,

More information

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3 Reporter: Wang Yuefan Reporter: Wang Yuefan Supervisor: Prof. Yang Zhen Supervisor: Prof. Yang Zhen Prof. Chen Jiahua Prof. Chen Jiahua 1 2011-12-2727 2011-02 2012-03 02-25 03-23 25 Content Preface Nature

More information

Supporting Information

Supporting Information Supporting Information Conflict in the Mechanism and Kinetics of the Barrierless Reaction between SH and NO 2 Radicals Ramanpreet Kaur and Vikas * Quantum Chemistry Group, Department of Chemistry & Centre

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part Ruthenium-Catalyzed Alkyne trans-hydrometalation: Mechanistic Insights and Preparative Implications Dragoş Adrian Roşca, Karin Radkowski, Larry M. Wolf, Minal

More information

FINAL REPORT For Japan-Korea Joint Research Project

FINAL REPORT For Japan-Korea Joint Research Project (Form4-2) FINAL REPRT For Japan-Korea Joint Research Project AREA 1. Mathematics & Physics 2. Chemistry & Material Science 3. Biology 4. Informatics & Mechatronics 5. Geo-Science & Space Science 6. Medical

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Difunctionalization of Styrenes with Perfluoroalkyl and tert- Butylperoxy Radicals: Room Temperature Synthesis of (1- (tert-butylperoxy)-2-perfluoroalkyl)ethylbenzene Erbo Shi, Jiajun

More information

Jeff Turner Dr Scanlon Dr. Scanlon Ripon College

Jeff Turner Dr Scanlon Dr. Scanlon Ripon College Jeff Turner Dr Scanlon Dr. Scanlon Ripon College Importance of Nitrene Insertion Carbon Nitrogen bonds are useful in a chemical synthesis. Biomolecules Pharmaceuticals i l Specialized materials Formation

More information

Title. Author(s)Nakatani, Naoki; Hasegawa, Jun-ya; Sunada, Yusuke; N. CitationDalton transactions, 44(44): Issue Date

Title. Author(s)Nakatani, Naoki; Hasegawa, Jun-ya; Sunada, Yusuke; N. CitationDalton transactions, 44(44): Issue Date Title Platinum-catalyzed reduction of amides with hydrosil mechanism Author(s)Nakatani, Naoki; asegawa, Jun-ya; Sunada, Yusuke; N itationdalton transactions, 44(44): 19344-19356 Issue Date 2015-11-28 Doc

More information

Department of Chemistry, University of Rhode Island, Kingston, RI USA

Department of Chemistry, University of Rhode Island, Kingston, RI USA Supporting Information for Controlled Organocatalytic Ring-Opening Polymerization of - Thionocaprolactone Partha P. Datta and Matthew K. Kiesewetter Department of Chemistry, University of Rhode Island,

More information

10/6/2010. Chapter 6 An Overview of Organic Reactions. Organic Chemical Reactions. 6.1 Kinds of Organic Reactions

10/6/2010. Chapter 6 An Overview of Organic Reactions. Organic Chemical Reactions. 6.1 Kinds of Organic Reactions John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Richard Morrison University of Georgia, Athens Organic Chemical Reactions Organic chemical reactions

More information

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat) Hybridization of Nickel Catalysis and Photoredox Catalysis Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat) Introduction Novel cross coupling was reported! Highly selective sp 3 C-H functionalization!

More information

Lecture 11 Notes: Abiotic Chemical Transformations (Chapter 2)

Lecture 11 Notes: Abiotic Chemical Transformations (Chapter 2) Volz-Peterson/EH 2122 Lecture 11 Notes: Abiotic Chemical Transformations (Chapter 2) Wastewater Lagoons Some industrial sites and mining operations may have one or more associated wastewater lagoons receiving

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol). Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 5 Solutions 1. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31G(d) basis

More information

SUPPORTING INFORMATION. Elucidation of the role of betaine hydrochloride in glycerol esterification: towards bio-based ionic building blocks

SUPPORTING INFORMATION. Elucidation of the role of betaine hydrochloride in glycerol esterification: towards bio-based ionic building blocks Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2017 SUPPORTING INFORMATION Elucidation of the role of betaine hydrochloride in glycerol esterification:

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of, -Unsaturated Carbonyl Compounds with Hydrogen Peroxide Olga Lifchits, Manuel

More information

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic

More information

Multi-scale approaches in description and design of enzymes

Multi-scale approaches in description and design of enzymes Multi-scale approaches in description and design of enzymes Anastassia Alexandrova and Manuel Sparta UCLA & CNSI Catalysis: it is all about the barrier The inside-out protocol: Big Aim: development of

More information

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China,

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China, Supporting Information Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction P. Zhang 1,2, B. B. Xiao 1, X. L. Hou 1,2, Y. F. Zhu 1,* Q. Jiang 1 1 Key Laboratory of Automobile Materials,

More information

CHEM 231 (Davis) Organic Chemistry FINAL EXAM May 15, YOUR NAME (Last, First, M.I.) DISCUSSION SECTION #53 (5 Points)

CHEM 231 (Davis) Organic Chemistry FINAL EXAM May 15, YOUR NAME (Last, First, M.I.) DISCUSSION SECTION #53 (5 Points) CHEM 231 (Davis) rganic Chemistry FINAL EXAM May 15, 2006 YUR NAME (Last, First, M.I.) DISCUSSIN SECTIN #53 (5 Points) Initial of last name Instructions Please fill in your name in the space above and

More information

PCCP PAPER. Properties and reactivities of nonheme iron(iv) oxo versus iron(v) oxo: long-range electron transfer versus hydrogen atom abstraction

PCCP PAPER. Properties and reactivities of nonheme iron(iv) oxo versus iron(v) oxo: long-range electron transfer versus hydrogen atom abstraction PAPER View Article Online View Journal View Issue Cite this: Phys. Chem. Chem. Phys., 2014, 16, 22611 Received 11th July 2014, Accepted 8th September 2014 DOI: 10.1039/c4cp03053b www.rsc.org/pccp Introduction

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1 Bangladesh J. Sci. Res. 29(1): 41-46, 2016 (June) INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID Kalyan Dhar 1 * and Syed Fahim 1 Dept. di Chimica Materiali e Ingegneria chimica G. Natta, Politecnico

More information

Supporting Information for. Influence of ligands and oxidation state on the. reactivity of pentacoordinated iron carbenes

Supporting Information for. Influence of ligands and oxidation state on the. reactivity of pentacoordinated iron carbenes Supporting Information for Influence of ligands and oxidation state on the reactivity of pentacoordinated iron carbenes with olefins: metathesis versus cyclopropanation Égil de Brito Sá, a,b Luis Rodríguez-Santiago,

More information

Free-Energy Perturbation, Thermodynamic Integration, Potential of Mean Force (+working examples on chemical reactivity) Lubomír Rulíšek, Martin Srnec

Free-Energy Perturbation, Thermodynamic Integration, Potential of Mean Force (+working examples on chemical reactivity) Lubomír Rulíšek, Martin Srnec Free-Energy Perturbation, Thermodynamic Integration, Potential of Mean Force (+working examples on chemical reactivity) Lubomír Rulíšek, Martin Srnec Institute of Organic Chemistry and Biochemistry AS

More information

Organic Chemistry(I) Chapter 3

Organic Chemistry(I) Chapter 3 Organic Chemistry(I) Chapter 3 1. Carbon-carbon bonds are not easily broken. Which bond in the following compound would be the least difficult to break homolytically? 2. Which of the following molecules

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Metallonaphthalocyanines as Triplet Sensitizers for

More information

Titanium Phosphinimide Polymerization Catalysts

Titanium Phosphinimide Polymerization Catalysts tanium Phosphinimide Polymerization atalysts Motivation We are all familiar with the importance of Ziegler-atta catalysis [l 4 and cocatalyst Et 3 Al], and the polymerisation of olefins which represents

More information

Chemistry 4560/5560 Molecular Modeling Fall 2014

Chemistry 4560/5560 Molecular Modeling Fall 2014 Final Exam Name:. User s guide: 1. Read questions carefully and make sure you understand them before answering (if not, ask). 2. Answer only the question that is asked, not a different question. 3. Unless

More information

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Indian Journal of Chemistry Vol. 51A, November 2012, pp. 1553-1560 A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Yong Wang a, b & Gui-hua Chen a, * a School of Pharmaceutical

More information

Supplementary Information

Supplementary Information Supplementary Information S1. Energy Minimization and ECD Calculations. Figure S1. HRESIMS spectrum of compound 1. Figure S2. IR spectrum of compound 1. Figure S3. 1 H NMR spectrum of compound 1 in CDCl

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two Chiral Catalysts in Action: Insights on Cooperativity

More information

Interligand charge transfer in a complex of deprotonated cis-indigo dianions and tin(ii) phthalocyanine radical anions with Cp*Ir(III).

Interligand charge transfer in a complex of deprotonated cis-indigo dianions and tin(ii) phthalocyanine radical anions with Cp*Ir(III). Interligand charge transfer in a complex of deprotonated cisindigo dianions and tin(ii) phthalocyanine radical anions with Cp*Ir(III). Dmitri V. Konarev,*, Leokadiya V. Zorina, Salavat S. Khasanov, Alexander

More information

DFT Calculations on the Effect of Solvation on the Tautomeric Reactions for Wobble Gua-Thy and Canonical Gua-Cyt Base-Pairs

DFT Calculations on the Effect of Solvation on the Tautomeric Reactions for Wobble Gua-Thy and Canonical Gua-Cyt Base-Pairs Journal of Modern Physics, 2013, 4, 422-431 http://dx.doi.org/10.4236/jmp.2013.43a059 Published Online March 2013 (http://www.scirp.org/journal/jmp) DFT Calculations on the Effect of Solvation on the Tautomeric

More information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates Supporting Information For Peroxide as switch of dialkyl H-phosphonate: two mild and metal-free methods for preparation of 2-acylbenzothiazoles and dialkyl benzothiazole-2-yl phosphonates Xiao-Lan Chen,*,

More information

cis,cis-[(bpy) 2 Ru V O] 2 O 4+ Catalyzes Water Oxidation Formally via in Situ Generation of Radicaloid Ru IV -O

cis,cis-[(bpy) 2 Ru V O] 2 O 4+ Catalyzes Water Oxidation Formally via in Situ Generation of Radicaloid Ru IV -O Published on Web 05/23/2006 cis,cis-[(bpy) 2 Ru V O] 2 O 4+ Catalyzes Water Oxidation Formally via in Situ Generation of Radicaloid Ru IV -O Xiaofan Yang and Mu-Hyun Baik* Contribution from the Department

More information

Computer Modeling (Physical Chemistry) of Enzyme Catalysis, Metalloenzymes

Computer Modeling (Physical Chemistry) of Enzyme Catalysis, Metalloenzymes Computer Modeling (Physical Chemistry) of Enzyme Catalysis, Metalloenzymes Lubomír Rulíšek, Martin Srnec Institute of Organic Chemistry and Biochemistry AS CR J. Heyrovský Institute of Physical Chemistry

More information

Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals

Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals The 7 th International Conference on Chemical Kinetics July 11, 2011 Computational Study on the Recombination Reaction between Benzyl and Propargyl Radicals Akira Matsugi and Akira Miyoshi Department of

More information

Atmospheric Fate of Methyl Vinyl Ketone: Peroxy. Radical Reactions with NO and HO 2. Supporting Information

Atmospheric Fate of Methyl Vinyl Ketone: Peroxy. Radical Reactions with NO and HO 2. Supporting Information Atmospheric Fate of Methyl Vinyl Ketone: Peroxy Radical Reactions with NO and HO 2 Supporting Information Eric Praske, John D. Crounse*, Kelvin H. Bates, Theo Kurtén, Henrik G. Kjaergaard, Paul O. Wennberg

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

MODULE No. 24: Solution Kinetics Part - III

MODULE No. 24: Solution Kinetics Part - III Subject Paper No and Title Module No and Title Module Tag 6 and PHYSICAL CHEMISTRY-II (Statistical 24 and Solution Kinetics - III CHE_P6_M24 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Primary

More information

Stilbene photocycloaddition reactions: ion pair and electron transfer dynamics

Stilbene photocycloaddition reactions: ion pair and electron transfer dynamics Pure & Appl. Chem., Vol. 61, No. 4, pp. 629-634, 1989. Printed in Great Britain. @ 1989 IUPAC Stilbene photocycloaddition reactions: ion pair and electron transfer dynamics Kevin S. Peters, Stephen A.

More information

Free Energy Change and Activation Barrier for a Menshutkin Reaction Including Effects of the Solvent

Free Energy Change and Activation Barrier for a Menshutkin Reaction Including Effects of the Solvent Proposed Exercise for the Physical Chemistry Section of the Teaching with Cache Workbook: Free Energy Change and Activation Barrier for a Menshutkin Reaction Including Effects of the Solvent Contributed

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

Bio-inspired C-H functionalization by metal-oxo complexes

Bio-inspired C-H functionalization by metal-oxo complexes 1 Literature Seminar Bio-inspired C-H functionalization by metal-oxo complexes 2016. 7. 23. Nagashima Nozomu 2 C-H functionalization by enzymes Enzymes enable aliphatic C-H functionalization 3 P450 oxidation

More information

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information to Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Supplementary Information

More information

Supporting Information for

Supporting Information for Supporting Information for Nickel(I)-mediated transformations of carbon dioxide in closed synthetic cycles: reductive cleavage and coupling of CO 2 generating Ni I CO, Ni II CO 3 and Ni II C 2 O 4 Ni II

More information

Ch120 Lecture: The BiMoO x Story

Ch120 Lecture: The BiMoO x Story Ch120 Lecture: The Bi x Story Heterogeneous selective (amm)oxidation of propene. Kimberly Chenoweth November 28, 2007 What do these processes have in common? Late 1800s Early 1900s 1950s 1960s 1970s 1980s

More information

Mechanistic Insights into Alkane C-H Activation and Functionalization by Metal Oxide Surfaces and Organometallic Complexes. Thesis by.

Mechanistic Insights into Alkane C-H Activation and Functionalization by Metal Oxide Surfaces and Organometallic Complexes. Thesis by. Mechanistic Insights into Alkane C-H Activation and Functionalization by Metal Oxide Surfaces and Organometallic Complexes Thesis by Mu-Jeng Cheng In Partial Fulfillment of the Requirements for the degree

More information

Synthesis, Mechanism, and Properties of Cyclopenta-fused Polycyclic Aromatic Hydrocarbons. Chaolumen. Introduction

Synthesis, Mechanism, and Properties of Cyclopenta-fused Polycyclic Aromatic Hydrocarbons. Chaolumen. Introduction March 22, 2018 Synthesis, Mechanism, and Properties of Cyclopenta-fused Polycyclic Aromatic Hydrocarbons Reaxys Prize Club Symposium in Japan 2018 Chaolumen Institute for Chemical Research, Kyoto University

More information

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents Supporting Information Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Hajime Hirao*, Wilson Kwok Hung Ng, Adhitya Mangala

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity

First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

keywords: ethylene epoxidation, ethylene oxide, computational catalysis, selective oxidation, alkene epoxidation, organometallic complexes

keywords: ethylene epoxidation, ethylene oxide, computational catalysis, selective oxidation, alkene epoxidation, organometallic complexes Computationally Designed Zirconium Organometallic Catalyst for Direct Epoxidation of Alkenes without Allylic H Atoms: Aromatic Linkage Eliminates Formation of Inert Octahedral Complexes Bo Yang and Thomas

More information

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2007 Key PS3

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2007 Key PS3 Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2007 Key PS3 1. Below are two isomeric geometries that we previously examined in Problem Sets 1 and 2 as both C 10 H 16 and Si 10

More information

Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification

Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification Supporting Information Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification Kazuhiro Nakatani, Yusuke Ogura, Yuta Koda, Takaya Terashima*,

More information

SUPPORTING INFORMATION. Mechanistic Analysis of Water Oxidation Catalyzed by Mononuclear Copper in Aqueous Bicarbonate Solutions

SUPPORTING INFORMATION. Mechanistic Analysis of Water Oxidation Catalyzed by Mononuclear Copper in Aqueous Bicarbonate Solutions Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 draft of April 10, 2014 SUPPRTING INFRMATIN Mechanistic Analysis of Water

More information

Electronic communication through molecular bridges Supporting Information

Electronic communication through molecular bridges Supporting Information Electronic communication through molecular bridges Supporting Information Carmen Herrmann and Jan Elmisz Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6,

More information

by Iridium Silyl Complexes

by Iridium Silyl Complexes Facile Redistribution of Trialkyl Silanes Catalyzed by Iridium Silyl Complexes Sehoon Park, Bong Gon Kim, Inigo Göttker-Schnetmann, and Maurice Brookhart*, Department of Chemistry, University of North

More information

Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside

Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside Cells Chao Feng 1,$, Dalen Chan 1,$, Jojo Joseph 2, Mikko Muuronen 3, William H. Coldren 2, Nan Dai 4, Ivan R. Corrêa Jr. 4,

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

Semi-Empirical MO Methods

Semi-Empirical MO Methods Semi-Empirical MO Methods the high cost of ab initio MO calculations is largely due to the many integrals that need to be calculated (esp. two electron integrals) semi-empirical MO methods start with the

More information

The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity

The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity Rabia Ayub, 1,2 Kjell Jorner, 1,2 and Henrik Ottosson 1,2 * 1 Department of Chemistry - BMC, Uppsala University, Box 576, 751 23

More information

1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate:

1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate: 1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate: a) Derive the rate law for the production of C using the steady state approximation.

More information

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA)

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Supporting Information Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Chia-Yu Peng,, Jiun-Yi Shen,, Yi-Ting

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1680 On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation Stephan Thürmer, 1 Milan Ončák, 2 Niklas Ottosson, 3 Robert Seidel,

More information

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation Ken First Dow Chemical Company Midland, MI Reactivity Hazard Screening Evaluation Evaluation of reactivity hazards involves

More information

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Statistical Thermodynamics Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Dr. Ronald M. Levy ronlevy@temple.edu Free energy calculations Free energy

More information

Chapter 4. Reactions of alkenes. Addition reactions Carbocations Selectivity of reactions

Chapter 4. Reactions of alkenes. Addition reactions Carbocations Selectivity of reactions Chapter 4 Reactions of alkenes Addition reactions Carbocations Selectivity of reactions Prob 47 p192. Give the reagents that would be required (including catalyst). Ch 4 #2 Electrophilic addition Ch 4

More information