Supplementary Information for Evaluating the. energetic driving force for co-crystal formation

Size: px
Start display at page:

Download "Supplementary Information for Evaluating the. energetic driving force for co-crystal formation"

Transcription

1 Supplementary Information for Evaluating the energetic driving force for co-crystal formation Christopher R. Taylor and Graeme M. Day School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom List of Solvents The following molecules were specified as solvents or room-temperature liquid components for the purposes of excluding solvates or small-molecule clathrates from the list of multicomponent systems obtained from the CSD. Such structures were removed from the list by using this set as a filter within the ConQuest package. Water Methanol Ethanol Dimethyl ether Diethyl ether Formic acid Acetic acid 1

2 Acetone 3-pentanone Ethyl acetate Isopropanol tert-butanol Dichloromethane (DCM) Trichloromethane Tetrachloromethane 1,1,2,2-tetrachloroethane 1,1,1,2,2-pentachloroethane Hexachloroethane Acetonitrile Dimethylsulfoxide (DMSO) N,N -dimethylacetamide (DMA) Carbon disulfide Pentane Hexane Cyclohexane Benzene Toluene 2

3 p-xylene Tetrahydrofuran (THF) 1,4-dioxane Pyridine Phenol CSD Search Procedure Using the ConQuest software, we searched the CSD for crystal structures that met the following criteria: Contain at least two distinct chemical species (i.e. G 2) Contain only C, H, N, O, F, S, or Cl Present in the Best Hydrogens subset of the CSD as defined by van der Streek. 1 This resulted in 3303 co-crystal structures. After randomly selecting a set of these structures to run through our DFT calculations, we exported this set as SMILES strings and used in-house Python code to identify all the unique SMILES strings, and thus all unique molecular species present in our co-crystal set. We then built a set of all reliable single-component structures by searching the CSD using the same criteria but the appropriate number of chemical species (G = 1) and exporting a list of SMILES strings for these. Finally, we searched this second list of SMILES strings for all unique SMILES obtained from the co-crystal search this allowed us to identify all the single-component structures that contained the molecules of interest. As SMILES lack stereochemical information, it is feasible that this procedure would give erroneous matches when multiple chemical species share an ambiguous SMILES string. Such 3

4 cases were checked visually and amended manually, and in any case amounted to no more than 8% of the entire set of 350 structures. Halogen-bonded subset To augment our test set and consider greater chemical diversity in co-crystal interactions, we chose to perform a complimentary search of the database for additional co-crystals that specifically featured halogen bonding. As stated in the main article, we searched for such species in the CSD using the following criteria: Contain at least two distinct chemical species (i.e. G 2) Contain a contact D X A in which the D X distance is less than the sum of the atoms van der Waals radii (plus a tolerance of 0.1 Å), and the angle formed by D X A is greater than 160 degrees. D is one of N, O, S, or Cl, X is either Br or I, All other atoms are any of C, H, N, O, F, S, or Cl. This procedure yielded 34 binary co-crystal structures, of which only 28 successfully completed our minimisation procedure. The matching single-component structures were searched for manually in ConQuest. Co-crystals and component index Our set of co-crystals contains 350 structures. Two of these are ternary (three-component) co-crystals; all the others are binary (two-component) systems. 4

5 Our list of co-crystals accompanies this SI as three comma-separated variable (CSV) files of co-crystals (separated by category: hydrogen-bonding, halogen-bonding, or weaklybound) and the single component structures we have identified for them using our SMILES search procedure. Each row in these files is a co-crystal, followed by: its components and stoichiometry, the calculated relative stability (both per formula unit and per molecule), the calculated H-bond strength measure (both per formula unit and per molecule), the change in packing coefficient, the hydrogen bond counts of the co-crystal and its single components, the change in hydrogen bond count (both per formula unit and per molecule), the type of interaction present (H-bond, halogen bond, or no bonds ), whether proton transfer occurred in the DFT optimisation (only relevant for 6 of the H-bonded set), whether the halogen present is Br or I (only relevant for the halogen-bonded set), and halogen bond counts for each molecule in the co-crystal (both per formula unit and per molecule, again only for the halogen-bonded set). DFT optimization Procedure Our calculations originally began using the CASTEP code and the PBE+D2 functional and dispersion correction. VASP and the improved PBE+D3 level of theory became available to us at a later date. Rather than re-minimize many of our experimental structures from scratch, we chose to adopt a procedure in which each structure was first minimised in CASTEP at the PBE+D2 level of theory, then re-minimise these CASTEP-optimized structures using VASP (as our access to VASP was time-limited while CASTEP was not). In both codes we applied our procedure of first optimizing the structures with the cell parameters fixed, before then re-optimizing with variable cell parameters. Each crystal structure was therefore subjected to the following procedures, in this order, with the output of each step being used as the input for the next: 5

6 1. A CASTEP PBE+D2 fixed-cell optimisation 2. A CASTEP PBE+D2 optimisation with a flexible cell 3. A VASP PBE+D3 fixed-cell optimisation 4. A VASP PBE+D3 optimisation with a flexible cell 5. A final, higher-accuracy VASP PBE+D3 single-point calculation (using the PREC=Accurate flag and a plane-wave energy cut-off of 600 ev). All energies and structures presented are those that have been optimised through both levels of theory according to the above workflow. Several structures were separately optimized through VASP PBE+D3 alone to confirm that the above procedure did not give significantly different energies or structures from minimising with PBE+D3 in VASP alone. Hydrogen-bonding as a descriptor Cases of proton transfer As stated in the article text, during our DFT optimisations, we encountered 6 co-crystal structures that underwent proton transfer between species during the minimisation, becoming salts. The CSD refcodes of these species are: AWUDEB, DINSOK01, MIZMUE, RAWFAW, SEDJUI, and UJORAM. The effect of donor-acceptor repulsion As described in the article text, we compute a simple hydrogen bond strength measure based on the Coulombic interaction of the hydrogen and acceptor partial charges according to molecular DFT calculations. By definition, assuming the hydrogen and acceptor have partial charges of opposite sign, this interaction has no explicit description of interatomic repulsion, or the effect of the donor atom. 6

7 We attempted to rectify this by including the Coulombic interaction of the donor and acceptor charges, effectively modeling the hydrogen bond as an acceptor atom interacting with a model dipole formed by the hydrogen and donor atoms. However, this modification proved unsatisfactory for two reasons. Firstly, it offers no improvement in the correlation of co-crystal relative stability with the calculated hydrogen bond strength (see Figure 1). Eco-cryst kj mol 1 of molecules E H-bond H-A,electr kj mol 1 of molecules Figure 1: Relative stabilities of co-crystals as a function of the change in the H-bond strength measure defined in the article text. This measure considers the Coulombic attraction of the hydrogen and acceptor, plus the repulsion of the acceptor and donor. However, it reveals no significantly greater correlation with the relative stability than the H A attraction alone. More concerningly, including this donor-acceptor repulsion raises the energy of many hydrogen bonds so dramatically that they become repulsive; approximately 20% of both cocrystals and single-component structures have positive total hydrogen bond energies when the repulsion is included. (All total hydrogen bond energies are negative when repulsion is omitted.) Evidently the partial charges computed for the donor can be large enough that their interaction with the acceptor is destabilising, despite the greater D A distance. 7

8 References (1) van de Streek, J. Acta Crystallographica Section B Structural Science 2006, 62,

Excess Molar Enthalpies of Dibromomethane + Cyclohexanone and Dichloromethane + Cyclohexanone or + Pyrrolidin-2-one at T = K

Excess Molar Enthalpies of Dibromomethane + Cyclohexanone and Dichloromethane + Cyclohexanone or + Pyrrolidin-2-one at T = K Journal of Applied Solution Chemistry and Modeling, 2012, 1, 127-131 127 Excess Molar Enthalpies of Dibromomethane + Cyclohexanone and Dichloromethane + Cyclohexanone or + Pyrrolidin-2-one at T =303.15

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry 2 Diatomic molecule C v and D h HCN H-H 3 contribution orbital electron Σ 0 σ 1 Π 1 π 1 Δ 2 δ 1 Φ 3 δ 1 Σ + Σ - 4 Linear molecule NO 2s+1 2 Π A 1 =Σ + 0 A 2 =Σ - 0 E

More information

Spectroscopy in Inorganic Chemistry. Electronic Absorption Spectroscopy

Spectroscopy in Inorganic Chemistry. Electronic Absorption Spectroscopy Spectroscopy in Inorganic Chemistry Diatomic molecule C v and D h NO H-H 2 contribution orbital Σ 0 σ Π 1 π Δ 2 δ Φ 3 δ 3 Linear molecule NO 2s+1 2 Π A 1 =Σ + 0 A 2 =Σ - 0 E 1 =Π 1 E 2 =Δ 2 E 3 =Φ 3 4

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Colin F. Poole Department of Chemistry Wayne State University USA

Colin F. Poole Department of Chemistry Wayne State University USA Colin F. Poole Department of Chemistry Wayne State University USA Method Development Process Method Development Process Need to know what to do Before beginning experiments need to decide how to do it

More information

High Purity Chromasolv Solvents

High Purity Chromasolv Solvents Research Chemicals High Purity Chromasolv Solvents Part of Honeywell Research Chemical s Exclusive Riedel-de Haën Brand Portfolio The Chromasolv family of solvents are used in a variety of analytical applications

More information

Loudon Chapter 8 Review: Alkyl Halides, Alcohols, etc. Jacquie Richardson, CU Boulder Last updated 8/24/2017

Loudon Chapter 8 Review: Alkyl Halides, Alcohols, etc. Jacquie Richardson, CU Boulder Last updated 8/24/2017 In this chapter, we look at a lot of non-hydrocarbon functional groups. These first three alkyl halides, alcohols, and thiols are all functional groups with only one bond to the rest of the molecule. They

More information

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates Agris Bērziņš 1,2, Edgars Skarbulis 1, Andris Actiņš 1 1 - Faculty of Chemistry, University

More information

S N 2 Reaction: Effect of Steric Hindrance Color pictures: web.chem.ucla.edu/~harding/sn2sterics.html

S N 2 Reaction: Effect of Steric Hindrance Color pictures: web.chem.ucla.edu/~harding/sn2sterics.html 2 Reaction: Effect of teric Hindrance Color pictures: web.chem.ucla.edu/~harding/2sterics.html In an 2 reaction, the nucleophile must approach the carbon-leaving group bond from the backside. What is the

More information

Solvatochromism Effect of Different Solvents on UV-Vis Spectra of Flouresceine and its Derivatives

Solvatochromism Effect of Different Solvents on UV-Vis Spectra of Flouresceine and its Derivatives Iran. J. Chem. Chem. Eng. Vol. 27, No. 4, 2008 Solvatochromism Effect of Different Solvents on UVVis Spectra of Flouresceine and its Derivatives Hadjmohammadi, Mohammad Reza* + ; Chaichi, Mohammad Javad;

More information

Solvents and solvent selection for chromatography. Prof. Colin F. Poole Department of Chemistry Wayne State University USA

Solvents and solvent selection for chromatography. Prof. Colin F. Poole Department of Chemistry Wayne State University USA Solvents and solvent selection for chromatography Prof. Colin F. Poole Department of Chemistry Wayne State University USA Solvent strength Single parameter estimate of a solvent s ability to cause migration

More information

Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design

Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Computer Aided Drug Design - Introduction Development

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

Intermolecular Forces & Condensed Phases

Intermolecular Forces & Condensed Phases Intermolecular Forces & Condensed Phases CHEM 107 T. Hughbanks READING We will discuss some of Chapter 5 that we skipped earlier (Van der Waals equation, pp. 145-8), but this is just a segue into intermolecular

More information

DESOLVATION OF DROPERIDOL ISOSTRUCTURAL SOLVATES

DESOLVATION OF DROPERIDOL ISOSTRUCTURAL SOLVATES DESOLVATION OF DROPERIDOL ISOSTRUCTURAL SOLVATES AGRIS BĒRZIŅŠ, TOMS RĒĶIS, ANDRIS ACTIŅŠ, INESE SARCEVIČA DEPARTMENT OF CHEMISTRY, UNIVERSITY OF LATVIA Background Department of Chemistry, University of

More information

Electronic Supporting Information (ESI)

Electronic Supporting Information (ESI) Electronic Supporting Information (ESI) Polymorphism in metformin embonate salt - recurrence of dimeric and tetrameric guanidinium-carboxylate synthons. Jagadeesh Babu Nanubolu,* a Balasubramanian Sridhar,

More information

COSMO-RS Theory. The Basics

COSMO-RS Theory. The Basics Theory The Basics From µ to properties Property µ 1 µ 2 activity coefficient vapor pressure Infinite dilution Gas phase Pure compound Pure bulk compound Partition coefficient Phase 1 Phase 2 Liquid-liquid

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

Welcome to C341!! Chapter 1 & 2: Review of General Chemistry

Welcome to C341!! Chapter 1 & 2: Review of General Chemistry Welcome to C341!! Chapter 1 & 2: Review of General Chemistry What will we do today? 1. Review of the syllabus together. 2. Discuss course structure and textbook. You will use the entire textbook between

More information

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Solvent Scales ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Water 78 1.17 0.47 DMS 47 0.00 0.76 DM 37 0.00 0.76 Methanol 33 0.93 0.66 MPA 29 0.00 1.05 Acetone 21 0.08 0.43 Methylene

More information

Background on Solubility

Background on Solubility CHEM254 01 Open Notebook Science Solubility Challenge 1 For the first laboratory exercise of this semester we are going to participate in the Open Notebook Science (ONS) solubility challenge http://onschallenge.wikispaces.com/.

More information

Spring 2017 Organisk kemi I Eszter Borbas. Solutions 2017/04/03

Spring 2017 Organisk kemi I Eszter Borbas. Solutions 2017/04/03 Solutions 2017/04/03 1) Add formal charges to the atoms. Where is the + and end of the polar bonds? Do you see a conflict, and can you resolve it without recourse to lawyers, shrinks, or guns? Indicated

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information A Recyclable Perfluoroalkylated PCP Pincer Palladium Complex Daniel Duncan, Eric G. Hope, Kuldip Singh and Alison M. Stuart* Department of Chemistry, University of

More information

ACETONE. PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg

ACETONE.   PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg ACETONE www.pawarchemicals.com PRODUCT IDENTIFICATION CAS NO 67-64-1 EINECS NO. 200-662-2 FORMULA (CH3)2C=O MOL WT. 58.08 H.S. CODE 2914.11 TOXICITY SYNONYMS Oral rat LD50: 5800 mg/kg Dimethyl ketone;

More information

stance et Helper Eppendorf Pipet Helper Chemical Resistance

stance et Helper Eppendorf Pipet Helper Chemical Resistance stance et Helper Resistance N) Chemical Resistance Copyright 2017 Eppendorf AG, Germany. All rights reserved, including graphics and images. No part of this publication may be reproduced without the prior

More information

+ + CH 11: Substitution and Elimination Substitution reactions

+ + CH 11: Substitution and Elimination Substitution reactions C 11: Substitution and Elimination Substitution reactions Things to sort out: Nucleophile Electrophile -- > substrate Leaving Group S N 2 S N 1 E 1 E 2 Analysis Scheme Kinetics Reaction profile Substrates

More information

Intermolecular Forces and Physical Properties

Intermolecular Forces and Physical Properties Intermolecular Forces and Physical Properties Attractive Forces Particles are attracted to each other by electrostatic forces. The strength of the attractive forces depends on the kind(s) of particles.

More information

Exceptional Organic Solvents Uptake by Disulfide linked Polymeric. Networks

Exceptional Organic Solvents Uptake by Disulfide linked Polymeric. Networks Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Exceptional Organic Solvents Uptake by Disulfide linked

More information

A Highly Reversible Lithium Metal Anode

A Highly Reversible Lithium Metal Anode SUPPLEMENTARY INFORMATION A Highly Reversible Lithium Metal Anode Min Sik Park 1,,*, Sang Bok Ma 1,, Dong Joon Lee 1, Dongmin Im 1,*, Seok-Gwang Doo 1, Osamu Yamamoto 2 1 Energy Lab., Samsung Advanced

More information

Lab 3: Solubility of Organic Compounds

Lab 3: Solubility of Organic Compounds Lab 3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Generation of crystal structures using known crystal structures as analogues

Generation of crystal structures using known crystal structures as analogues Supporting information Volume 72 (2016) Supporting information for article: Generation of crystal structures using known crystal structures as analogues Jason C. Cole, Colin R. Groom, Murray G. Read, Ilenia

More information

Chemistry 20 Lesson 13 Intermolecular Forces

Chemistry 20 Lesson 13 Intermolecular Forces Chemistry 20 Lesson 13 Intermolecular Forces I. Intermolecular Vs Intramolecular Forces The Kinetic Molecular Theory of gases, which we will study in a later unit, describes the behaviour of gases in terms

More information

Electronic supplementary information. Strong CIE activity, multi-stimuli-responsive fluorescence and data

Electronic supplementary information. Strong CIE activity, multi-stimuli-responsive fluorescence and data Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strong CIE activity, multi-stimuli-responsive

More information

2 Bonding and structure Answers to Exam practice questions

2 Bonding and structure Answers to Exam practice questions Pages 77 80 Exam practice questions 1 a) Bonding between atoms in a metal is the result of electrostatic attractions between positive metal ions in a lattice and delocalised electrons in the outer shell

More information

EPA TO-17 Volatile Organic Compounds

EPA TO-17 Volatile Organic Compounds EPA TO-17 Volatile Organic Compounds Method TO-17 is used to analyze samples for volatile organic compounds collected on multi-bed sorbent tubes, which are thermally desorbed and cryo-focused on the capillary

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

Fundamentals of Distribution Separations (III)

Fundamentals of Distribution Separations (III) Fundamentals of Distribution Separations (III) (01/16/15) K = exp -Δμ 0 ext i - Δμ i RT distribution coefficient C i = exp -Δμ 0 RT - - Δμ i = ΔH i TΔS i 0 0 0 solubility q A---B A + B 0 0 0 ΔH i = ΔH

More information

EVAPORATION AND INTERMOLECULAR ATTRACTIONS From Chemistry with Vernier, Vernier Software and Technology LABQUEST 9

EVAPORATION AND INTERMOLECULAR ATTRACTIONS From Chemistry with Vernier, Vernier Software and Technology LABQUEST 9 EVAPORATION AND INTERMOLECULAR ATTRACTIONS From Chemistry with Vernier, Vernier Software and Technology LABQUEST 9 Westminster College In this experiment, Temperature Probes are placed in various liquids.

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces H covalent bond (stronger) Cl H Cl intermolecular attraction (weaker) The attractions between molecules are not nearly as strong as the covalent bonds that hold atoms together. They

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

1. What is the difference between intermolecular forces and intramolecular bonds? Variations in the Boiling Point of Noble Gases

1. What is the difference between intermolecular forces and intramolecular bonds? Variations in the Boiling Point of Noble Gases NAME: DATE: Chemical Bonding Forces Assignment 1. What is the difference between intermolecular forces and intramolecular bonds? 2. Use your data booklet to fill in the following chart Variations in the

More information

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Synthesis of Azeotropic Separation Systems by Case-Based Reasoning Timo Seuranen 1, Elina Pajula 2, Markku Hurme 1 1 Helsinki University of Technology, Laboratory of Plant Design, P.O. Box 6100, FIN-02015

More information

Viscosities of Binary Liquid Mixtures of 1, 2-Dichloroethane with Pyridine, Dimethyl Sulfoxide, Acetone, Furan and Tetrahydrofuran at 303.

Viscosities of Binary Liquid Mixtures of 1, 2-Dichloroethane with Pyridine, Dimethyl Sulfoxide, Acetone, Furan and Tetrahydrofuran at 303. American Journal of Engineering and Technology Management 2017; 2(6): 87-92 http://www.sciencepublishinggroup.com/j/ajetm doi: 10.11648/j.ajetm.20170206.13 ISSN: 2575-1948 (Print); ISSN: 2575-1441 (Online)

More information

Quick Review. 1. Hybridization. 2. Delocalization. 3. We will not be talking about Molecular Orbital Model.

Quick Review. 1. Hybridization. 2. Delocalization. 3. We will not be talking about Molecular Orbital Model. Quick Review 1. ybridization. 2. Delocalization. 3. We will not be talking about Molecular Orbital Model. **OUR EXAM II IS TURSDAY April 2 nd at 7pm** *BQ5, BQ6 and BQM are in 66 Library *BQ1, BQ2, BQ3,

More information

Thanks for your interest, confidence and trust in ND Pharma & Biotech Products and Service.

Thanks for your interest, confidence and trust in ND Pharma & Biotech Products and Service. ND Pharma & Biotech Co. Deuterated Solvents High quality Deuterated solvents are essential for satisfying the most rigorous demands of research and analyses. At ND Pharma & Biotech Co., we are passionate

More information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network David R. Turner,* a Alison J. Edwards b and Ross O. Piltz b Supplementary Information Section 1 Structural Parameters

More information

Calderglen High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding. Page 1 of 21

Calderglen High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding. Page 1 of 21 Calderglen High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 21 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

Module 3: "Components of Surface Energy" Lecture 14: "" The Lecture Contains: Surface Energy. Spcial Cases. Objectives_template

Module 3: Components of Surface Energy Lecture 14:  The Lecture Contains: Surface Energy. Spcial Cases. Objectives_template The Lecture Contains: Surface Energy Spcial Cases file:///e /courses/colloid_interface_science/lecture14/14_1.htm[6/16/2012 1:37:24 PM] Surface Energy (3.20) On the RHS, the first term is the apolar (or

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/10/eaau1956/dc1 Supplementary Materials for Poly(amide-imide) materials for transparent and flexible displays Sun Dal Kim, Byungyong Lee, Taejoon Byun, Im Sik

More information

Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces**

Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces** Electronic Supplementary Information for Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces** Li-Li Tan, Yumo Zhang, Bao

More information

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก ก Mc-Graw Hill 1 Intermolecular Forces: Liquids, Solids, and Phase Changes 12.1 An Overview of Physical States and Phase Changes 12.2

More information

HW #8: 8.34, 8.36, 8.44, 8.48, 8.50, 8.56, 8.60, 8.62, 8.74, 8.78, 8.88, 8.94, 8.108, 8.110, 8.114, 8.116

HW #8: 8.34, 8.36, 8.44, 8.48, 8.50, 8.56, 8.60, 8.62, 8.74, 8.78, 8.88, 8.94, 8.108, 8.110, 8.114, 8.116 Chemistry 121 Lecture 16: States of Matter and Phase Changes; Intermolecular Forces and Consequences: Liquids, Vapor Pressure, Boiling Point, & Relative Humidity Sections 8.1, 8.2, 8.12, 8.13 in McMurry,

More information

Kirkcaldy High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Kirkcaldy High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Kirkcaldy High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? The bonding types of the first twenty elements; metallic (Li,

More information

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations Sean C. Edington, Jennifer C. Flanagan, Carlos R. Baiz* Department of Chemistry, University of Texas at Austin

More information

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane Supplementary Information: Simulation Procedure and Physical Property Analysis Simulation Procedure The molecular

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids?

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? States of Mattter What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? What external factors affect whether something is

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

Gel Permeation Chromatography - GPC

Gel Permeation Chromatography - GPC Isolation and Separation Methods J. Poustka, VŠCHT Praha, ÚAPV 2014, http://web.vscht.cz/poustkaj Gel Permeation Chromatography - GPC Separation and clean-up method Group separation of compounds with similar

More information

Physical States of Matter

Physical States of Matter Intermolecular forces Chapter 5 Physical States of Matter Section 12.3 Physical States of Matter Three phases of matter solid Definite shape and volume solid liquid liquid Definite volume, shape of container

More information

Higher Chemistry. Unit 1 Chemical Changes and Structure Summary Notes

Higher Chemistry. Unit 1 Chemical Changes and Structure Summary Notes Higher Chemistry Unit 1 Chemical Changes and Structure Summary Notes Success Criteria I am confident that I understand this and I can apply this to problems? I have some understanding but I need to revise

More information

William H. Brown & Christopher Foote

William H. Brown & Christopher Foote William H. Brown & Christopher Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando,

More information

2.26 Intermolecular Forces

2.26 Intermolecular Forces 2.26 Intermolecular Forces Intermolecular forces are the relatively weak forces that exist between molecules. These govern the physical properties such as boiling point, melting point, solubility in solvents

More information

Atomic and Molecular Dimensions

Atomic and Molecular Dimensions 1 Atomic and Molecular Dimensions Equilibrium Interatomic Distances When two atoms approach each other, their positively charged nuclei and negatively charged electronic clouds interact. The total interaction

More information

How do Elements Combine to Form Compounds?

How do Elements Combine to Form Compounds? How do Elements Combine to Form Compounds? ACTIVITY What is it made of? Compounds account for the huge variety of matter on Earth All the compounds that exist on Earth are built from elements 118 elements

More information

A- Determination Of Boiling point B- Distillation

A- Determination Of Boiling point B- Distillation EXP. NO. 2 A- Determination Of Boiling point B- Distillation The boiling point of a liquid is the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure. The normal boiling

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1 Chapter 3: utline-1 Molecular Nature of Water Noncovalent Bonding Ionic interactions van der Waals Forces Thermal Properties of Water Solvent Properties of Water ydrogen Bonds ydrophilic, hydrophobic,

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: CO 2, N 2, H 2 0, CH 4 O C 2.58Ǻ

More information

How do Elements Combine to Form Compounds?

How do Elements Combine to Form Compounds? How do Elements Combine to Form Compounds? ACTIVITY What is it made of? Think about the calcium atom vs the calcium ion Compounds account for the huge variety of matter on Earth All the compounds that

More information

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry TYPICAL SOLVENT USE IN Pharma Industry Usage of solvents in an API process development is for: Diluent to carry out reaction

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

Lecture 1. Conformational Analysis in Acyclic Systems

Lecture 1. Conformational Analysis in Acyclic Systems Lecture 1 Conformational Analysis in Acyclic Systems Learning Outcomes: by the end of this lecture and after answering the associated problems, you will be able to: 1. use Newman and saw-horse projections

More information

Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties

Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties LEARNING OBJECTIVES Apply VSEPR theory to understand organic structure and geometry. Multiple Choice: 1, 3 17,

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Phenogel. GPC/SEC Columns. Sample Elution. Technical Specifications 10 3 Å 10 6 Å

Phenogel. GPC/SEC Columns. Sample Elution. Technical Specifications 10 3 Å 10 6 Å phenogel Gpc/sec columns HPLC 5 and 10 μm particle sizes Narrow bore (4.6 mm ID) solvent-saver to preparative columns available Very good alternative to Polymer Labs PLgel and Waters Styragel, Ultrastyragel,

More information

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions The aim of solution theory is to express the properties of liquid mixture in terms of intermolecular forces and liquid structure. The

More information

Solvatochromic shifts of a polarity probe implicit and explicit solvent modeling

Solvatochromic shifts of a polarity probe implicit and explicit solvent modeling Solvatochromic shifts of a polarity probe implicit and explicit solvent modeling Andrzej Eilmes Faculty of Chemistry, Jagiellonian University, Kraków solvent effects in absorption spectra Absorption spectra

More information

Chem 124 Exam 1 Spring 2016 Version 1 Name

Chem 124 Exam 1 Spring 2016 Version 1 Name Chem 124 Exam 1 Spring 2016 Version 1 Name TOTAL POINTS - 116 MULTIPLE CHOICE 1.4 POINTS EACH 1) A molecule containing a central atom with sp 3 hybridization has a(n) electron geometry. A) linear B) tetrahedral

More information

Chemistry Questions ans Answers BASED ON HIGH ORDER THINKING SKILL (HOTS) UNIT- 12 ALDEHYDES, KETONES AND CARBXYLIC ACID

Chemistry Questions ans Answers BASED ON HIGH ORDER THINKING SKILL (HOTS) UNIT- 12 ALDEHYDES, KETONES AND CARBXYLIC ACID Chemistry Questions ans Answers BASED N IG RDER TINKING SKILL (TS) UNIT- 12 ALDEYDES, KETNES AND CARBXYLIC ACID 1 MARK QUESTINS Q. 1. Name the reaction and the reagent used for the conversion of acid chlorides

More information

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument Application Note Abstract The US Pharmacopeia recently released USP as the current monograph for determining residual solvents in pharmaceutical products by static headspace. The USP classified these

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.4 Intermolecular

More information

Introduction to Alkyl Halides, Alcohols, Ethers, Thiols, and Sulfides

Introduction to Alkyl Halides, Alcohols, Ethers, Thiols, and Sulfides 8 Introduction to Alkyl alides, Alcohols, Ethers, Thiols, and Sulfides Solutions to In-Text Problems 8.1 (b) exyl iodide is a primary alkyl halide. (d) Tert-butyl chloride is a tertiary alkyl halide. 8.2

More information

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules SUPPORTING INFORMATION Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules E. Ataman*, M. P. Andersson, M. Ceccato, N. Bovet, S. L. S. Stipp Nano-Science Center,

More information

Evaporation and Intermolecular Attractions

Evaporation and Intermolecular Attractions Name Partners: Evaporation and Intermolecular Attractions Experiment 1 In this experiment, Temperature Probes are placed in various liquids. Evaporation occurs when the probe is removed from the liquid

More information

Tables. For. Organic Structure Analysis

Tables. For. Organic Structure Analysis Tables For Organic Structure Analysis Magnetic properties of commonly studied species. Nucleus Natural abundance (%) Approximate sensitivity at constant Bo for natural abundance 1 Resonance frequency at

More information

Combustible Gas Catalytic Bead (0-100 %LEL) Part No FM Performance Certified 1,4 FM Performance Certified 1

Combustible Gas Catalytic Bead (0-100 %LEL) Part No FM Performance Certified 1,4 FM Performance Certified 1 Sensor Data Sheet Document No. 365-2211-31 (Rev D) Combustible Gas Catalytic Bead (0-100 %LEL) Part No. 823-0211-31 FM Performance Certified 1,4 FM Performance Certified 1 Minimum Indicated Concentration...

More information

Dr. Anand Gupta Mr Mahesh Kapil

Dr. Anand Gupta Mr Mahesh Kapil Dr. Anand Gupta Mr Mahesh Kapil 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Preparation of Haloalkanes From Alkanes Alkenes Alcohols Carboxylic Acids (Hundsdicker Reaction) Halide

More information

CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES

CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES Ahsan Elahi and Rajni Kant* Keywords: Coumarins; PIXEL; hydrogen bonding; intermolecular interactions; lattice energy.

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Photonic sensing via SRS method. Reflection spectra of a) a dried SiO 2 opal and b-d) the SiO 2 opal infiltrated with different organic solvents, whose refractive

More information

Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur

Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette Copyright The McGraw-Hill Companies, Inc. Permission

More information

Alkenes. Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond.

Alkenes. Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond. Alkenes Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond. Angles around the carbons in the double bond are ~ 120º. Thus, all

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis

Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Title Experiment 7: Gas Chromatography and Mass Spectrometry: Fuel Analysis Name Manraj Gill (Partner: Tanner Adams, Lab Section: 102) Introduction In this experiment, we use chromatography and mass spectrometry

More information

Organometallics & InChI. August 2017

Organometallics & InChI. August 2017 Organometallics & InChI August 2017 The Cambridge Structural Database 900,000+ small-molecule crystal structures Over 60,000 datasets deposited annually Enriched and annotated by experts Structures available

More information

Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro

Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro hemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts Bay ommunity ollege Wellesley ills, MA 2008, Prentice all omparisons of the States of Matter the solid and liquid states have

More information