Supporting Information for

Size: px
Start display at page:

Download "Supporting Information for"

Transcription

1 Supporting Information for Interplay of Halogen and - Charge-Transfer Bondings in Intermolecular Associates of Bromo- or Iododinitrobenzene with Tetramethyl-p-phenylenediamine. Sergiy V. Rosokha, * Eric A. Loboda, Department of Biological, Chemical and Physical Sciences Roosevelt University, Chicago, IL, * srosokha@roosevelt.edu UV-Vis measurements of the concentration and temperature dependencies of complex formation between TMPD and BDNB (Figures S1 and S2), crystal structure of TMPD IDNB co-crystals (Figure S3), calculated - and halogen-bonded TMPD IDNB complexes (Figure S4), surface electrostatic potentials (Figure S5), correlation between E and E CT for whole series of - and halogen-bonded adducts (Figure S6), calculated energies of the adducts and separate components (Table S1), calculated free energies of various adducts (Table S2), Cartesian coordinates of calculated adducts.

2 Absorbance ln K Absorbance [BDNB]/Abs, M A Wavelength (nm) B y = x R² = /[TMPD], M -1 Figure S1. A) Spectral changes resulting from the addition of TMPD to 25 mm solution of BDNB in dichloromethane (22 o C). Concentration of TMPD (solid lines from the bottom to the top, in mm): 60, 121, 242, 364, 485, 606, 970 and 1212 mm. Dot-dashed line represent separate 20 mm solution of IDNB and dashed line corresponds to the separate 90 mm solution of TMPD. B) Benesi-Hildebrandt treatment of the absorption data at = 255 nm. A B Wavelength (nm) y = x R² = /T, K -1 Figure S2. A) Temperature dependence of the absorption of the mixture of BDNB (40 mm) and TMPD (80 mm) in dichloromethane showing the rise of the absorption of [TMPD, BDNB] complex upon lowering the temperature. Temperatures (from the bottom to the top at 550 nm) +19 o C, 5 o C, -11 o C, -23 o C, -35 o C, -45 o C, -65 o C, -71 o C. B) ln K vs 1/T plot resulted from the spectral data.

3 FigureS3. Fragment of the crystal structure of TMPD IDNB co-crystals showing alternating donor/ acceptor stacks in which blue lines represent intermolecular contacts shorter than the corresponding sums of van der Waals radii (Note that hydrogens are omitted, for clarity). A B Figure S4. Calculated structures of (A) - and (B) halogen bonded adducts of IDNB and TMPD

4 A B C Figure S5. Surface electrostatic potentials for BTFB (A), ITFB (B) andpyridine (C). Color ranges (in kcal mol -1 ) are: between 25 and 14 - dark blue, between 14 and 5 - light blue, between 5 and -5 green, between -5 and -14 yellow, between -14 and -25 red E CT, kcal mol R² = E, kcal mol -1 Figure S6. Correlation between E and E CT for whole series of - and halogen-bonded adducts (in CH 2 Cl 2 ) in Table 3.

5 Table S1. Calculated energies of the halogen-bonded (XB) and - bonded adducts and separate components (in Hartrees) E (gas phase) E (CH 2 Cl 2 ) BSSE XB-TMPD BDNB TMPD BDNB TMPD BDNB a TMPD BDNB a XB-TMPD IDNB TMPD IDNB XB-TMPD BPFB TMPD BPFB XB-TMPD IPFB TMPD IPFB XB-TMPD BTFB TMPD BTFB XB-TMPD ITFB TMPD ITFB XB-PYR BDNB PYR BDNB XB-PYR IDNB PYR IDNB (BDNB) (IDNB) TMPD BDNB IDNB BPFB IPFB BTFB ITFB PYR a) Additional - bonded minima

6 Table S2. Calculated free energies of complex formation ( G = G complex (G donor + G acceptor ) +BSSE), in kcal/mol. G (gas phase) G (CH 2 Cl 2 ) XB-TMPD BDNB TMPD BDNB XB-TMPD IDNB TMPD IDNB XB-TMPD BPFB TMPD BPFB XB-TMPD IPFB XB-TMPD BTFB XB-TMPD BTFB TMPD BTFB XB-TMPD ITFB TMPD ITFB XB-PYR BDNB PYR BDNB XB-PYR IDNB PYR IDNB (BDNB) (IDNB)

7 Cartesian coordinates (XB halogen bonded complexes, - - bonded complexes) gas phase CH 2 Cl 2 XB- TMPD BDNB C C C C C C H H H N O O N O O Br C C C C C C H H H H N N C H H H C H H H C H H H C H H H C C C C C C H H H N O O N O O Br C C C C C C H H H H N N C H H H C H H H C H H H C H H H TMPD BDNB C C C C C C H H H H N N C C C C C C C C H H H H N N C C

8 XB- TMPD IDNB C C C C H H H N O O C H H H C H H H C H H H C H H H N O O Br C C C C C C H H H N O O N O O C C C C C C H H H H N N C H H H C C C C H H H N O O C H H H C H H H C H H H C H H H N O O Br C C C C C C H H H N O O N O O C C C C C C H H H H N N C H H H

9 C H H H C H H H C H H H I TMPD IDNB C C C C C C H H H H N N C C C C C C H H H N O O C H H H C H H H C H H H C H H H N O O I C H H H C H H H C H H H I C C C C C C H H H H N N C C C C C C H H H N O O C H H H C H H H C H H H C H H H N O O I XB- TMPD BPFB C C C C C C

10 C C C H H H H N N C C C C C C Br C H H H C H H H C H H H C H H H F F F F F TMPD BPFB C C C C C C H H H H N N C C C C C C Br C H H H C C C C H H H H N N C C C C C C Br C H H H C H H H C H H H C H H H F F F F F C C C C C C H H H H N N C C C C C C Br C H H H C

11 XB- TMPD IPFB H H H C H H H C H H H F F F F F C C C C C C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F F I H H H C H H H C H H H F F F F F C C C C C C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F F I TMPD IPFB C C C C C C C C

12 XB- TMPD BTFB C C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F F I C C C C C C H H H H N N C C C C C C Br C H H H C H C C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F F I C C C C C C H H H H N N C C C C C C Br C H H H C H

13 H H C H H H C H H H F F F F Br TMPD BTFB C C C C C C H H H H N N C C C C C C Br C H H H C H H H C H H H C H H H F F F F Br H H C H H H C H H H F F F F Br C C C C C C H H H H N N C C C C C C Br C H H H C H H H C H H H C H H H F F F F Br XB- TMPD ITFB C C C C C C C C C C

14 C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F I I TMPD ITFB C C C C C C H H H H N N C C C C C C C H H H C H H H C H H H H N N C C C C C C C H H H C H H H C H H H C H H H F F F F I I C C C C C C H H H H N N C C C C C C C H H H C H H H

15 C H H H C H H H F F F F I I XB-PYR BDNB C C C C C C H H H N O O N O O Br C C C C C H H H H N H PYR BDNB C C C C C H H H H C C C C C C H H H N C H H H C H H H F F F F I I C C C C C C H H H N O O N O O Br C C C C C H H H H N H C C C C C H H H H C C C C C C H H H N

16 O O N O O Br H N XB-PYR IDNB C C C C C C H H H N O O N O O C C C C C H H H H N H I PYR IDNB C C C C C H H H H C C C C C C H H H N O O N O O H O O N O O Br H N C C C C C C H H H N O O N O O C C C C C H H H H N H I C C C C C H H H H C C C C C C H H H N O O N O O H

17 N I (BDNB)2 Br O O O O N N C C C C C C H H H Br O O O O N N C C C C C C H H H (IDNB)2 O O O O N N C C C C C C H H H O O O O N N C C C C C N I Br O O O O N N C C C C C C H H H Br O O O O N N C C C C C C H H H O O O O N N C C C C C C H H H I O O O O N N C C C C

Supporting Information

Supporting Information Supporting Information Intermolecular contacts in compressed α-d-mannose Ewa Patyk-Kaźmierczak, a Mark R. Warren, b David R. Allan, b Andrzej Katrusiak a a Department of Materials Chemistry, Faculty of

More information

The Energetics of Intramolecular Halogen Bond Formation Using Aryldiyne Linkers

The Energetics of Intramolecular Halogen Bond Formation Using Aryldiyne Linkers The Energetics of ntramolecular alogen Bond ormation Using Aryldiyne Linkers Sierra M. Giebel, Dr. athan P. Bowling, and Dr. Erin D. Speetzen University of Wisconsin- Stevens Point What is a halogen bond?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 SUPPLEMENTARY INFORMATION Novel hydrogen- and halogen-bonding anion receptors based on 3- iodopyridinium

More information

Ultraviolet-Visible Spectroscopy

Ultraviolet-Visible Spectroscopy Ultraviolet-Visible Spectroscopy Introduction to UV-Visible Absorption spectroscopy from 160 nm to 780 nm Measurement of transmittance Conversion to absorbance * A=-logT=εbc Measurement of transmittance

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.4 Intermolecular

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama Halogen Bond Applications in Organic Synthesis Literature Seminar 2018/7/14 M1 Katsuya Maruyama 1 Contents 1. Introduction 2. Property of Halogen Bond 3. Application to Organic Synthesis 2 1. Introduction

More information

THE CHEMISTRY OF ALKANES

THE CHEMISTRY OF ALKANES AN INTRODUCTION TO THE CHEMISTRY OF ALKANES Information taken from a presentation by: KNOCKHARDY PUBLISHING General ALKANES members of a homologous series general formula is C n H 2n+2 for non-cyclic alkanes

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. DFT optimized structure of the [Ag III (L 1 )](ClO 4 ) 2 (1 ClO4 ) complex (CCDC code 978368). Hydrogen atoms and the two perchlorate anions have been omitted

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Concept review: Binding equilibria

Concept review: Binding equilibria Concept review: Binding equilibria 1 Binding equilibria and association/dissociation constants 2 The binding of a protein to a ligand at equilibrium can be written as: P + L PL And so the equilibrium constant

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Catalyst-Free Reaction of Ethynyl-π-Extended Electron Acceptors with Amines

Catalyst-Free Reaction of Ethynyl-π-Extended Electron Acceptors with Amines Catalyst-Free Reaction of Ethynyl-π-Extended Electron Acceptors with Amines Atsuro Takai* and Masayuki Takeuchi* 2018 The Chemical Society of Japan Table of Contents S1. Synthesis and Characterization

More information

A Molecular Orbital Perspective

A Molecular Orbital Perspective 8 Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective Previously appeared as Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective L. P. Wolters, F. M. Bickelhaupt

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

COSMO-RS Theory. The Basics

COSMO-RS Theory. The Basics Theory The Basics From µ to properties Property µ 1 µ 2 activity coefficient vapor pressure Infinite dilution Gas phase Pure compound Pure bulk compound Partition coefficient Phase 1 Phase 2 Liquid-liquid

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Chemistry State Content Standards EXAM. from human beings! Explanations and Examples MUST be in Complete Sentences!

Chemistry State Content Standards EXAM. from human beings! Explanations and Examples MUST be in Complete Sentences! Chemistry State Content Standards EXAM You may use your Notes, PowerPoint, or Text on this exam but NO help from human beings! You MUST HAND WRITE THESE EXAMS in INK!! NO TYPED or PENCIL PAPERS WILL BE

More information

Piezochromic Topology Switch in a Coordination Polymer

Piezochromic Topology Switch in a Coordination Polymer Piezochromic Topology Switch in a Coordination Polymer Michał Andrzejewski, Andrzej Katrusiak* Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland *Corresponding author:

More information

Solvent & geometric effects on non-covalent interactions

Solvent & geometric effects on non-covalent interactions Solvent & geometric effects on non-covalent interactions Scott L. Cockroft PhysChem Forum 10, Syngenta, Jealott s Hill, 23 rd March 11 QSAR & Physical Organic Chemistry Quantifiable Physicochemical Properties

More information

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 ] and (2-Bromo-1,3-phenylene)bis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 Br]: Synthesis,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

Chemistry. Atomic and Molecular Structure

Chemistry. Atomic and Molecular Structure Chemistry Atomic and Molecular Structure 1. The periodic table displays the elements in increasing atomic number and shows how periodicity of the physical and chemical properties of the elements relates

More information

Supplemental Activities. Module: States of Matter. Section: Intermolecular Forces - Key

Supplemental Activities. Module: States of Matter. Section: Intermolecular Forces - Key Supplemental Activities Module: States of Matter Section: Intermolecular Forces - Key Electrostatic Forces ACTIVITY 1 The purpose of this activity is to practice recognizing the nature of the forces important

More information

Coordination Polymers Containing Ferrocene Backbone. Synthesis, Structure and Electrochemistry

Coordination Polymers Containing Ferrocene Backbone. Synthesis, Structure and Electrochemistry Coordination Polymers Containing Ferrocene Backbone. Synthesis, Structure and Electrochemistry Vadapalli Chandrasekhar*, and Ramalingam Thirumoorthi Department of Chemistry, Indian Institute of Technology

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

D-Mannitol Hexanitrate as Electron Acceptor in Charge Transfer Complexes

D-Mannitol Hexanitrate as Electron Acceptor in Charge Transfer Complexes BULLET DE L'ACADÉME POLOASE DES SCECES Série des sciences chimiques Volume XV, o. 7, 1970 ORGAC CHEMSTRY D-Mannitol Hexanitrate as Electron Acceptor in Charge Transfer Complexes by T. URBAŃSK, В. HETARSK

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

Supporting Information

Supporting Information Supporting Information for Gold(I) Alkynyls Supported by Mono- and Bidentate NHC Ligands: Luminescence and Isolation of Unprecedented Ionic Complexes Alexander A. Penney, Galina L. Starova, Elena V. Grachova,

More information

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation Supplementary Information for Evaluating the energetic driving force for co-crystal formation Christopher R. Taylor and Graeme M. Day School of Chemistry, University of Southampton, Highfield, Southampton,

More information

Intermolecular Forces: Liquids, and Solids. Chapter 11

Intermolecular Forces: Liquids, and Solids. Chapter 11 Intermolecular Forces: Liquids, and Solids Chapter 11 1 Review Practice Excited Na atoms may emit radiation having a wavelength of 589 nm. a) What is the wavelength in meters? b) What is the frequency

More information

Intermolecular Forces I

Intermolecular Forces I I How does the arrangement of atoms differ in the 3 phases of matter (solid, liquid, gas)? Why doesn t ice just evaporate into a gas? Why does liquid water exist at all? There must be some force between

More information

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei.

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei. Molecular Geometries Lewis dot structures are very useful in determining the types of bonds in a molecule, but they may not provide the best insight into the spatial geometry of a molecule, i.e., how the

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

Dr. Williamson s Notes for Atoms Continued

Dr. Williamson s Notes for Atoms Continued Structure of the Periodic Table Atoms Continued: Bohr student version Dr. V.M. Williamson Arranged by or : vertical columns of elements with similar chemical and physical properties : horizontal rows of

More information

CHEM 60 Spring 2016 Exam 3 Ch 9-12, 100 points total.

CHEM 60 Spring 2016 Exam 3 Ch 9-12, 100 points total. Name Exam No. F CHEM 60 Spring 2016 Exam 3 Ch 9-12, 100 points total. Multiple Choice. (25 questions, 3 points each = 75 points total) Mark the letter on the scantron form corresponding to the one best

More information

The Periodic Table consists of blocks of elements

The Periodic Table consists of blocks of elements The Periodic Table consists of blocks of elements s block d block p block There is a clear link between the Periodic Table and the electronic configuration of an element 1s 2s 2p 3s 3p 4s 3d 4p 1s ATOMIC

More information

IR, MS, UV, NMR SPECTROSCOPY

IR, MS, UV, NMR SPECTROSCOPY CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET All Sections CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET General Instructions for the 318 Spectroscopy Problem Set Consult the Lab Manual,

More information

Intermolecular Forces of Attraction

Intermolecular Forces of Attraction Name Unit Title: Covalent Bonding and Nomenclature Text Reference: Pages 189-193 Date Intermolecular Forces of Attraction Intramolecular vs. Intermolecular So far in our discussion of covalent bonding,

More information

in Halogen-Bonded Complexes

in Halogen-Bonded Complexes 9 Resonance Assistance and Cooperativity in Halogen-Bonded Complexes Previously appeared as Covalency in Resonance-Assisted Halogen Bonds Demonstrated with Cooperativity in N-Halo-Guanine Quartets L. P.

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

Announcements. Chem 7 Final Exam Wednesday, Oct 10 1:30-3:30AM Chapter or 75 multiple choice questions

Announcements. Chem 7 Final Exam Wednesday, Oct 10 1:30-3:30AM Chapter or 75 multiple choice questions Exam III (Chapter 7-0) Wednesday, ctober 3, 202 Time 600PM - 730PM SEC A 24A and 25A SKIPPING THIS STUFF Announcements Chem 7 Final Exam Wednesday, ct 0 30-330AM Chapter -2 70 or 75 multiple choice questions

More information

On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br)

On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br) 5496 J. Phys. Chem. A 2009, 113, 5496 5505 On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br) Margarita I. Bernal-Uruchurtu* and Ramón Hernández-Lamoneda

More information

Some properties of water

Some properties of water Some properties of water Hydrogen bond network Solvation under the microscope 1 Water solutions Oil and water does not mix at equilibrium essentially due to entropy Substances that does not mix with water

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL 8.1. Introduction In recent times higher Second Harmonic Generation (SHG) efficiency organic materials receive great

More information

Compare the strength of IMFs present in three liquids. The liquids are in separate containers. A. CH 3 CH 2 NH 2 (liquid) B. CH 3 CH 2 F (liquid)

Compare the strength of IMFs present in three liquids. The liquids are in separate containers. A. CH 3 CH 2 NH 2 (liquid) B. CH 3 CH 2 F (liquid) Compare the strength of IMFs present in three liquids. The liquids are in separate containers. A. CH 3 CH 2 NH 2 (liquid) B. CH 3 CH 2 F (liquid) C. CH 3 CH 2 OH (liquid) Draw two 3D Lewis Structures of

More information

Dr. Bolaños CHEM Exam #2A Fall 2014

Dr. Bolaños CHEM Exam #2A Fall 2014 Name: Date: There are 8 questions (with parts) on this examination totaling 105 points (scored out of 100 points). You have 1.5 hours to complete this examination and may only use a basic scientific calculator

More information

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance

6 Shapes of molecules and intermolecular forces Answers to practice questions. OCR Chemistry A. Question Answer Marks Guidance 1 (a) (i) HI, HBr, HCl, HF 1 (a) (ii) CF 4, CH 3 I, CH 2 Br 2, CHCl 2 F 1 (b) (i) CO 2 and HCN: linear H 2 O and SCl 2 : non-linear BF 3 and SO 3 : trigonal planar NH 3 and H 3 O + : pyramidal AlCl 4 and

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

STRUCTURE AND BONDING

STRUCTURE AND BONDING NAME SCHOOL INDEX NUMBER DATE 1. 1989 Q 6 STRUCTURE AND BONDING The table below gives the distance between atoms (bond lengths) in halogen molecules and the energies required to break the bonds (bond energies)

More information

Pyramidal Fe(CO) 5. P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute of Science,

Pyramidal Fe(CO) 5. P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute of Science, Fe as Hydrogen/Halogen Bond Acceptor in Square Pyramidal Fe(CO) 5 Supporting Information P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces H covalent bond (stronger) Cl H Cl intermolecular attraction (weaker) The attractions between molecules are not nearly as strong as the covalent bonds that hold atoms together. They

More information

Chapter 17 Group 17 Elements. Physical Properties The elements Hydrogen Halides Interhalogen compounds and polyhalogen ions Oxoacids and salts

Chapter 17 Group 17 Elements. Physical Properties The elements Hydrogen Halides Interhalogen compounds and polyhalogen ions Oxoacids and salts Chapter 17 Group 17 Elements Physical Properties The elements Hydrogen Halides Interhalogen compounds and polyhalogen ions Oxoacids and salts 1 Bromine resources and commercial demand 2NaClO 3 + 2NaCl

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Lecture 2: Atom and Bonding Semester /2013

Lecture 2: Atom and Bonding Semester /2013 EMT 110 Engineering Materials Lecture 2: Atom and Bonding Semester 1 2012/2013 Atomic Structure Fundamental Concept Atoms are the structural unit of all engineering materials! Each atoms consist of nucleus

More information

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

There are two types of bonding that exist between particles interparticle and intraparticle bonding. There are two types of bonding that exist between particles interparticle and intraparticle bonding. Intraparticle bonding describes the forces that exist within a particle such as a molecule or ionic

More information

AS LEVEL CHEMISTRY BONDING AND STRUCTURE PERIODICITY

AS LEVEL CHEMISTRY BONDING AND STRUCTURE PERIODICITY AS LEVEL CHEMISTRY BONDING AND STRUCTURE PERIODICITY Answer all questions Max 90 marks Name.. Mark../90...% Grade Paddington Academy 1 1. Draw a dot-and-cross diagram for CaCl 2. [Total 2 marks] 2. Magnesium

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

Supporting Information

Supporting Information Supporting Information Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight Into Flavodiiron NO Reductases Hai T. Dong, a Corey J. White, a Bo Zhang, b Carsten Krebs, b

More information

Chapter 2: Protecting the Ozone Layer

Chapter 2: Protecting the Ozone Layer Chapter 2: Protecting the zone Layer Why do we need to do to protect the ozone layer? Isn t ozone hazardous to human health? Why is the ozone layer getting smaller? What can we do (if anything) to help

More information

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1)

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1) BOND ENERGIES Atoms bond together to form compounds because in doing so they attain lower energies than they possess as individual atoms. A quantity of energy, equal to the difference between the energies

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

Bonding and the Determination of Melting Points and Boiling Points

Bonding and the Determination of Melting Points and Boiling Points Bonding and the Determination of Melting Points and Boiling Points Melting Point/Freezing Point: The temperature at which a liquid becomes a solid and a solid becomes a liquid. 0 C is the freezing point

More information

A RAMAN SPECTROSCOPIC AND COMPUTATIONAL STUDY OF THE EFFECTS OF HALOGEN BONDING ON PYRIMIDINE CONTAINING SYSTEMS

A RAMAN SPECTROSCOPIC AND COMPUTATIONAL STUDY OF THE EFFECTS OF HALOGEN BONDING ON PYRIMIDINE CONTAINING SYSTEMS A RAMAN SPECTROSCOPIC AND COMPUTATIONAL STUDY OF THE EFFECTS OF HALOGEN BONDING ON PYRIMIDINE CONTAINING SYSTEMS By: Peyton Lindsey Reves A thesis submitted to the faculty of The University of Mississippi

More information

CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES

CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES Ahsan Elahi and Rajni Kant* Keywords: Coumarins; PIXEL; hydrogen bonding; intermolecular interactions; lattice energy.

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Chemistry 1B. Fall Topics Lectures Coordination Chemistry

Chemistry 1B. Fall Topics Lectures Coordination Chemistry Chemistry 1B Fall 2016 Topics Lectures 17-18 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 good reasons for studying coordination chemistry

More information

Answers. Chapter 5. Exercises

Answers. Chapter 5. Exercises Answers Chapter 5 Exercises 1 B 2 B 3 A 4 D 5 C 6 q = mc T, so T = q mc = 100 = 7.25 C 100 0.138 T = 25.0 + 7.25 = 32.3 C 7 A 8 A 9 C 10 (a) ΔT = 36.50 25.85 = 10.65 C (or K) (b) q = mc T q = m(h 2 O)

More information

Water - HW. PSI Chemistry

Water - HW. PSI Chemistry Water - HW PSI Chemistry Name 1) In a single molecule of water, the two hydrogen atoms are bonded to a single oxygen atom by A) hydrogen bonds. B) nonpolar covalent bonds. C) polar covalent bonds. D) ionic

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Electronic Supplementary Information

Electronic Supplementary Information This journal is The Royal Society of Chemistry 0 Electronic Supplementary Information Zinc(II) ortho-hydroxyphenylhydrazo-β-diketonate Complexes and their Catalytic Ability towards Diastereoselective Nitroaldol

More information

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016 Chemistry 1B Fall 2016 LISTEN UP!!! Topics Lectures 17-18 Coordination Chemistry WE WILL ONLY COVER LIMITED PARTS OF CAPTER 19 (940-944;952-954;963-970) 1 2 good reasons for studying coordination chemistry

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016 Chemistry 1B Fall 2016 Topics Lectures 17-18 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 Page 1 good reasons for studying coordination

More information

Trends in Atomic Radius

Trends in Atomic Radius Ashley Robison My Preferences Site Tools Popular pages MindTouch User Guide FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds Involves valence electrons. PE is lower in bonded atoms. Attractive force that develops

More information

Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation

Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation Qing-Na Zheng, a,b Xuan-He Liu, a,b Ting Chen, a Hui-Juan Yan, a Timothy Cook, c Dong Wang* a, Peter J. Stang, c Li-Jun

More information

Probing Hydrogen Bond Energies by Mass Spectrometry

Probing Hydrogen Bond Energies by Mass Spectrometry Probing Hydrogen Bond Energies by Mass Spectrometry Hai-Feng Su, Lan Xue,* Yun-Hua Li, Shui-Chao Lin, Yi-Mei Wen, Rong-Bin Huang, Su-Yuan Xie,* and Lan-Sun Zheng State Key Laboratory for Physical Chemistry

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy Why Proteins Fold Proteins are the action superheroes of the body. As enzymes, they make reactions go a million times faster. As versatile transport vehicles, they carry oxygen and antibodies to fight

More information

Lecture outline: Chapter 7 Periodic properties

Lecture outline: Chapter 7 Periodic properties Lecture outline: Chapter 7 Periodic properties 1. Electrostatic effects 2. Atomic size 3. Ionization energy 4. Electron affinity it 5. Summarize some periodic properties 1 Some important terms Electron

More information

Topic 3: Periodic Trends and Atomic Spectroscopy

Topic 3: Periodic Trends and Atomic Spectroscopy Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Authors: Jay A. Kroll 1,2,#, Benjamin N. Frandsen 3,#, Henrik G. Kjaergaard 3,*, and Veronica Vaida 1,2,*

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Intermolecular Forces & Condensed Phases

Intermolecular Forces & Condensed Phases Intermolecular Forces & Condensed Phases CHEM 107 T. Hughbanks READING We will discuss some of Chapter 5 that we skipped earlier (Van der Waals equation, pp. 145-8), but this is just a segue into intermolecular

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Charge-Transfer and Dispersion Energies in Water Clusters

Charge-Transfer and Dispersion Energies in Water Clusters II.26 Charge-Transfer and Dispersion Energies in Water Clusters Suehiro Iwata 1,2, Pradipta Bandyopadhyay 3, Sotiris S. Xantheas 4 1)Toyota Physical and Chemical Research Institute (2008-2012, fellow)

More information

Evaluation of Charge Penetration between Distributed Multipolar Expansions

Evaluation of Charge Penetration between Distributed Multipolar Expansions Chemistry Publications Chemistry 5-2000 Evaluation of Charge Penetration between Distributed Multipolar Expansions Mark Alan Freitag Iowa State University Mark S. Gordon Iowa State University, mgordon@iastate.edu

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

4, 6 4.3, , , , , ,7,8 5.1, 5.2, 7.1, 7.2, 8.2 4, 5 4.2, 5.3

4, 6 4.3, , , , , ,7,8 5.1, 5.2, 7.1, 7.2, 8.2 4, 5 4.2, 5.3 1. Atomic and Molecular Structure Ch. Sect. 1. The periodic table displays the elements 4, 5, 6, 7, 8, 25 in increasing atomic number and shows how periodicity of the physical and chemical properties of

More information