Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification

Size: px
Start display at page:

Download "Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification"

Transcription

1 Supporting Information Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification Kazuhiro Nakatani, Yusuke Ogura, Yuta Koda, Takaya Terashima*, and Mitsuo Sawamoto* Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto , Japan Contents: Experiments S2 Supporting Data Figure S1. Metal alkoxide-catalyzed transesterification of MA and PMA with EtOH S5 Figure S2. Effects of Lewis acid in transesterification of MMA with EtOH S5 Figure S3. Metal alkoxide-catalyzed transesterification of MMA with EtOH S6 Figure S4. MALDI-TOF-MS spectrum of a MMA/EMA gradient copolymer S7 Figure S5. Effects of Al(Oi-Pr) 3 and EtOH on MMA/EMA gradient copolymers S8 Figure S6. SEC curves of RMA/EMA gradient copolymers obtained with Ti(Oi-Pr) 4 S9 Figure S7. DSC thermograms of gradient copolymers S10 S1

2 Experimental Section Materials Methyl methacrylate (MMA: Tokyo Kasei; purity > 99.8%), methyl acrylate (MA: Tokyo Kasei; purity > 99%), dodecyl methacrylate (DMA: Tokyo Kasei; purity > 95%), isopropyl methacrylate (i-prma: Tokyo Kasei; purity > 98%), tert-butyl methacrylate (t-buma: Tokyo Kasei; purity > 98%) and tetralin (1,2,3,4-tetrahydronaphthalene) (Kishida Chemical, purity > 98%, internal standard for 1 H NMR analysis) were dried overnight over calcium chloride and distilled twice from calcium hydride under reduced pressure before use. Ethyl 2-chloro-2-phenylacetate (ECPA: Aldrich; purity > 97%) was distilled under reduced pressure before use. Ru(Ind)Cl(PPh 3 ) 2 (Aldrich), Al(Oi-Pr) 3 (Aldrich, purity > 99%), Al 2 O 3 (Aldrich, purity > 99.99%), Fe 2 O 3 (Aldrich, purity > 99.98%) and Sb 2 O 3 (Aldrich, purity > %) were used as received and handled in a glove box under moisture- and oxygen-free argon (H 2 O < 1 ppm; O 2 < 1 ppm). Ti(Oi-Pr) 4 (Kanto Chemicals, purity > 97%), TiCl 4 (Aldrich, 1.0 M in toluene), SnCl 4 (Aldrich, 1.0 M in toluene), BF 3 OEt 2 (Aldrich) and ZnCl 2 (Aldrich, 1.0 M in Et 2 O) were used as received. Ethanol (EtOH: Wako; dehydrated), benzyl alcohol (BzOH: Wako; purity > 99%), 1-dodecanol (Wako, purity > 95%), poly(ethylene glycol) methyl ether (PEG-OH: Aldrich; M n = 550), and n-bu 3 N (Tokyo Kasei, purity > 99%) were degassed before use. Toluene (solvent) was purified before use by passing it through a purification column (Glass Contour Solvent Systems: SG Water USA). Transesterification The reaction was carried out by the syringe technique under dry argon in baked glass tubes equipped with a three-way stopcock. A typical procedure for Al(Oi-Pr) 3 -catalyzed transesterification of MMA in toluene/etoh (1/1, v/v) is given. Into a glass tube, toluene (0.70 ml), a toluene solution of Al(Oi-Pr) 3 (125 mm, 0.48 ml, Al(Oi-Pr) 3 = 0.06 mmol), MMA (0.64 ml, 6 mmol), and EtOH (1.18 ml) were added at room temperature under dry argon. The total volume of the reaction mixture was thus 3.0 ml. The glass tube was immediately placed in an oil bath kept at 80 C. At predetermined intervals, a small portion of the mixture was sampled with a syringe under dry argon, and the reaction was terminated by cooling the solution to 78 C. The conversion was determined by 1 H NMR in CDCl 3. S2

3 Gradient Copolymers via Tandem Catalysis The polymerization was carried out by the syringe technique under argon in baked glass tubes equipped with a three-way stopcock. A typical procedure for tandem catalysis of MMA with ECPA/Ru(Ind)Cl(PPh 3 ) 2 /Al(Oi-Pr) 3 in toluene/etoh (1/1, v/v) is given. Ru(Ind)Cl(PPh 3 ) 2 (4.46 mg, mmol) was placed into a glass tube. Toluene (0.56 ml), tetralin (0.08 ml), a 125 mm toluene solution of Al(Oi-Pr) 3 (0.48 ml, 0.06 mmol), MMA (0.64 ml, 6 mmol), EtOH (1.14 ml), and a 610 mm toluene solution of ECPA (0.1 ml, 0.06 mmol) were sequentially added in that order into the tube at room temperature under argon. The total volume of the reaction mixture was thus 3.0 ml. The glass tube was immediately placed in an oil bath kept at 80 C. At predetermined intervals, the mixture was sampled with a syringe under argon, and the reaction was terminated by cooling the solution to 78 C. The monomer conversion and composition in a polymerization solution, and the repeat-unit composition of polymers were determined by 1 H NMR in CDCl 3 with tetralin as an internal standard. The quenched reaction solutions were washed with water and evaporated to dryness. The products were subsequently dried overnight under vacuum at room temperature. SEC (CHCl 3, PMMA std.): M n = 11,300; M w /M n = H NMR (500 MHz, CDCl 3 ): δ (5H, aromatic), 4.2 (2H, -CH(Ph)CO 2 CH 2 CH 3 ), (105H, -C(CH 3 )(CO 2 CH 2 CH 3 )-), (209H, -CO 2 CH 3 ), 3.35 (1H, -COCH(Ph)-), (244H, -CH 2 -), (527H, - CCH 3 ). Cumulative contents (F cum ) of EMA and MMA: F cum,mma /F cum,ema = 57/43. Gradient Block Copolymers via Tandem Catalysis The polymerization was carried out by the syringe technique under argon in baked glass tubes equipped with a three-way stopcock. The procedure to prepare the gradient triblock copolymer, [PMMA-grad-Pi-PrMA]-b-[PMMA-grad-PEMA]-b-[PMMA-grad-PBzMA], is given. Ru(Ind)Cl(PPh 3 ) 2 (13.97 mg, mmol) was placed in an glass tube. Toluene (2.81 ml), tetralin (0.24 ml), a 500 mm toluene solution of Ti(Oi-Pr) 4 (0.36 ml, 0.18 mmol), MMA (1.92 ml, 18 mmol), i-proh (3.42 ml) and a 707 mm toluene solution of ECPA (0.25 ml, 0.18 mmol) were added sequentially in that order into the tube at room temperature. The total volume of the reaction mixture was thus 9.0 ml. Immediately after mixing, the mixture was placed in an oil bath kept at 80 C until the conversion reached around 50% (1st segment). 6.0 ml of the polymerization solution was transferred to the other baked glass tube at room temperature and the S3

4 solution was evaporated under vacuum to remove the residual monomers and solvents. After filled with argon, the glass tube was charged with toluene (2.36 ml), MMA (1.28 ml, 12 mmol) and EtOH (2.36 ml). The mixture was placed in an oil bath kept at 80 C until the conversion reached around 50% (2nd segment). A similar procedure with MMA and BzOH was conducted for the 3rd segment. At predetermined intervals, the mixture was sampled with a syringe under argon, and the reaction was terminated by cooling the solution to 78 C. The monomer conversion and composition in a polymerization solution, and the repeat-unit composition of polymers were determined by 1 H NMR in CDCl 3 with tetralin as an internal standard. The quenched reaction solutions were washed with water and evaporated to dryness. The resulting products were subsequently dried overnight under vacuum. SEC (CHCl 3, PMMA std.): M n = 24,600 g/mol; M w /M n = Cumulative contents (F cum ) of monomer units: (F cum,mma / F cum,iprma ) 1st /(F cum,mma /F cum,ema ) 2nd /(F cum,mma /F cum,bzma ) 3rd = (66/34) 1st /(31/69) 2nd /(85/15) 3rd. Measurements The molecular weight distribution (MWD) curves, M n, and M w /M n ratio of the polymers were measured by size-exclusion chromatography (SEC) in chloroform at 40 C using three linear-type polystyrene gel columns [Shodex K-805L: particle size = 10 µm; pore size = 5000 Å; 0.8 cm i.d. 30 cm; exclusion limit = g/mol; flow rate = 1.0 ml/min] that were connected to a Jasco PU-980 precision pump, a Jasco RI-930 refractive index detector, and a Jasco UV/vis detector set at 250 nm. The columns were calibrated against 10 standard poly(mma) samples (Polymer Laboratories; M n = ; M w /M n = ). 1 H NMR spectra were recorded in CDCl 3 at room temperature on a JEOL JNM-LA500 spectrometer operating at MHz. MALDI-TOF-MS analysis was performed on a Shimadzu AXIMA-CFR instrument equipped with 1.2 m linear flight tubes and a 337 nm nitrogen laser, with dithranol (1, 8, 9-anthracenetriol) as an ionizing matrix and sodium trifluoroacetate as a cationizing agent. Differential scanning calorimetry (DSC) was performed for polymer samples (ca. 4 mg weighed into an aluminum pan) under a dry nitrogen flow on a DSCQ200 calorimeter (TA Instruments) equipped with a RCS 90 electric freezing machine. The heating and cooling rates were performed at 20 o C/min and -20 o C/min, respectively, between -80 o C and 150 o C. Polymer samples for DSC and MALDI-TOF-MS analyses were fractionated by preparative SEC [column: Shodex K-5002; particle size = 15 µm; 5.0 cm i.d. 30 cm; exclusion limit = g/mol; flow rate = 10 ml/min]. S4

5 Supporting Data Figure S1. Metal alkoxide-catalyzed transesterification of MA or PMA (M n = 8000) in toluene/ethanol (EtOH) (1/1, v/v) at 80 C: [MA] 0 or [PMA] 0 = 20 mm; [Al(Oi-Pr) 3 ] 0 or [Ti(Oi-Pr) 4 ] 0 = 20 mm. Figure S2. Effects of Lewis acid in transesterification of MMA with EtOH: [MMA] 0 = 2.0 M; [Lewis acid] 0 = 100 mm in toluene/etoh (1/1, v/v) at 80 C. S5

6 Figure S3. Metal alkoxide-catalyzed transesterification of MMA with EtOH. (A) Effects of catalysts [Al(Oi-Pr) 3, Ti(Oi-Pr) 4 ]: [MMA]/[metal alkoxide] = 2000/20 mm in toluene/etoh (1/1, v/v) at 80 C. (B) Effects of temperature: [MMA]/[Al(Oi-Pr) 3 ] = 2000/20 mm in toluene/etoh (1/1, v/v) at 40, 60, and 80 C. (C) Effects of Al(Oi-Pr) 3 : [MMA]/[Al(Oi-Pr) 3 ] = 2000/10, 20, and 40 mm in toluene/etoh (1/1, v/v) at 80 C. (D) Effects of EtOH: [MMA]/[Al(Oi-Pr) 3 ] = 2000/20 mm in toluene/etoh ([EtOH] 0 = 1.0, 4.0, and 6.7 M) at 80 C. S6

7 Figure S4. MALDI-TOF-MS spectrum of a MMA/EMA gradient copolymer (M n = 4600) obtained from the tandem catalysis of ruthenium-catalyzed living radical polymerization and in situ Al(Oi-Pr) 3 -catalyzed transesterification of MMA with EtOH: [MMA]/[ECPA]/[Ru(Ind)Cl(PPh 3 ) 2 ] [Al(Oi-Pr) 3 ] = 2000/20/2.0/20 mm in toluene/etoh (1/1, v/v) at 80 C. S7

8 Figure S5. Effects of Al(Oi-Pr) 3 and EtOH concentration on MMA/EMA gradient copolymers obtained from the tandem catalysis of ruthenium-catalyzed living radical polymerization and in situ Al(Oi-Pr) 3 -catalyzed transesterification: (A, B) total monomer conversion and EMA contents in monomer as a function of polymerization time; (C) SEC curves of products (dash lines: products in % conversion); [MMA]/[ECPA]/[Ru(Ind)Cl(PPh 3 ) 2 ]/[Al(Oi-Pr) 3 ] = 2000/20/2.0/40, 20, 15, and 10 mm in toluene and EtOH ([EtOH] = 2.0, 4.0, 6.5 M) at 80 C. S8

9 Figure S6. SEC curves of products obtained from the tandem catalysis of ruthenium-catalyzed living radical polymerization and in situ Ti(Oi-Pr) 4 -catalyzed transesterification of monomers (RMA: MMA; DMA; i-prma; t-buma): [RMA] 0 /[ECPA] 0 /[Ru(Ind)Cl(PPh 3 ) 2 ] 0 /[Ti(Oi-Pr) 4 ] 0 = 2000/20/2.0/20 mm in toluene/etoh (1/1, v/v) at 80 C. S9

10 Figure S7. DSC thermograms recorded on gradient copolymers of (A) MMA/EMA (57/43), (B) MMA/EMA (25/75), (C) MMA/BzMA (55/45), (D) MMA/DodecylMA (56/44), and (E) MMA/PEGMA (69/31) during the second heat scanning from -80 o C to 150 o C (heating rate: 20 o C/min). The samples (A-E) correspond to entry 3-7 in Table 2 in the main text, respectively. S10

Chemically recyclable alternating copolymers with low polydispersity from

Chemically recyclable alternating copolymers with low polydispersity from Electronic Supplementary Information Chemically recyclable alternating copolymers with low polydispersity from conjugated/aromatic aldehydes with vinyl ethers: selective degradation to another monomer

More information

Supporting Information for

Supporting Information for Supporting Information for AmPhos Pd-Catalyzed Suzuki-Miyaura Catalyst-Transfer Condensation Polymerization: Narrower Dispersity by Mixing the Catalyst and Base Prior to Polymerization Kentaro Kosaka,

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

Utilization of star-shaped polymer architecture in the creation of high-density polymer

Utilization of star-shaped polymer architecture in the creation of high-density polymer Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Utilization of star-shaped polymer architecture in the creation

More information

Supporting Information

Supporting Information Supporting Information Precision Synthesis of Poly(-hexylpyrrole) and its Diblock Copolymer with Poly(p-phenylene) via Catalyst-Transfer Polycondensation Akihiro Yokoyama, Akira Kato, Ryo Miyakoshi, and

More information

Supporting Information. Nitroxide Mediated Polymerization of methacrylates at moderate temperature

Supporting Information. Nitroxide Mediated Polymerization of methacrylates at moderate temperature Supporting Information Nitroxide Mediated Polymerization of methacrylates at moderate temperature Christophe Detrembleur, Christine Jérôme, Julien De Winter, Pascal Gerbaux, Jean-Louis Clément, Yohann

More information

Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization

Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization Molecular Weight Distribution of Living Chains in Polystyrene Pre-pared by Atom Transfer Radical Polymerization Joongsuk Oh, a Jiae Kuk, a Taeheon Lee, b Jihwa Ye, b Huyn-jong Paik, b* Hyo Won Lee, c*

More information

Double-decker-shaped Silsesquioxane Having

Double-decker-shaped Silsesquioxane Having Supporting Information Hydrosilylation Polymerization of Double-decker-shaped Silsesquioxane Having Hydrosilane with Diynes Makoto Seino, Teruaki Hayakawa, Yoshihito Ishida, and Masa-aki Kakimoto* Department

More information

1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators

1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators Supporting Information 1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators Brandon A. Chan, Sunting Xuan, Matthew Horton, and Donghui

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Well-defined Click-able Copolymers in One-Pot Synthesis

Well-defined Click-able Copolymers in One-Pot Synthesis Electronic Supplementary Material (ESI) for hemomm. This journal is The Royal Society of hemistry 2014 Well-defined lick-able opolymers in ne-pot Synthesis egar Ghasdian, Mark A. Ward and Theoni K. Georgiou*

More information

Supporting Information

Supporting Information Supporting Information Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium- Ion Batteries Jimin Shim, [a] Ki Yoon Bae, [b] Hee Joong Kim,

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group

Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group SUPPRTING INFRMATIN Ring-pening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group Špela Gradišar, Ema Žagar, and David Pahovnik* National Institute of Chemistry, Department of Polymer

More information

Opening of an Accessible Microporosity in an Otherwise Nonporous Metal Organic Framework by Polymeric Guests

Opening of an Accessible Microporosity in an Otherwise Nonporous Metal Organic Framework by Polymeric Guests Opening of an Accessible Microporosity in an Otherwise Nonporous Metal Organic Framework by Polymeric Guests Benjamin Le Ouay,, Susumu Kitagawa,, Takashi Uemura,,* Department of Synthetic Chemistry and

More information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins Photo-Cleavage of Cobalt-Carbon Bond: Visible Light-Induced Living Radical Polymerization Mediated by Organo-Cobalt Porphyrins Yaguang Zhao, Mengmeng Yu, and Xuefeng Fu* Beijing National Laboratory for

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators

More information

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Supporting Information Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Qi Zheng, 1 Danielle M. Pesko, 1 Brett M. Savoie, Ksenia Timachova, Alexandra L. Hasan, Mackensie C.

More information

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures

RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol solvent mixtures Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting information for RAFT /MADIX polymerization of N-vinylcaprolactam in water-ethanol

More information

Supporting Information

Supporting Information Supporting Information A Rational Design of Highly Controlled Suzuki-Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and their Block Copolymers: Marriage of Palladacycle

More information

ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes via

ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes via Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes

More information

Supporting information

Supporting information Supporting information Imidazolium end-functionalized poly(l-lactide) for Efficient Carbon Nanotube Dispersion. Franck Meyer, a Jean-Marie Raquez, a Olivier Coulembier, a Julien De Winter, b Pascal Gerbaux,

More information

Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using

Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using Bulk ring-opening transesterification polymerization of the renewable δ-decalactone using an organocatalyst Mark T. Martello, Adam Burns, and Marc Hillmyer* *Department of Chemistry, University of Minnesota,

More information

Supplementary Information. for. Stable Supramolecular Helical Structure of C 6 -Symmetric

Supplementary Information. for. Stable Supramolecular Helical Structure of C 6 -Symmetric Supplementary Information for Stable Supramolecular Helical Structure of C 6 -Symmetric Hydrogen-Bonded Hexakis(phenylethynyl)benzene Derivatives with Amino Acid Pendant Groups and Their Unique Fluorescence

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2633 Mechanically controlled radical polymerization initiated by ultrasound Hemakesh Mohapatra, Maya Kleiman, Aaron P. Esser-Kahn Contents 1. Materials and methods 2 2. Procedure for

More information

Supporting informations for

Supporting informations for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting informations for Isoprene chain shuttling polymerization between cis and trans regulating

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan,

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan, Electronic Supplementary Information For M Amount of Fe (III)-mediated ATR of MMA with hosphorus Containing Ligands in the Absence of Any Additives Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany A Distinctive Organocatalytic Approach to Complex Macromolecular Architectures Olivier Coulembier, Matthew 5. 5iesewetter, Andrew Mason, Philippe

More information

Supporting Information

Supporting Information Supporting Information Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α,ω-dienes. Thomas Lebarbé, a,b,d Mehdi Neqal, a,b Etienne Grau, a,b Carine Alfos, c and Henri Cramail

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Block copolymers containing organic semiconductor segments by RAFT polymerization

Block copolymers containing organic semiconductor segments by RAFT polymerization Block copolymers containing organic semiconductor segments by RAFT polymerization Ming Chen, Matthias Häussler, Graeme Moad, Ezio Rizzardo Supplementary Material Radical polymerizations in the presence

More information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl

More information

Helix Formation of Poly(phenylacetylene)s Bearing Azide Groups through Click Polymer Reaction with Optically Active Acetylenes

Helix Formation of Poly(phenylacetylene)s Bearing Azide Groups through Click Polymer Reaction with Optically Active Acetylenes Supporting Information Helix Formation of Poly(phenylacetylene)s earing Azide Groups through Click Polymer Reaction with Optically Active Acetylenes Ken Itomi, Shinzo Kobayashi, Kazuhide Morino, Hiroki

More information

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes Tunable thermo-responsive water-dispersed multi walled carbon nanotubes Gaojian Chen, Peter M. Wright, Jin Geng, Giuseppe Mantovani, and David M. Haddleton* Department of Chemistry, University of Warwick,

More information

(Co)polymers by Iodine Transfer Polymerization Initiated

(Co)polymers by Iodine Transfer Polymerization Initiated Supporting Information Synthesis of ω-iodo and Telechelic Diiodo Vinylidene Fluoridebased (Co)polymers by Iodine Transfer Polymerization Initiated by an Innovative Persistent Radical Sanjib Banerjee,*,a

More information

Well-defined polyethylene-based random, block and bilayered molecular cobrushes

Well-defined polyethylene-based random, block and bilayered molecular cobrushes Well-defined polyethylene-based random, block and bilayered molecular cobrushes Hefeng Zhang, 1,2 Zhen Zhang, 1,2 Yves Gnanou, 2 Nikos Hadjichristidis 1,2 * King Abdullah University of Science and Technology

More information

Electronic supplementary information. Facile one pot synthesis of a range of reversible addition. fragmentation chain transfer (RAFT) agents

Electronic supplementary information. Facile one pot synthesis of a range of reversible addition. fragmentation chain transfer (RAFT) agents Electronic supplementary information Facile one pot synthesis of a range of reversible addition fragmentation chain transfer (RAFT) agents Jared Skey and Rachel K. O Reilly* Methods 1 H NMR and 13 C NMR

More information

Supporting Information

Supporting Information Supporting Information Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers Samuel J. Dalsin, Marc A. Hillmyer,*, and Frank S. Bates*, Department of Chemical

More information

SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION

SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION T. Ohishi, 1 K. Imato, 2 T. Kanehara, 2 A. Takahara, 1,2 and H. Otsuka 1,2 1 Institute for Materials

More information

Accessory Information

Accessory Information Accessory Information Synthesis of 5-phenyl 2-Functionalized Pyrroles by amino Heck and tandem amino Heck Carbonylation reactions Shazia Zaman, *A,B Mitsuru Kitamura B, C and Andrew D. Abell A *A Department

More information

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Preparation of 1:1 alternating, nucleobase-containing copolymers

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Macroscopic self-assembly through molecular recognition Akira Harada,* Ryosuke Kobayashi, Yoshinori Takashima, Akihito Hashidzume & Hiroyasu Yamaguchi

More information

Synthesis of hydrophilic monomer, 1,4-dibromo-2,5-di[4-(2,2- dimethylpropoxysulfonyl)phenyl]butoxybenzene (Scheme 1).

Synthesis of hydrophilic monomer, 1,4-dibromo-2,5-di[4-(2,2- dimethylpropoxysulfonyl)phenyl]butoxybenzene (Scheme 1). Supporting Information Materials. Hydroquinone, potassium carbonate, pyridine, tetrahydrofuran (THF for organic synthesis) were purchased from Wako Pure Chemical Industries Ltd and used as received. Chlorosulfuric

More information

Antiparallel double-stranded BODIPY porphyrin dyad assembled by a self-complementary B F Zn interaction

Antiparallel double-stranded BODIPY porphyrin dyad assembled by a self-complementary B F Zn interaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for Antiparallel double-stranded BODIPY porphyrin dyad assembled by a self-complementary

More information

Supporting Information

Supporting Information Supporting Information UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-Acryloylglycinamide-co-Diacetone Acrylamide) Wenhui Sun, Zesheng An*, Peiyi Wu * Experimental Materials Glycinamide

More information

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Shun Mitsui, Mitsuo Hara, Shusaku Nagano, and Takahiro Seki S. Synthesis Materials Sodium

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Multicomponent Combinatorial Polymerization via the Biginelli Reaction

Multicomponent Combinatorial Polymerization via the Biginelli Reaction Supporting Information Multicomponent Combinatorial Polymerization via the Biginelli Reaction Haodong Xue a,b, Yuan Zhao a, Haibo Wu a,b, Zilin Wang a, Bin Yang a, Yen Wei a, Zhiming Wang b, Lei Tao a

More information

High Molecular Weight Bile Acid and Ricinoleic Acid-Based Co-polyesters via Entropy-Driven Ring-Opening Metathesis Polymerisation

High Molecular Weight Bile Acid and Ricinoleic Acid-Based Co-polyesters via Entropy-Driven Ring-Opening Metathesis Polymerisation High Molecular Weight Bile Acid and Ricinoleic Acid-Based Co-polyesters via Entropy-Driven Ring-Opening Metathesis Polymerisation Julien E. Gautrot, X.X. Zhu * Département de Chimie, Université de Montréal,

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species

Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species SHOKYOKU KANAOKA, TOSHINOBU HIGASHIMURA Department of Materials Science, School of Engineering, The University of Shiga Prefecture,

More information

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer ynthesis Damien Quémener, Thomas P. Davis, Christopher Barner-Kowollik* and Martina H. tenzel* Centre for Advanced Macromolecular

More information

Supporting Information for

Supporting Information for Supporting Information for Solution Self-Assembly of Block Copolymers Containing a Branched Hydrophilic Block into Inverse Bicontinuous Cubic Mesophases Tae Hyun An, Yunju La, Arah Cho, Moon Gon Jeong,

More information

Supplementary Material for

Supplementary Material for www.sciencemag.org/content/343/6173/873/suppl/dc1 Supplementary Material for Nonswellable Hydrogel Without Mechanical Hysteresis Hiroyuki Kamata, Yuki Akagi, Yuko Kayasuga-Kariya, Ung-il Chung, Takamasa

More information

Supporting Information. Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes

Supporting Information. Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes Supporting Information Copolymers of Tetrahydrofuran and Epoxidized Vegetable Oils: Application to Elastomeric Polyurethanes Andrew J Clark,* Seng Soi Hoong Department of Chemistry, University of Warwick,

More information

Supporting Information

Supporting Information Supporting Information Facile polyisobutylene functionalization via thiol-ene Click chemistry Andrew J. D. Magenau, Justin W. Chan, Charles E. Hoyle, and Robson F. Storey School of Polymers and High Performance

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Boron Stitching Reaction: A Powerful Tool for the Synthesis of

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Self-Healing Polymers with PEG Oligomer Side Chains Based on Multiple

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Supporting Information

Supporting Information Supporting Information Azo Polymer Janus Particles and Their Photoinduced Symmetry-Breaking Deformation Xinran Zhou, Yi Du, Xiaogong Wang* Department of Chemical Engineering, Laboratory of Advanced Materials

More information

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Xiaofang Li, Masayoshi Nishiura, Kyouichi Mori, Tomohiro

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Unprecedented Scissor Effect of Macromolecular Cross-linkers on the Glass Transition Temperature of Poly(Nvinylimidazole), Crystallinity Suppression of Poly(tetrahydrofuran) and Molecular Mobility by Solid

More information

Free radical and RAFT polymerization of vinyl

Free radical and RAFT polymerization of vinyl Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Free radical and RAFT polymerization of vinyl esters

More information

Supporting Information

Supporting Information Supporting Information Rhodium-Catalyzed Annulation Reactions of 2-Cyanophenylboronic Acid with Alkynes and Strained Alkenes Tomoya Miura and Masahiro Murakami* Department of Synthetic Chemistry and Biological

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

Supplementary Information T. Ebert, a A. Wollbrink, b A. Seifert, a R. John, a and S. Spange a

Supplementary Information T. Ebert, a A. Wollbrink, b A. Seifert, a R. John, a and S. Spange a Electronic Supplementary Material (ESI for Polymer Chemistry. This journal is The Royal Society of Chemistry Please do 216 not adjust margins ARTICLE Supplementary Information T. Ebert, a A. Wollbrink,

More information

Solid-State Polymer Electrolytes Based on AB3-type Miktoarm Star. Copolymers

Solid-State Polymer Electrolytes Based on AB3-type Miktoarm Star. Copolymers Supporting Information Solid-State Polymer Electrolytes Based on AB3-type Miktoarm Star Copolymers Daeyeon Lee, Ha Young Jung, and Moon Jeong Park * Department of Chemistry, Pohang University of Science

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary Information Enantioselectivity switch in copper-catalyzed conjugate addition

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Supplementary Information for A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Rita Annunziata, Maurizio Benaglia, Mauro Cinquini,

More information

Supporting Information. Competitive Interactions of π-π Junctions and their Role on Microphase Separation of Chiral Block Copolymers

Supporting Information. Competitive Interactions of π-π Junctions and their Role on Microphase Separation of Chiral Block Copolymers Supporting Information Competitive Interactions of π-π Junctions and their Role on Microphase Separation of Chiral Block Copolymers Tao Wen, Jing-Yu Lee, Ming-Chia Li, Jing-Cherng Tsai and Rong-Ming Ho

More information

Marine bio-inspired underwater contact adhesion

Marine bio-inspired underwater contact adhesion Marine bio-inspired underwater contact adhesion Sean K. Clancy, Antonio Sodano, Dylan J. Cunningham, Sharon S. Huang, Piotr J. Zalicki, Seunghan Shin, * and B. Kollbe Ahn * Marine Science Institute, University

More information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in Supplementary Figure 1. Optical properties of 1 in various solvents. UV/Vis (left axis) and fluorescence spectra (right axis, ex = 420 nm) of 1 in hexane (blue lines), toluene (green lines), THF (yellow

More information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Supporting Material 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials Srinivas Olepu a, Praveen Kumar Suryadevara a, Kasey Rivas b, Christophe L. M. J. Verlinde

More information

Supporting Information Chemicals Synthesis Phenyl-C61-butyric acid Phenyl-C61-buryric acid 1H, 1H-Pentadecafluoro-1-octyl ester (F-PCBM)

Supporting Information Chemicals Synthesis Phenyl-C61-butyric acid Phenyl-C61-buryric acid 1H, 1H-Pentadecafluoro-1-octyl ester (F-PCBM) Supporting Information Self-Organized Buffer Layers in Organic Solar Cells By Qingshuo Wei, Takeshi Nishizawa, Keisuke Tajima*, and Kazuhito Hashimoto* Chemicals Acetic acid (CH 3 COOH), hydrochloric acid

More information

Rational design of light-directed dynamic spheres

Rational design of light-directed dynamic spheres Electronic Supplementary Information (ESI) Rational design of light-directed dynamic spheres Yumi Okui a and Mina Han* a,b a Department of Chemistry and Department of Electronic Chemistry Tokyo Institute

More information

A Rational Entry to Cyclic Polymers via Selective Cyclization by Self-Assembly and Topology Transformation of Linear Polymers

A Rational Entry to Cyclic Polymers via Selective Cyclization by Self-Assembly and Topology Transformation of Linear Polymers A Rational Entry to Cyclic Polymers via Selective Cyclization by Self-Assembly and Topology Transformation of Linear Polymers Daisuke Aoki,*, Gouta Aibara, Satoshi Uchida, and Toshikazu Takata*,, Department

More information

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4 SUPPORTING INFORMATION Introduction 1 DSC scan 5-bromo-2-aminopyridine..3 DSC scan 5-bromo-2-nitropyridine.....4 Oxidant mixture. Adiabatic test stability, glass cell and Hastelloy C22 test cell 5 Hastelloy

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

Bulletin of the Chemical Society of Japan

Bulletin of the Chemical Society of Japan Supporting Information Bulletin of the Chemical Society of Japan Enantioselective Copper-Catalyzed 1,4-Addition of Dialkylzincs to Enones Followed by Trapping with Allyl Iodide Derivatives Kenjiro Kawamura,

More information

A novel smart polymer responsive to CO 2

A novel smart polymer responsive to CO 2 A novel smart polymer responsive to CO 2 Zanru Guo, a,b Yujun Feng,* a Yu Wang, a Jiyu Wang, a,b Yufeng Wu, a,b and Yongmin Zhang a,b a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

More information

Photocontrolled RAFT Polymerization Mediated by a

Photocontrolled RAFT Polymerization Mediated by a Supporting Information Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst Liangliang Shen, Qunzan Lu, Anqi Zhu, Xiaoqing Lv, and Zesheng An* Institute of Nanochemistry and Nanobiology,

More information

Air-Stable (Phenylbuta-1,3-diynyl)palladium(II) Complexes: Highly Active Initiators for Living Polymerization of Isocyanides

Air-Stable (Phenylbuta-1,3-diynyl)palladium(II) Complexes: Highly Active Initiators for Living Polymerization of Isocyanides Supporting Information Air-Stable (Phenylbuta-1,3-diynyl)palladium(II) Complexes: Highly Active Initiators for Living Polymerization of Isocyanides Ya-Xin Xue, Yuan-Yuan Zhu, Long-Mei Gao, Xiao-Yue He,

More information

Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide

Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Supporting Information Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Substitution and Their Application to One-Pot Synthesis of Chain-End Functionalized

More information

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT

1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via RAFT Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 1 Electronic Supplementary Information (ESI) 2 Healable thermo-reversible functional polymer via

More information

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio.

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio. Electronic Supplementary Information for Self-ssembly of Dendritic-Linear lock Copolymers With Fixed Molecular Weight and lock Ratio Moon Gon Jeong, a Jan C. M. van Hest, b Kyoung Taek Kim a, * a School

More information

Supporting Information. Supramolecular materials crosslinked by host. guest inclusion complexes: the effect of side chain

Supporting Information. Supramolecular materials crosslinked by host. guest inclusion complexes: the effect of side chain Supporting Information Supramolecular materials crosslinked by host guest inclusion complexes: the effect of side chain molecules on mechanical properties Yoshinori Takashima 1, Yuki Sawa 1, Kazuhisa Iwaso

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction Supporting Information Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction Li-Chen Lee, a# Jie Lu, b# Marcus Weck, b * Christopher W. Jones a * a School of Chemical

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information