Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Size: px
Start display at page:

Download "Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions"

Transcription

1 Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions Fei Ye,, Shuanglin Qu,, Lei Zhou,, Cheng Peng, Chengpeng Wang, Jiajia Cheng, Mohammad Lokman Hossain, Yizhou Liu, Yan Zhang, Zhi-Xiang Wang,*, and Jianbo Wang*, Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing , China School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing , China School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou , China CONTENTS 1) Computational details..... S2 2) Additional computational results not shown in the main text... S3 3) Results for the alternative pathway leading K to 6a and catalyst A - via the HCO 3 moiety offering a hydrogen atom S5 4) Molecular orbital analysis... S7 5) Energies and Cartesian coordinates of all structures... S8 6) References S35 S1

2 1) Computational details All the structures were optimized and characterized to be energy minima or transition states at M06 1 /BSI level, where BSI denotes a basis set of LANL2DZ 2 for Pd, I, Ag and 6-31G(d) 3 for other atoms. The energies were then improved by M06/BSII//M06/BSI single point calculations with the solvent effects accounted by SMD 4 solvent model, using toluene as the solvent,where BSII denotes a basis set of SDD 5 for Pd, I, Ag and G(d,p) 3,6 for other atoms. Wiberg bond indices (bond order) were calculated at the B3LYP/BSI level according to the natural orbital (NBO) method. 7 The thermal corrections to free energies were carried out at K and 1atm, using M06/BSI harmonic frequencies. It should be emphasized that such thermal corrections based on the ideal gas phase model inevitably overestimate entropy contributions to free energies for reactions in solvent, in particular for reactions involving multi-component change, because of ignoring the suppressing effect of solvent on the rotational and transitional freedoms of substrates. The entropy overestimation by ideal gas phase model was also demonstrated by experimental studies. 8,9 Since no standard quantum mechanics-based approach is available to accurately calculate entropy in solution, we adopted the approximate approach proposed by Martin et al. 10 According to their approach, a correction of 4.3 kcal/mol applies to per component change for a reaction at K and 1atm (i.e., a reaction from m- to n-components has an additional correction of (n-m) 4.3 kcal/mol). Previously, we applied the correction protocol for mechanistic studies of various catalytic reactions and found such corrected free energies were more reasonable than enthalpies and uncorrected free energies, 11 although the protocol is by no means accurate. We discuss the mechanism in terms of the corrected free energies and give the enthalpies for references in the brackets in the relevant figures. All the calculations were performed using GAUSSIAN 09 program. S2

3 2) Additional computational results not shown in the main text Figure S1. Energy profile of Coupling I with the AgI moiety reserved. Figure S2. Energy profile of dediazoniation and migratory insertion in Coupling II with the AgI moiety reserved. S3

4 Figure S3. Energy profile of deprotonation by NEt 3. Figure S4. Energy profiles of dediazoniation without the involvement of AgHCO 3. S4

5 3) Results for the alternative pathway leading K to 6a and catalyst A via the HCO - 3 moiety offering a hydrogen atom - We examined two possibilities to complete the transformation. First, the HCO 3 moiety in K transfers the H atom to -C(Ph) 2 COOEt fragment directly (Figure S5). The barrier (35.1 kcal/mol, TS8 relative to K) is 6.0 kcal/mol higher than the barrier for the mechanism illustrated in Figure 3 in the main text. Second, the HCO - 3 moiety in K transfers the H atom to the Pd(II) center, then the H atom moved to -C(Ph) 2 COOEt fragment. Under this consideration, as shown in Figure S6, the HCO - 3 moiety first isomerizes to allow the H atom getting close to the Pd center, leading to a less stable R (by 4.4 kcal/mol). Attempts to locate a transition state for transferring the hydrogen of HCO - 3 moiety to the Pd center were failed. However, the hydrogen transfer would lead to a Pd(IV) complex (S) which is 52.6 kcal/mol higher than K, indicating that the this pathway is inaccessible. Thus it could be safe to conclude that the alternative pathway is unlikely. Figure S5. Energy profile of the hydrogen transfer from the HCO3 - to the -C(Ph) 2 COOEt fragment. S5

6 Figure S6. (a) Energy profile of the hydrogen transfer from the HCO3 - to the Pd(II) center, leading to a Pd(IV) complex S. (b) Key optimized structures with selected bond lengths in angstroms. Trivial hydrogen atoms are omitted for clarity. S6

7 4) Molecular orbital analysis Figure S7. Comparison of the and molecular orbitals involved in the formal Pd=C double bonds in complex J and Pd-carbene. Trivial hydrogen atoms are omitted for clarity. S7

8 5) Energies and Cartesian coordinates of structures The followings are SCF energies (in au), solvated free energies (in au) and Cartesian coordinates for all optimized structures. A (Pd(PPh 3 ) 2 ) SCF energy: Enthalpy in toluene: Free energy in toluene: Pd P P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H PhI SCF energy: Enthalpy in toluene: Free energy in toluene: C C C C C C H H H H H I B SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C C C H H H H H P C C C C H C H C H H H C C S8

9 C C H C H C H H H C C C C H C H C H H H P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H I Ag 2 CO 3 SCF energy: Enthalpy in toluene: Free energy in toluene: C O O O Ag Ag PPh 3 SCF energy: Enthalpy in toluene: Free energy in toluene: P C C C C C C C C C C C C H H H C C C H H H C C C H H H H H H H H H C SCF energy: Enthalpy in toluene: Free energy in toluene: Pd P C C C C H C H C H H H I C C C C H C H C H H H S9

10 C C C C H C H C H H H C C C C H C H C H H H C O O O Ag Ag AgI SCF energy: Enthalpy in toluene: Free energy in toluene: I Ag (AgI) 2 SCF energy: Enthalpy in toluene: Free energy in toluene: I Ag I Ag D SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C O O O Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H a (EDA) SCF energy: Enthalpy in toluene: Free energy in toluene: C H C O O C H H C H H H N N E SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H S10

11 C H H H C H C O O C H H C H H H N N C O O O Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS1 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C H C O O C H H C H H H N N C O O O Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS2 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C S11

12 C H C H C H H H C H C O O C H H C H H H N N P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O O Ag F SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C H C O O C H H C H H H N N C O O O Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS3 SCF energy: S12

13 Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H H H N N P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H H C O O O Ag a SCF energy: Enthalpy in toluene: Free energy in toluene: C C C C H C H C H H H C C O O C H H C H H H N N AgHCO 3 SCF energy: Enthalpy in toluene: Free energy in toluene: H C O O O Ag E SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H I C H C O O C H H C S13

14 H H H N N C O O O Ag Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS1 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H I C H C O O C H H C H H H N N C O O O Ag Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS2 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H I C S14

15 H C O O C H H C H H H N N C O O O Ag Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H F SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H I C H C O O C H H C H H H N N C O O O Ag Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H TS3 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C S15

16 C C C H C H C H H H I C H C O O C H H C H H H N N C O O O Ag Ag P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H AgI AgHCO 3 SCF energy: Enthalpy in toluene: Free energy in toluene: I H C O O O Ag Ag G SCF energy: Enthalpy in toluene: Free energy in toluene: Pd P C C C C H C H C H H H I C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O O S16

17 Ag H H SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C O O O P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H H I SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H H H N N P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O S17

18 O H TS4 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H H H N N P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O O H N 2 SCF energy: Enthalpy in toluene: Free energy in toluene: N N J SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H H H P C C C C H C H C H H H C C C C H C S18

19 H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O O H TS5 SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H H H P C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C C C C H C H C H H H C O O O H K SCF energy: Enthalpy in toluene: Free energy in toluene: Pd C C C C H C H C H H H C C O O C H H C H S19

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via

More information

Supporting Information for

Supporting Information for Supporting Information for Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-catalyzed Decarbonylative and Non-decarbonylative Suzuki-Miyaura Coupling Chong-Lei

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Ethenolysis With a Ruthenium Metathesis Catalyst: Experiment and Theory Hiroshi Miyazaki,, Myles B. Herbert,, Peng Liu, Xiaofei Dong, Xiufang Xu,,# Benjamin K. Keitz,

More information

Jeff Turner Dr Scanlon Dr. Scanlon Ripon College

Jeff Turner Dr Scanlon Dr. Scanlon Ripon College Jeff Turner Dr Scanlon Dr. Scanlon Ripon College Importance of Nitrene Insertion Carbon Nitrogen bonds are useful in a chemical synthesis. Biomolecules Pharmaceuticals i l Specialized materials Formation

More information

Supporting Information for. Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction

Supporting Information for. Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction S1 Supporting Information for Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C- C Coupling Reaction Manjaly J. Ajitha, a Fathima Pary, b Toby L. Nelson b, *, and Djamaladdin

More information

Supporting Information

Supporting Information S1 Supporting Information A Radical Mechanism of Isocyanide-Alkyne Cycloaddition by Multi-catalysis of Ag 2 CO 3, Solvent, and Substrate Pin Xiao, Haiyan Yuan, Jianquan Liu, Yiying Zheng, Xihe Bi,* and

More information

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 14 Supporting Information lylated rganometals: A Family of Recyclable Homogeneous Catalysts Jian-Lin

More information

Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study

Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study Supporting Information Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study Rajeev S. Assary a,b*, Larry A. Curtiss a,b,*,

More information

Thiourea Derivatives as Brønsted Acid Organocatalysts

Thiourea Derivatives as Brønsted Acid Organocatalysts Supporting Information Thiourea Derivatives as Brønsted Acid Organocatalysts Ádám Madarász, Zsolt Dósa, Szilárd Varga, * Tibor Soós, Antal Csámpai, Imre Pápai * Institute of Organic Chemistry, Research

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part Ruthenium-Catalyzed Alkyne trans-hydrometalation: Mechanistic Insights and Preparative Implications Dragoş Adrian Roşca, Karin Radkowski, Larry M. Wolf, Minal

More information

Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056

Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056 Supporting Information Angucycline Glycosides from Mangrove-Derived Streptomyces diastaticus subsp. SCSIO GJ056 Chun Gui 1,2, Yena Liu 3, Zhenbin Zhou 1,2, Shanwen Zhang 1,2, Yunfeng Hu 1, Yu-Cheng Gu

More information

Investigation of the Role and Form. Formation. Michael Enright

Investigation of the Role and Form. Formation. Michael Enright Investigation of the Role and Form of Silver Catalysts in C N Bond Formation Michael Enright Ripon College Importance Carbon Nitrogen Bonds Medicine Biological compounds Make C N bonds whenever we want

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two Chiral Catalysts in Action: Insights on Cooperativity

More information

A Dihydride Mechanism Can Explain the. Intriguing Substrate Selectivity of Iron-PNP-

A Dihydride Mechanism Can Explain the. Intriguing Substrate Selectivity of Iron-PNP- SUPPORTING INFORMATION A Dihydride Mechanism Can Explain the Intriguing Substrate Selectivity of Iron-PNP- Mediated Hydrogenation Glenn R. Morello, Kathrin H. Hopmann* Centre for Theoretical and Computational

More information

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China,

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China, Supporting Information Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction P. Zhang 1,2, B. B. Xiao 1, X. L. Hou 1,2, Y. F. Zhu 1,* Q. Jiang 1 1 Key Laboratory of Automobile Materials,

More information

Trace Solvent as a Predominant Factor to Tune Dipeptide. Self-Assembly

Trace Solvent as a Predominant Factor to Tune Dipeptide. Self-Assembly Trace Solvent as a Predominant Factor to Tune Dipeptide Self-Assembly Juan Wang,, Kai Liu,,, Linyin Yan,, Anhe Wang, Shuo Bai, and Xuehai Yan *,, National Key Laboratory of Biochemical Engineering, Institute

More information

Fullerene peroxides in cage-opening reactions*

Fullerene peroxides in cage-opening reactions* Pure Appl. Chem., Vol. 78, No. 4, pp. 841 845, 2006. doi:10.1351/pac200678040841 2006 IUPAC Fullerene peroxides in cage-opening reactions* Liangbing Gan Key Laboratory of Bioorganic Chemistry and Molecular

More information

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Margarita M. Vallejos a* and Silvina C. Pellegrinet b* a Laboratorio de Química Orgánica, IQUIBA-NEA,

More information

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the H C Si 2.492 (2.348) 1.867 (2.005) Fe O 2.106 (2.077) 2.360 (2.497) N 1.126 (1.115) 2.105 (2.175) I quintet (triplet) 0.0 (+4.1) kcal/mol II triplet (quintet) 0.0 (+4.3) kcal/mol 1.857 (2.076) 2.536 (2.351)

More information

Supporting Information

Supporting Information Quantum Chemistry Study of U(VI), Np(V) and Pu(IV,VI) Complexes with Preorganized Tetradentate Phenanthroline Amide Ligands Cheng-Liang Xiao, Qun-Yan Wu, Cong-Zhi Wang, Yu-Liang Zhao, Zhi-Fang Chai, *

More information

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key 1. Let's return to our favorite natural products from the first problem set. In the templates subdirectory of my

More information

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol). Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 5 Solutions 1. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31G(d) basis

More information

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Supporting Information Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents Yun-Fang

More information

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 ] and (2-Bromo-1,3-phenylene)bis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 Br]: Synthesis,

More information

Supporting Information

Supporting Information Supporting Information Hydrogen-bonding Interactions Between [BMIM][BF 4 ] and Acetonitrile Yan-Zhen Zheng, a Nan-Nan Wang, a,b Jun-Jie Luo, a Yu Zhou a and Zhi-Wu Yu*,a a Key Laboratory of Bioorganic

More information

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum Supporting Information for: How Partial Atomic Charges and Bonding Orbitals Affect the Reactivity of Aluminum Clusters with Water? Anthony M.S Pembere ξ, Xianhu Liu ξ, Weihua Ding, Zhixun Luo * State Key

More information

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016 N 3 inversion: Potential energy surfaces and transition states C342L March 28, 2016 Last week, we used the IR spectrum of ammonia to determine the splitting of energy levels due to inversion of the umbrella

More information

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer S 1 SUPPORTING INFORMATION Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst Miguel A. Esteruelas,*

More information

Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis

Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis Supporting Information Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis Hao Huang,, Lei Zhang,, Zhiheng Lv, Ran Long, Chao Zhang,

More information

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information to Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water

More information

Titanium Phosphinimide Polymerization Catalysts

Titanium Phosphinimide Polymerization Catalysts tanium Phosphinimide Polymerization atalysts Motivation We are all familiar with the importance of Ziegler-atta catalysis [l 4 and cocatalyst Et 3 Al], and the polymerisation of olefins which represents

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Cethrene: The Chameleon of Woodward Hoffmann Rules

Cethrene: The Chameleon of Woodward Hoffmann Rules Supporting Information Cethrene: The Chameleon of Woodward Hoffmann Rules Tomáš Šolomek,*, Prince Ravat,, Zhongyu Mou, Miklos Kertesz, and Michal Juríček*,, Department of Chemistry, University of Basel,

More information

Supporting Information

Supporting Information Supporting Information Synthesis of Robust MOF-derived Cu/SiO 2 Catalyst with Low Copper Loading via Sol-gel Method for the Dimethyl Oxalate Hydrogenation Reaction Run-Ping Ye,,, # Ling Lin, # Chong-Chong

More information

Synthesis of Polyynes Using Dicobalt Masking Groups

Synthesis of Polyynes Using Dicobalt Masking Groups Supporting Information Synthesis of Polyynes Using Dicobalt Masking Groups Daniel R. Kohn, Przemyslaw Gawel, Yaoyao Xiong, Kirsten E. Christensen, and Harry L. Anderson* University of Oxford, Department

More information

Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation

Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation Supporting Information Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation Andrea Hamza, a Gábor Schubert, a Tibor Soós b and Imre

More information

Selected Publications of Prof. Dr. Wenjian Liu

Selected Publications of Prof. Dr. Wenjian Liu Selected Publications of Prof. Dr. Wenjian Liu College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 1 Fundamentals of relativistic molecular quantum mechanics 1. Handbook

More information

The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular Iodine

The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular Iodine Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular

More information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome s1 Electronic Supplementary Information A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome Byung Jin Byun and Young Kee Kang* Department of Chemistry, Chungbuk

More information

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical upporting Information For Organic emiconducting Materials from ulfur-hetero Benzo[k]fluoranthene Derivatives: ynthesis, Photophysical Properties and Thin Film Transistor Fabrication Qifan Yan, Yan Zhou,

More information

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne Supporting Information for C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne Fei Ye, Xiaoshen Ma, Qing Xiao, Huan Li, Yan Zhang, Jianbo Wang*,,

More information

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 05 Supporting Information Mechanistic Insight to Selective Catalytic Reduction

More information

A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation

A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation Electronic Supplementary Material A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation Jinxia Liang 1,2,3, Qi Yu 2, Xiaofeng Yang 4 ( ), Tao Zhang 4, and

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Supporting Information

Supporting Information Supporting Information Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions Guo-Liang Chai* 1, Mauro Boero 2, Zhufeng Hou 3, Kiyoyuki Terakura 3,4 and Wendan

More information

Supplementary Information for: Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization

Supplementary Information for: Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Supplementary Information for: Hydrogen abstraction by photoexcited benzophenone:

More information

Supporting Information. DFT Study on the Homogeneous Palladium-Catalyzed. N-Alkylation of Amines with Alcohols

Supporting Information. DFT Study on the Homogeneous Palladium-Catalyzed. N-Alkylation of Amines with Alcohols Supporting Information DFT Study on the Homogeneous Palladium-Catalyzed N-Alkylation of Amines with Alcohols Guo-Ming Zhao,, Hui-ling Liu, *, Xu-ri Huang, Xue Yang, and Yu-peng Xie Institute of Theoretical

More information

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on

More information

Synthesis of ethanol from paraformaldehyde, CO 2 and H 2

Synthesis of ethanol from paraformaldehyde, CO 2 and H 2 Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Synthesis of ethanol from paraformaldehyde, CO 2 and

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Are intramolecular frustrated Lewis pairs also intramolecular

More information

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Supporting Information: Dostie, Prévost and Guindon S-1 Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Starr Dostie,, Michel Prévost *,, Philippe Mochirian,

More information

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Supporting Information Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides Qiqi Zhang,, Yao Xiao, #, Tao Zhang,, Zheng Weng, Mengqi Zeng, Shuanglin Yue, ± Rafael

More information

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Indian Journal of Chemistry Vol. 51A, November 2012, pp. 1553-1560 A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Yong Wang a, b & Gui-hua Chen a, * a School of Pharmaceutical

More information

Polymer Chemistry SUPPORTING INFORMATION

Polymer Chemistry SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Polymer Chemistry Thiol-Maleimide Click Chemistry: Evaluating the Influence of Solvent,

More information

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Supporting Information Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Yanpeng Li 1,2 *, Yifei Yu 2, Robert A. Nielsen 3, William

More information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Supplementary Information Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Jia-Jia Zheng, 1,2 Xiang Zhao, 1* Yuliang Zhao, 2 and Xingfa Gao

More information

DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase

DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase Asian Journal of Chemistry; Vol. 25, No. 1 (2013), 89-94 http://dx.doi.org/10.14233/ajchem.2013.12753 DFT Study on the Reaction of Molybdenum with Acetaldehyde in Gas Phase YONG WANG 1,2 and GUO-LIANG

More information

Supporting Information. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis

Supporting Information. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis Supporting Information DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis Taye B. Demissie,, Kenneth Ruud,, and Jørn. ansen *, Centre for Theoretical and

More information

Supplementary Information:

Supplementary Information: Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Coordination and Insertion of Alkenes and Alkynes in Au III

More information

Energy Profiles and Chemical Reactions

Energy Profiles and Chemical Reactions Energy rofiles and Chemical eactions + B C D E egensburg er-la Norrby Modeling Kinetics Molecular Modeling Stationary points Energies Barriers eaction rates DFT, ab initio, MM Ground & Transition states

More information

ummary Manipulating Radicals

ummary Manipulating Radicals Manipulating Radicals ummary Modern catalysis research tries to address issues such as material scarcity, sustainability or process costs. One solution is to replace expensive and scarce noble metal catalysts

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. DFT optimized structure of the [Ag III (L 1 )](ClO 4 ) 2 (1 ClO4 ) complex (CCDC code 978368). Hydrogen atoms and the two perchlorate anions have been omitted

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И Том 50, 5 Сентябрь октябрь С

Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И Том 50, 5 Сентябрь октябрь С Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И 2009. Том 50, 5 Сентябрь октябрь С. 873 877 UDK 539.27 STRUCTURAL STUDIES OF L-SERYL-L-HISTIDINE DIPEPTIDE BY MEANS OF MOLECULAR MODELING, DFT AND 1 H NMR SPECTROSCOPY

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Department of Chemistry, University of Rhode Island, Kingston, RI USA

Department of Chemistry, University of Rhode Island, Kingston, RI USA Supporting Information for Controlled Organocatalytic Ring-Opening Polymerization of - Thionocaprolactone Partha P. Datta and Matthew K. Kiesewetter Department of Chemistry, University of Rhode Island,

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Catalytic performance of a dicopper-oxo complex for methane hydroxylation

Catalytic performance of a dicopper-oxo complex for methane hydroxylation Supporting Information Catalytic performance of a dicopper-oxo complex for methane hydroxylation Yuta Hori, Yoshihito Shiota, * Tomokazu Tsuji, Masahito Kodera, and Kazunari Yoshizawa * Institute for Materials

More information

(%) benzene. benzene benzene

(%) benzene. benzene benzene 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) Mechanism of the Rhodium-Catalyzed Hydroformylation of 4-(1-phenylvinyl)pyridine:

More information

Supporting Information

Supporting Information Supporting Information Uniformly Sized (112) Facet Co 2 P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution Bin Tian, a, b Zhen Li, a, b Wenlong Zhen c and Gongxuan Lu *a a State Key Laboratory

More information

Mechanistic Studies of Wacker-Type Amidocyclization. and Stereochemical Implications of Proton Transfer

Mechanistic Studies of Wacker-Type Amidocyclization. and Stereochemical Implications of Proton Transfer Supporting Information Mechanistic Studies of Wacker-Type Amidocyclization of Alkenes Catalyzed by (IMes)Pd(TFA) 2 (H 2 O): Kinetic and Stereochemical Implications of Proton Transfer Xuan Ye, Paul B. White

More information

Supporting Information

Supporting Information Supporting Information Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of ( )-11 -Hydroxycurvularin Hyeonjeong Choe, Thuy Trang Pham,

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

A DFT study on the NHC catalysed Michael addition of enols to α,βunsaturated acyl-azoliums. A base catalysed C-C bond-formation step.

A DFT study on the NHC catalysed Michael addition of enols to α,βunsaturated acyl-azoliums. A base catalysed C-C bond-formation step. A DFT study on the NHC catalysed Michael addition of enols to α,βunsaturated acyl-azoliums. A base catalysed C-C bond-formation step. Supporting Information Luis R. Domingo, a * José A. Sáez b and Manuel

More information

Supporting Information

Supporting Information Supporting Information Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO 2 ] + (X, Y = Al, Si, Mg): Competition

More information

SERS and NMR Studies of Typical Aggregation-induced. Emission Molecules

SERS and NMR Studies of Typical Aggregation-induced. Emission Molecules Supplemental information SERS and NMR Studies of Typical Aggregation-induced Emission Molecules Cheng Fang, Yujun Xie, Martin R. Johnston, Yinlan Ruan, Ben Zhong Tang 5, *, Qian Peng, *, Youhong Tang 6,

More information

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Supplementary Information to: A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Shuo Sun, Ze-Sheng Li,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles

A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles Yong Yao, a Min Xue, a Xiaodong Chi, a Yingjie Ma, a Jiuming e, b Zeper Abliz, b and Feihe uang a,

More information

1. Determine the oxidation state of the metal centre and count the number of electrons.

1. Determine the oxidation state of the metal centre and count the number of electrons. Exercise sheet : Organometallic chemistry Gunnar Bachem 1. Determine the oxidation state of the metal centre and count the number of electrons. 2. The metal fragment 1 reacts with the amine to give a carbene

More information

Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions

Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions Kazuya Arashiba, Aya Eizawa, Hiromasa Tanaka, Kazunari Nakajima,

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

5 The effect of steric bulk on C C bond activation

5 The effect of steric bulk on C C bond activation 5 The effect of steric bulk on C C bond activation Inspired by: Willem-Jan van Zeist, Joost N. P. van Stralen, Daan P. Geerke, F. Matthias Bickelhaupt To be submitted Abstract We have studied the effect

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

TECHNIQUES TO LOCATE A TRANSITION STATE

TECHNIQUES TO LOCATE A TRANSITION STATE 32 III. TECHNIQUES TO LOCATE A TRANSITION STATE In addition to the location of minima, the calculation of transition states and reaction pathways is an interesting task for Quantum Chemistry (QC). The

More information

Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation

Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation Andreas Fromm, a Christoph van Wüllen, b Dagmar Hackenberger a and Lukas J. Gooßen* a a Fachbereich Chemie Organische Chemie

More information

by Iridium Silyl Complexes

by Iridium Silyl Complexes Facile Redistribution of Trialkyl Silanes Catalyzed by Iridium Silyl Complexes Sehoon Park, Bong Gon Kim, Inigo Göttker-Schnetmann, and Maurice Brookhart*, Department of Chemistry, University of North

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Difunctionalization of Styrenes with Perfluoroalkyl and tert- Butylperoxy Radicals: Room Temperature Synthesis of (1- (tert-butylperoxy)-2-perfluoroalkyl)ethylbenzene Erbo Shi, Jiajun

More information

Supporting Information. Gold Catalyzed β Regioselective Formal [3+2] Cycloaddition of. Ynamides with Pyrido[1,2 b]indazoles: Reaction Development

Supporting Information. Gold Catalyzed β Regioselective Formal [3+2] Cycloaddition of. Ynamides with Pyrido[1,2 b]indazoles: Reaction Development Supporting Information Gold Catalyzed β Regioselective Formal [+] Cycloaddition of Ynamides with Pyrido[, b]indazoles: Reaction Development and Mechanistic Insights Yinghua Yu, a Gui Chen, a Lei Zhu, a

More information

Optimal Performance for Solar Thermal Power System

Optimal Performance for Solar Thermal Power System Energy and Power Engineering, 2009, 110-115 doi:10.4236/epe.2009.12017 Published Online November 2009 (http://www.scirp.org/journal/epe) Optimal Performance for Solar Thermal Power System Jianfeng LU 1,

More information

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Efficient Synthesis of Ethanol from CH 4 and Syngas on Efficient Synthesis of Ethanol from CH 4 and Syngas on a Cu-Co/TiO 2 Catalyst Using a Stepwise Reactor Zhi-Jun Zuo 1, Fen Peng 1,2, Wei Huang 1,* 1 Key Laboratory of Coal Science and Technology of Ministry

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Electronic Supplementary Information

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 ( Due 4 / 10 / 12 )

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 ( Due 4 / 10 / 12 ) Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 ( Due 4 / 10 / 12 ) This problem set will take longer than the last one in the sense that you will almost certainly need to

More information