New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-

Size: px
Start display at page:

Download "New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-"

Transcription

1 New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 ] and (2-Bromo-1,3-phenylene)bis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 Br]: Synthesis, Coordination behavior, DFT Calculations and Catalytic Studies Pawan Kumar a, Mujahuddin M. Siddiqui a, Yerrnaidu Reddi a, Joel T Mague b, Raghavan B. Sunoj a, Marvanji S. Balakrishna a*

2 [Ru 2 (η 6 -p-cymene) 2 Cl 4 {1,3 {Ph 2 PC(O)} 2 (C 6 H 4 )}] (5) [PdCl{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}](7) [NiBr{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}] (8) [PdBr{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}] (9) [Cu 2 (µ-cl) 2 {1,3-{Ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (10) [Cu 2 (µ-i) 2 {1,3-{Ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (12)

3 [Ag 2 (µ-clo 4 )(µ-cl){1,3-{ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (14) Figure S1. The optimized geometries of complexes 5, 7, 8, 9, 10, 12 and 14 at B3LYP/6-31G**, SDD level of theory. NBO Analysis Natural bonding orbital analysis provides details on the interaction between the occupied Lewis type (bond or lone pair) NBOs and unoccupied non-lewis type (anti bonding) NBOs in the molecule and which can be used as the measure of delocalization. This donor acceptor interaction can be described in terms of the second order perturbation interaction energy (E (2) ). These interaction energies are reported using the B3LYP/6-31G** and SDD for palladium metal as shown in Table S1. Table S1. The Second Order Perturbation Interaction Energies of Selected Donor and Acceptor NBOs of Palladium Pincer Complex 9 using the B3LYP Method Donor Acceptor E (2) (kcal/mol) C 1 C 51 Pd C 5 C 51 Pd P 13 Pd 61 P 14 Pd

4 P 13 Pd 61 C 51 Pd P 14 Pd 61 P 13 Pd P 14 Pd 61 C 9 P P 14 Pd 61 P 14 C P 14 Pd 61 P 14 C C 51 Pd 61 P 13 Pd C 51 Pd 61 P 14 Pd C 51 Pd 61 C 51 Pd Pd 61 C 51 Pd Pd 61 C 5 C Pd 61 P 13 Pd Pd 61 P 14 Pd The highest interaction energy is found to be kcal/mol between the donor NBO of BD (C 51 Pd 61) to acceptor NBOs of both BD* (P 13 Pd 61) and BD* (P 13 Pd 61). The over all interaction energy is found to be approximately kcal/mol. The slightly higher occupancy and good localized NBOs are obtained in P Pd bond ( electrons in both P Pd) than in C51 Pd bond ( electrons). Aim analysis Aim analysis is powerful method to explain the electron density between two atoms in the molecule. The eletron density is considered between the two atoms based on bond critical point (bcp) values

5 Table S2. Topological map showing bond paths and bond critical points for important weak interactions in palladium pincer complex 9 Bond path Interaction bcp *10-2 (a.u.) 1 Phenyl H Carbonyl O Phenyl H Carbonyl O Phosphorous and Palladium Phosphorous and Palladium Phenyl carbon and Palladium As shown in the table there are found to be two major interactions between palladium and phenyl carbon and palladium and phosphorous. The bcp of phenyl carbon and palladium is found to be higher than phosphorous and palladium atoms. Therefore the electron density is more between phenyl carbon and palladium reveals that the two atoms bind strongly. AIM analysis of Pd pincer complex 8 shows that hydrogen bonding interaction between C H O. Total electronic energies (in a.u) and Cartesian coordinates of geometries optimized at the B3LYP/6-31G*, SDD level of theory [Ru 2 (η 6 -p-cymene) 2 Cl 4 {1,3 {Ph 2 PC(O)} 2 (C 6 H 4 )}] (5) E ele = [PdCl{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}](7) E ele =

6

7 [NiBr{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}] (8) [PdBr{2,6-{Ph 2 PC(O)} 2 (C 6 H 3 )}] (9) E ele = E ele =

8 [Cu 2 (µ-cl) 2 {1,3-{Ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (10) [Cu 2 (µ-i) 2 {1,3-{Ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (12) E ele = E ele =

9

10

11 [Ag 2 (µ-clo 4 )(µ-cl){1,3-{ph 2 PC(O)} 2 (C 6 H 4 )} 2 ] (14) E ele =

12

13

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum Supporting Information for: How Partial Atomic Charges and Bonding Orbitals Affect the Reactivity of Aluminum Clusters with Water? Anthony M.S Pembere ξ, Xianhu Liu ξ, Weihua Ding, Zhixun Luo * State Key

More information

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy --- Influence of intramolecular interactions Minfu Zhao, Xu Shan, Shanshan Niu, Yaguo Tang, Zhaohui Liu,

More information

Hydrogen and Halogen Bonds are Ruled by the Same Mechanisms S.J.Grabowski

Hydrogen and Halogen Bonds are Ruled by the Same Mechanisms S.J.Grabowski 1 Hydrogen and Halogen Bonds are Ruled by the Same Mechanisms S.J.Grabowski Electronic supplementary information All results presented were obtained at MP2/6-311++G(d,p) level, QTAIM was applied to calculate

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Valence electrons octet rule. Lewis structure Lewis structures

Valence electrons octet rule. Lewis structure Lewis structures Lewis Dot Diagrams Valence electrons are the electrons in the outermost energy level of an atom. An element with a full octet of valence electrons has a stable configuration. The tendency of bonded atoms

More information

Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the α Halorganic Compounds

Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the α Halorganic Compounds Current World Environment Vol. 7(2), 221-226 (2012) Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the α Halorganic Compounds NAJLA SEIDY and SHAHRIAR

More information

Coordinate Covalent Bond

Coordinate Covalent Bond Coordinate Covalent Bond 1. The coordinate covalent bond is a special type of covalent bond in which shared pair of electrons between two atoms is contributed by one of the atoms only. The atom which contributes

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

18-Electron Rule: Myth or Reality? An NBO Perspective

18-Electron Rule: Myth or Reality? An NBO Perspective 18-Electron Rule: Myth or Reality? An NBO Perspective Eric CLOT UMR 5253 - CNRS, UM2, ENSCM, UM1 Interaction Experiment/Theory Experimental Chemists have Questions Where are the Nucleophilic and Electrophilic

More information

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES Zachery Matesich 24 February 2015 Roadmap 2 Introduction Synthetic Methods History of NHCs Properties of NHCs Nature of the carbene Structural properties

More information

Lone Pairs: An Electrostatic Viewpoint

Lone Pairs: An Electrostatic Viewpoint S1 Supporting Information Lone Pairs: An Electrostatic Viewpoint Anmol Kumar, Shridhar R. Gadre, * Neetha Mohan and Cherumuttathu H. Suresh * Department of Chemistry, Indian Institute of Technology Kanpur,

More information

Acid Dissociation Constant

Acid Dissociation Constant CE 131 Lecture 37 Lewis Acids and Bases Chapter 16: pp. 800-802. Acid Dissociation Constant C 2 3 2 + 2 3 + + C 2 3-2 [ 3 + ][C 2 3-2 ] K = [ 2 ][C 2 3 2 ] [ 3 + ][C 2 3-2 ] K a = K [ 2 ] = [C 2 3 2 ]

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory

Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory doi: 10.2478/auoc-2014-0001 Ovidius University Annals of Chemistry Volume 25, Number 1, pp. 5-10, 2014 Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory

More information

Quick Tutorial on Natural Bond Order 3 Calculations Within Gaussian 09

Quick Tutorial on Natural Bond Order 3 Calculations Within Gaussian 09 Quick Tutorial on Natural Bond Order 3 Calculations Within Gaussian 09 Benjamin Rudshteyn, and Victor S. Batista* victor.batista@yale.edu Yale University, Department of Chemistry 225 Prospect Street, New

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two Chiral Catalysts in Action: Insights on Cooperativity

More information

Chapter 2: Alkanes MULTIPLE CHOICE

Chapter 2: Alkanes MULTIPLE CHOICE Chapter 2: Alkanes MULTIPLE CHOICE 1. Which of the following orbitals is properly described as an antibonding orbital? a. sp + 1s d. sp 2 1s b. sp 2 + 1s e. sp 2 + sp 2 sp 3 + 1s D DIF: Easy REF: 2.2 2.

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT penurseware http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 27.1 5.111 ecture 27

More information

Acids and Bases. Acids and Bases

Acids and Bases. Acids and Bases BrØnsted-Lowry A BrØnsted-Lowry acid is a proton donor. A BrØnsted-Lowry base is a proton acceptor. H + = proton BrØnsted-Lowry Some molecules contain both hydrogen atoms and lone pairs and thus, can act

More information

Ionic Versus Covalent Bonding

Ionic Versus Covalent Bonding Ionic Versus Covalent Bonding Ionic compounds are formed when electrons are transferred from one atom to another The transfer of electrons forms ions Each ion is isoelectronic with a noble gas Electrostatic

More information

1. Determine the oxidation state of the metal centre and count the number of electrons.

1. Determine the oxidation state of the metal centre and count the number of electrons. Exercise sheet : Organometallic chemistry Gunnar Bachem 1. Determine the oxidation state of the metal centre and count the number of electrons. 2. The metal fragment 1 reacts with the amine to give a carbene

More information

Periodicity HL (answers) IB CHEMISTRY HL

Periodicity HL (answers) IB CHEMISTRY HL Periodicity HL (answers) IB CHEMISTRY HL 13.1 First row d-block elements Understandings: Transition elements have variable oxidation states, form complex ions with ligands, have coloured compounds, and

More information

Research Article. Studies on Derivatives Uracil stability in various solvents and different functional groups: A DFT Study

Research Article. Studies on Derivatives Uracil stability in various solvents and different functional groups: A DFT Study Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2016, 8(7):290-297 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Studies on Derivatives Uracil stability in various

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Acid/Base stuff Beauchamp 1

Acid/Base stuff Beauchamp 1 cid/base stuff Beauchamp 1 Problems You should be able to match a pk a value with its acid in each group below and explain the differences. You should be able to draw an arrow-pushing mechanism with general

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

Molecular Orbitals of Ethene

Molecular Orbitals of Ethene Molecular Orbitals of Ethene 1 Molecular Orbital Analysis of Ethene Dimerisation the reaction is said to be a "symmetry forbidden" interestingly, this reaction is rare and very slow! Molecular Orbitals

More information

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016 N 3 inversion: Potential energy surfaces and transition states C342L March 28, 2016 Last week, we used the IR spectrum of ammonia to determine the splitting of energy levels due to inversion of the umbrella

More information

Visualization in Chemistry. Giovanni Morelli

Visualization in Chemistry. Giovanni Morelli Visualization in Chemistry Giovanni Morelli What is Chemistry? If we provide a good answer to this question maybe we can understand what graphics can do for chemistry and chemists What is Chemistry? A

More information

NPA/NBO-Analysis. Examples POP =

NPA/NBO-Analysis. Examples POP = NPA/NBO-Analysis Examples POP = NBO Requests a full Natural Bond Orbital analysis, using NBO version 3 NPA Requests just the Natural Population Analysis phase of NBO. NBORead Requests a full NBO analysis,

More information

List of Figures Page Figure No. Figure Caption No. Figure 1.1.

List of Figures Page Figure No. Figure Caption No. Figure 1.1. List of Figures Figure No. Figure Caption Page No. Figure 1.1. Cation- interactions and their modulations. 4 Figure 1.2. Three conformations of benzene dimer, S is not a minimum on the potential energy

More information

Inorganic chemistry 3-stage Lec. 2. Dr- leaqaa

Inorganic chemistry 3-stage Lec. 2. Dr- leaqaa Inorganic chemistry 3-stage Lec. 2 Dr- leaqaa Chemical bonds types: Most chemical bonds fall into 2 categories depending on whether the valence e(s) are transferred or shared. Electron in ionic bond are

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

Inorganic Pharmaceutical Chemistry. Coordination compounds

Inorganic Pharmaceutical Chemistry. Coordination compounds Inorganic Pharmaceutical Chemistry Lecture No. 5 Date : 22/11 /2012 Dr. Mohammed Hamed --------------------------------------------------------------------------------------------------------------------------------------

More information

Natural Bond Orbital Analysis of the Bonding in Complexes of Li with Ammonia

Natural Bond Orbital Analysis of the Bonding in Complexes of Li with Ammonia Research Journal of Chemical Sciences ISSN 2231-606X Natural Bond Orbital Analysis of the Bonding in Complexes of Li with Ammonia Françoise Diendere *, Issaka Guiguemde and Abdouraman Bary Laboratoire

More information

Jahn-Teller Distortions

Jahn-Teller Distortions Selections from Chapters 9 & 16 The transition metals (IV) CHEM 62 Monday, November 22 T. Hughbanks Jahn-Teller Distortions Jahn-Teller Theorem: Nonlinear Molecules in orbitally degenerate states are inherently

More information

Chapter 2: Acids and Bases

Chapter 2: Acids and Bases 1. Which of the following statements is a correct definition for a Brønsted-Lowry acid? A) Proton acceptor C) Electron pair acceptor B) Electron pair donor D) Proton donor 2. Which of the following statements

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved.

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved. Chemical Bonding 4.8 Valence Bond Theory Hybrid Orbital Theory Multiple Bonds Valence Bond Theory Combines Lewis theory of filling octets by sharing pairs of electrons with the electron configuration of

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Acids and Bases Q. Are acid-base properties of substances predictable

More information

Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis

Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis Computational Chemistry, 2016, 4, 17-31 Published Online January 2016 in SciRes. http://www.scirp.org/journal/cc http://dx.doi.org/10.4236/cc.2016.41003 Density Functional Theory Study of Exohedral Carbon

More information

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 21: Transition Metals and Coordination Chemistry Chapter 21: Transition Metals and Coordination Chemistry Mg, Cr, V, Co Pt Fe complexes O2 Mo and Fe complexes: nitrogen fixation Zn: 150 Cu, Fe: Co: B12 21.1 Transition Metals show great similarities within

More information

Chapter 5 - Homework solutions

Chapter 5 - Homework solutions Chapter 5 - Homework solutions Q Ex 1,2,3,4,5,7,9,13,18,20,21,23, 27,29 and Prob. 3,4,6,7 1) Li Be B C N O F acidic Na Mg Al Si P S Cl amphoteric K Ca Ga Ge As Se Br basic Rb Sr In Sn Sb Te I Cs Ba Tl

More information

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls Subject Paper No and Title Module No and Title Module Tag 11: INORGANIC CHEMISTRY-III (METAL π- COMPLEXES AND METAL CLUSTERS) 1: π-acidity, Metal carbonyls, their classification and general features CHE_P11_M1

More information

Supporting Information

Supporting Information Supporting Information Page 2-4. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd complex. Page 5-10. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd 2 complex. Page 11-14. The

More information

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH)

Acids and Bases. CHEM 102 T. Hughbanks. In following equilibrium, will reactants or products be favored? Strong acid (HCl) + Strong base (NaOH) Acids and Bases According to the Brønsted Lowry theory, all acid base reactions can be written as equilibria involving the acid and base and their conjugates. CEM 102 T. ughbanks All proton transfer reactions

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

ph = - log [H3O+] Example: ph 7 = - log [ 1 x 10-7] [H3O+] = mole/liter units ph values are unitless

ph = - log [H3O+] Example: ph 7 = - log [ 1 x 10-7] [H3O+] = mole/liter units ph values are unitless E4 Acids, Bases, and Salts Oct. 1517 and Oct. 2728* Session One of two session lab Complete Parts 1 and 2 in lab. Part 1. Structure and AcidBase Properties Q. Are properties of a compound predictable from

More information

Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles,

Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles, Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles, this process is endothermic. Step 2: Solvent particles

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Predicting LA-LB reactions

Predicting LA-LB reactions Predicting LA-LB reactions A chemical reaction is governed by G rxn

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

Chem 2100, Organic Chemistry I WS07, Dr. Rainer Glaser

Chem 2100, Organic Chemistry I WS07, Dr. Rainer Glaser Chem 2100, rganic Chemistry I WS07, Dr. Rainer Glaser Exam #1 A, As, Ms, Intra- & Intermolecular Bonding. Sources, Properties, and Uses of Acyclic Alkanes. Friday, 2-23-2007, 9:00-9:55 am ame: Answer Key

More information

Stereoelectronic Interactions and Molecular Properties. An NBO-Based Study of Uracil

Stereoelectronic Interactions and Molecular Properties. An NBO-Based Study of Uracil 5544 J. Phys. Chem. A 2003, 107, 5544-5554 Stereoelectronic Interactions and Molecular Properties. An NBO-Based Study of Uracil Eduardo M. Sproviero and Gerardo Burton* Departamento de Química Orgánica,

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Supporting Information

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2004 Chem. Eur. J. 2004 Supporting Information for Chem. Eur. J. Supporting Information For Quantitative Evaluation of d-p Interaction in Copper(I)

More information

Lewis dot structures for molecules

Lewis dot structures for molecules 1 Lewis dot structures for molecules In the dot structure of a molecule, - SHARED valence electrons are shown with dashes - one per pair. - UNSHARED valence electrons ("lone pairs") are represented by

More information

Coordination Compounds. Compounds containing Transition Metals

Coordination Compounds. Compounds containing Transition Metals Coordination Compounds Compounds containing Transition Metals Coordination Compounds Transition Metals Sc 6 Cu 1st row Y 6 Ag 2nd row La 6 Au 3rd row Properties of metals Not as reactive as group 1 or

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Reminder: Pre-lab report, page 112, due at start of lab. Acids and Bases

More information

Required Reading Material.

Required Reading Material. JF Chemistry 1101 2010 Introduction to Physical Chemistry: Acid Base and Solution Equilibria. Dr Mike Lyons School of Chemistry melyons@tcd.ie Required Reading Material. Silberberg, Chemistry, 4th edition.

More information

Introduction to Organometallic Compounds. Metal. R MgX. Wilkinson s catalyst is used for hydrogenation of alkene and alkyne. Wilkinson's catalyst

Introduction to Organometallic Compounds. Metal. R MgX. Wilkinson s catalyst is used for hydrogenation of alkene and alkyne. Wilkinson's catalyst Introduction to rganometallic mpounds 1 Chapter 1 Introduction to rganometallic mpounds Introduction : Edward Frankland was father of organometallic chemistry for a complex to be organometallic compound,

More information

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Solvent Scales ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Water 78 1.17 0.47 DMS 47 0.00 0.76 DM 37 0.00 0.76 Methanol 33 0.93 0.66 MPA 29 0.00 1.05 Acetone 21 0.08 0.43 Methylene

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Supporting Information for

Supporting Information for Supporting Information for Interplay of Halogen and - Charge-Transfer Bondings in Intermolecular Associates of Bromo- or Iododinitrobenzene with Tetramethyl-p-phenylenediamine. Sergiy V. Rosokha, * Eric

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

PCCP Accepted Manuscript

PCCP Accepted Manuscript PCCP Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published

More information

Constructing a MO of NH 3. Nitrogen AO symmetries are

Constructing a MO of NH 3. Nitrogen AO symmetries are Constructing a MO of NH 3 Nitrogen AO symmetries are To develop a MO scheme for NH 3 assume that only the 2s and2p orbitals of nitrogen interact with the hydrogen 1s orbitals (i.e., the nitrogen 1s orbital

More information

CHEMISTRY 121 AUTUMN 2009 CHAPTER 8 & 9 PROBLEMS

CHEMISTRY 121 AUTUMN 2009 CHAPTER 8 & 9 PROBLEMS Dr. Fus AU 2009 EM 121 EMISTRY 121 AUTUMN 2009 APTER 8 & 9 PROBLEMS All questions listed below are problems taken from old hemistry 121 exams given here at The Ohio State University. Read hapters 8 and

More information

Effects of Steric Interactions on the Relativistic Spin-Orbit. Tensors of Di-haloethenes

Effects of Steric Interactions on the Relativistic Spin-Orbit. Tensors of Di-haloethenes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 SUPPORTING INFORMATION: Effects of Steric Interactions on the Relativistic Spin-Orbit

More information

Supporting Information

Supporting Information Supporting Information Computational details The first important issue we have encountered to accomplish our calculations has been the choice of the computational method. We decided to focus on the Density

More information

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions Fei Ye,, Shuanglin Qu,, Lei Zhou,, Cheng Peng, Chengpeng Wang, Jiajia

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods 51 Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152 Volume 4 No. 2 pp. 51-58 September 2013 First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Chapter 2 Lecture Outline

Chapter 2 Lecture Outline Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 2 Lecture Outline Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies,

More information

- When atoms share electrons, the electrons might not be EVENLY shared. Shared electrons may spend more time around one atomic nucleus than the other.

- When atoms share electrons, the electrons might not be EVENLY shared. Shared electrons may spend more time around one atomic nucleus than the other. 228 POLARITY - When atoms share electrons, the electrons might not be EVENLY shared. Shared electrons may spend more time around one atomic nucleus than the other. - When electrons are shared UNEVENLY,

More information

Ammonia and Amines. Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. secondary 2. Et Me.

Ammonia and Amines. Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. secondary 2. Et Me. Ammonia and Amines threefold axis of rotation 111 107 Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. trigonal pyramidal primary 1 secondary 2 tertiary 3 quaternary

More information

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Valence Bond Theory VB theory predicts properties better than Lewis theory bonding schemes, bond strengths,

More information

A series of organic conductors base upon partial oxidized chalcogene compounds like tetrachalcogenafulvalene.

A series of organic conductors base upon partial oxidized chalcogene compounds like tetrachalcogenafulvalene. Abstract A series of organic conductors base upon partial oxidized chalcogene compounds like tetrachalcogenafulvalene. R R R a b R ( =, e) Fig.81: a) tetrachalkogenafulvalene b)chalkogenanthrene lectron-rich

More information

E5 Lewis Acids and Bases. Acids. Acids. Session one. Session two Lab: Parts 2B, 3 and 4

E5 Lewis Acids and Bases. Acids. Acids. Session one. Session two Lab: Parts 2B, 3 and 4 E5 Lewis Acids and Bases Session one Pre-lab (p.141) due at start of lab. First hour: Discussion of E4 Lab: Parts 1and 2A Session two Lab: Parts 2B, 3 and 4 Acids Bronsted: Acids are proton donors and

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Conjugated Unsaturated Systems 13.1 Introduction Allyl radical C 2 C C 2 C C C Allyl cation C 2 C C 2 C C C 1,3-Butadiene C 2 C C C 2 C C C C Molecules with delocalized π bonds are called conjugated unsaturated

More information

Nano theoretical studies of fmet-trna structure in protein synthesis of prokaryotes and its comparison with the structure of fala-trna

Nano theoretical studies of fmet-trna structure in protein synthesis of prokaryotes and its comparison with the structure of fala-trna African Journal of Microbiology Research Vol. 5(18), pp. 2667-2674, 16 September, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.310 ISSN 1996-0808 2011 Academic Journals

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016 Chemisorption František Máca VIII. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 16th December 2016 Chemisorption The knowledge of chemisorption phenomena requires the determination of the geometrical

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

NOT TO BE REMOVED FROM THE EXAMINATION HALL

NOT TO BE REMOVED FROM THE EXAMINATION HALL A copy of the Level III (FHEQ Level 6) Equation and Data Sheet booklet is provided. The use of hand-held, battery-operated, electronic calculators will be permitted subject to the regulations governing

More information

Ultraviolet-Visible Spectroscopy

Ultraviolet-Visible Spectroscopy Ultraviolet-Visible Spectroscopy Introduction to UV-Visible Absorption spectroscopy from 160 nm to 780 nm Measurement of transmittance Conversion to absorbance * A=-logT=εbc Measurement of transmittance

More information

Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals

Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples Mg: 1s 2 2s 2 2p 6 3s 2 2 valence e

More information