Ch120 Lecture: The BiMoO x Story

Size: px
Start display at page:

Download "Ch120 Lecture: The BiMoO x Story"

Transcription

1 Ch120 Lecture: The Bi x Story Heterogeneous selective (amm)oxidation of propene. Kimberly Chenoweth November 28, 2007

2 What do these processes have in common? Late 1800s Early 1900s 1950s 1960s 1970s 1980s Beer brewing by malting procedure Vinegar by aerobic fermentation of ethanol Yogurt formation from milk by lactose to lactic acid conversion Methane from syngas Coal liquefaction Ammonia synthesis Polypropylene (Ziegler-Natta) Naphthalene oxidation to phthalic anhydride Acrylonitrile via ammoxidation of propene (SHI) Propene oxidation to acrolein/acrylic acid Auto exhaust gas catalysts (catalytic converter) Gasoline from methanol process (bil) Malt enzymes Acetobacter Lactobacillus Ni Fe Fe/K Ti V, oxides Bi, oxides Bi, oxides Pt/Rh Zeolite

3 Aim: Functionalization of Hydrocarbons Convert hydrocarbon (i.e. propene, propane) to more useful products Use catalysts to do this selectively ur focus is on Bi x Extensively studied yet not atomistically understood Results from DFT calculations to provide insight Connections between theoretical and experiment results

4 20 most important organic chemicals are produced by catalytic processes 85% of industrial organic chemicals are produced from petroleum and natural gas 21% are produced by heterogenous catalysis: allylic oxidation (acrolein, H 2 C=CHCH) and ammoxidation (acrylonitirle, H 2 C=CHCN), epoxidation, aromatic oxidation. RKG, Boston ACS, 2007

5 verview of Typical Process Diagram rganic Hydrocarbon Fixed Bed Reactor Re-oxidant Functionalized Hydrocarbon xidized Product

6 Heterogeneous Catalysis General reaction steps: 1. Diffusion of reactant to catalyst 2. Adsorption of reactant on catalyst surface 3. Reaction to convert reactant to product 4. Desorption of product from catalyst surface 5. Re-oxidation of active site(s)

7 Products of Conversion Acrylonitrile: World production: 6x10 6 tonnes Pungent-smelling colorless liquid Acrylonitrile is highly flammable and toxic Undergoes explosive polymerization Used in the preparation of polyester resin, polyurethane, propylene glycol, and glycerol Acrolein: World production: 3x10 6 tonnes Simplest unsaturated aldehyde Acrid smell similar to that of burning fat Highly reactive, most often immediately reacted to form other products such as acrylic acid and methionine Important monomer for the manufacture of useful plastics, acrylic and carbon fiber, and synthetic rubber

8 Industrial Process: Ammoxidation of Propene to Acrylonitrile Current Process (SHI/BP) C 3 H 6 + NH 3 + 3/2 2 (air) cat. CH 2 =CH-CN + 3 H 2 Catalyst: (K,Cs) (Ni,Co,Mn,Mg) (Fe,Cr) Bi x Si 2 AN Yield: 80+ % (fluid bed) (MCM) Future Process C 3 H 8 + NH (air) cat. CH 2 =CH-CN + 4 H 2 Advantages: Propane feedstock cheaper & more abundant than propylene Save one process step Catalyst: SbVAlWSnTe V(Nb,Ta)(Te,Sb) VAlN (SHI/BP) (Mitsubishi + thers) (Prada Silvy) Conversion 77% Selectivity 49% AN Yield 39% 89% 70% 62% 55% 66% 36% Best so far, but need >70% RKG, Boston ACS, 2007

9 Multi-metal oxides (MM) General synthesis procedure: 1. Slurry of metal salts 2. Dry material in air (120 C) 3. Grind into powder 4. Calcination in air (250 C) ensures metal salts are converted to metal oxides Primary components Secondary components

10 Activity of Bi and oxides Propylene Allyl alcohol Catalyst (320 C) % selectivity % conversion % conversion M 2+ a M 3+ b Bi x y z α-bi β-bi γ-bi Bi (hexadiene) C 3 H 6 Reactivity: M.C. > β, α > γ > 3, Bi 2 3 AA Reactivity: M.C. > γ > α > 3, Bi 2 3 Bi 2 3 most effective in generating allyl radicals Bi 2 3 cannot convert allyl radicals to acrolein 3 cannot activate propene 3 + allyl radicals give acrolein at 50% yield 3 + allyl alcohol give acrylonitrile at 70% yield Bi (α phase) and Bi (β phase) show better performance Functions of Bi 2 3 and 3 are not additive Grasselli et al

11 Catalyst Structure: α-bi Exposed Catalyts Surface (010) SEM images (Fansuri 2005) Bulk characteristics: Scheelite structures with ordered cation vacancies - distorted tetrahedra with at 1.72Å and 1.78Å Additional at 2.2Å from tetrahedra Bi - 8 neighbors and the Bi- distances can be divided into two distinct groups ( Å and Å)

12 Proposed Mechanism C-H activation Reactants Allyl adsorption C-H activation Ammoxidation NH 3 Act. xidation 2 nd H abstraction 4 th H abstraction 3 rd H abstraction Regeneration of Catalyst Allyl adsorption Re-oxidation of active site Products 2 nd H abstraction

13 Experimental Results Reaction temperature: oxidation 320 C or ammoxidation C Rate determining step is activation of propene Rate determining step for conversion of allyl to product is 2 nd H abstraction NH 3 decreases propene conversion to acrolein at oxidation temp. Require higher temperature because NH 3 blocks active site at 320 ; at higher temp. =NH forms and allows propene chemisorption Activation energy for NH 3 higher compared to propene activation Allylic N insertion more favorable than allylic insertion ne NH 3 involved Two NH 3 involved HN HN HN HN NH HN NH Increase partial pressure of NH 3 Increase conversion of C 3 H 6

14 C-H activation

15 Cluster model for α-bi 2 3 crystal α-bi 2 3 Bi 4 6 Crystal structure - Bi connected to 3 nearest neighbor Vaporization experiments show presence of closed-shell (Bi 2 3 ) n clusters Bi 4 6 cluster can mimic chemistry and retains stoichiometry, neutrality, and coordination of bulk

16 Propene Activation (1 st H abstraction) on Bi x Many experiments suggest that C-H activation occurs on oxygen associated with bismuth Bi(III) is widely accepted as the active site Bi Bi Bi III Bi Bi Bi Bi Bi Bi Bi V Reaction ΔG 673 (kcal/mol) Bi propene Bi 4 6 H + allyl 41.6 Bi Bi Bi propene Bi 4 7 H + allyl 2.5 Bi 4 7 H + propene Bi H 2 + allyl Bi III ΔG 673 far too high to play a role. Bi V ΔG 673 ok by barrier? No experimental evidence. Small amounts of Bi V might be present in oxidizing environment Fe(II) efficiently chemisorbs dioxygen to generate atomic lattice oxygen Large improvement seen when Fe(II)/Fe(III) used in catalyst (MC -Bi-Co-Fe-) Jang & Goddard 2002

17 Calculated Kinetics for C-H Activation By Bi V Transition State (9.4) (0.0) (4.9) (-1.6) C-H activation of propene (singlet surface) Transition state mode: H transfer between C and u=665i cm-1 Delocalization stabilizes allyl Calculated ΔH barrier = 11.0 kcal/mol Experimental ΔH barrier (on Bi 2 3 at K) = 14 kcal/mol Difference may arise from strain in the finite cluster Pudar et al. 2007

18 Cluster model for 3 crystal Stabilized oxo oxygen (2.3Å) Terminal oxo oxygen (1.68Å) Bridging ether xygen (2.02Å) has similar reactivity, stoichiometry and coordination to that found in both pure 3 and α-bi catalysts

19 C-H Propene Activation over H 3 C H C CH (0.0) -5.1 (-4.4) H 2 C H C CH (23.9) H 2 C H 21.6 (20.4) H C CH (8.8) H H 2 C ΔH barrier = 28.3 kcal/mol. Thus, 3 inactive for propene oxidation, in agreement with experiment. Pudar et al. 2007

20 Allyl conversion to acrolein

21 Allyl trapping over 3 Trapping of allyl radical on 3 is favorable (2.7 kcal/mol barrier) π-allyl complex can reversibly form σ- allyl intermediate Forward barrier: ΔE = 2.7 kcal/mol Reverse barrier: ΔE = 21.6 kcal/mol Pudar et al. 2007

22 2nd H-abstraction to convert bound allyl to acrolein TS Dashed Line: Absence of 2 Solid Line: 2 assisted acrolein desorption Re-oxidation of reduce sites significantly improves acrolein desorption process Net barrier (35.5 kcal/mol) suggests that 3 is capable of allyl oxidation but with lower activity than Bi x, in agreement with experiment Pudar et al. 2007

23 2nd H-abstraction to convert bound allyl to acrolein TS Spectator oxo effect Spectator group free to use 2 dπ orbitals to form super double bond, whereas the 2nd = bond requires one of these dπ orbitals 7 1 Allison & Goddard 1985

24 Propene xidation Mechanism Pudar et al. 2007

25 Ammonia Activation

26 Ammonia Activation on VI 2 nd H abs. 1 st H abs. Coordination is quite exothermic: explains the rapid decrease in conversion upon NH 3 addition Hydrogen abstraction barriers 1 st H abs. barrier: ΔE = 41 kcal/mol 2 nd H abs. barrier: ΔE = 30 kcal/mol This suggests that ammonia activation occurs on reduced sites (i.e. IV )

27 Ammonia Activation on IV Net energy cost is roughly the same on VI compared to IV but reduced at each step Highest barrier is ΔE = 21.8 kcal/mol NH 3 activation much easier on reduce sites

28 Ammonia Activation on IV Dashed Line: No barrier for NH 3 -assisted H 2 desorption (similar to 2 -assisted desorption) Solid Line: ΔE=29 kcal/mol for desorption of H 2 After initiating oxidation and ammoxidation, ammonia is activated much more rapidly

29 Ammoxidation of propene to form acrylonitrile

30 Ammoxidation Kinetics HN HN HN HN NH HN NH Low partial pressure of NH 3 /C 3 H 6 ne NH 3 involved Low conversion of C 3 H 6 Intermediate partial pressure of NH 3 /C 3 H 6 Two NH 3 involved Intermediate conversion of C 3 H 6 High partial pressure of NH 3 /C 3 H 6 Two NH 3 involved High conversion of C 3 H 6 Rate determining step for conversion of allyl radical to acrylonitrile is 2 nd allylic H abstraction Calculate barriers to explain different reactivity under different pressures of ammonia

31 Ammoxidation of Allyl over 3 : Low Partial Pressure 2 nd H abstraction barrier: ΔE = 33.0 kcal/mol Reduce barriers by re-oxidizing surface

32 Ammoxidation of Allyl over 3 : Intermediate Partial Pressure 2 nd H transfer to imido barrier: ΔE = 22.8 kcal/mol 2 nd H transfer to oxo barrier: ΔE = 33.7 kcal/mol (8.2 kcal/mol higher than 2 nd H abstraction by imido)

33 Ammoxidation of Allyl over 3 : High Partial Pressure 2 nd H transfer to NH barrier: ΔE = 18.6 kcal/mol Pink line provides alternate pathway to the same product

34 Number of NH Groups vs. 2nd Allylic H Abstraction Barrier Number NH groups HN Barrier 2 nd Allylic H abstraction Conversion of C Low HN HN 22.8 Medium HN NH HN NH 18.6 High Higher partial pressures of feed (more NH groups) give rise to higher conversion of propene to acrylonitrile (in agreement with experiment)

35 Key References Pudar, S., xgaard, J., van Duin, A.C.T., Chenoweth, K., Goddard III, W.A. Journal of Physical Chemistry C, 2007, 111, (and references within) Spectator xo Effect: Allison, J. N.; Goddard, W. A. In Active Sites on lybdenum Surfaces, Mechanistic Considerations for Selective xidation and Ammoxidation of Propene; Grasselli, R. K., Bradzil, J. F., Eds.; American Chemical Society: Washington, DC, 1985; Vol. 279, p 23. Rappe, A. K.; Goddard, W. A. J. Am. Chem. Soc. 1982, 104, 3287.

Mechanism of Selective Oxidation and Ammoxidation of Propene on Bismuth Molybdates from DFT Calculations on Model Clusters

Mechanism of Selective Oxidation and Ammoxidation of Propene on Bismuth Molybdates from DFT Calculations on Model Clusters J. Phys. Chem. B 00, 106, 5997-601 5997 Mechanism of Selective Oxidation and Ammoxidation of Propene on Bismuth Molybdates from DFT Calculations on Model Clusters Yun Hee Jang and William A. Goddard III*

More information

Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations

Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations J. Phys. Chem. C 2007, 111, 16405-16415 16405 Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations Sanja Pudar, Jonas Oxgaard, Kimberly Chenoweth,

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 16, November 4, 2016 1 st lecture eterogeneous Catalysis: butane MA Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

Figure 1. Oxidation by iron-oxo complex. supported by porous solid

Figure 1. Oxidation by iron-oxo complex. supported by porous solid Oxidation of Ethane to Ethanol by N 2 O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(II) Sites Long, J.R, et al., Nat. Chem. 2014, 6, 590. Mechanism of Oxidation of Ethane to Ethanol

More information

Lecture 26 March 8, 2010 Heterogeneous Catalysis

Lecture 26 March 8, 2010 Heterogeneous Catalysis Lecture 26 March 8, 2010 Heterogeneous Catalysis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 104 CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 7.1 INTRODUCTION Aromatic ketones such as acetophenone are important intermediates for the synthesis of drugs and pharmaceuticals (Choudhary et al 2004).

More information

Lecture 19 February 21, 2014 Heterogeneous Catalysis: butane MA

Lecture 19 February 21, 2014 Heterogeneous Catalysis: butane MA Lecture 19 February 21, 2014 Heterogeneous Catalysis: butane MA Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

15.1: Hydrocarbon Reactions

15.1: Hydrocarbon Reactions 15.1: Hydrocarbon Reactions Halogenation An alkane will react with a halogen to produce a halalkane and the corresponding hydrogen halide. The catalyst is ultraviolet radiation. Reaction 1 methane chlorine

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

Supporting Information

Supporting Information Supporting Information Roles of Water Molecules in Modulating the Reactivity of Dioxygen-bound - ZSM-5 toward Methane: A Theoretical Prediction Takashi Yumura,,* Yuuki Hirose, Takashi Wakasugi, Yasushige

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Catalysis is an important process to improve the production of chemicals. This phenomenon can be employed in a chemical reaction that is favored thermodynamically but is very slow

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

28 Processes at solid surfaces

28 Processes at solid surfaces 28 Processes at solid surfaces Solutions to exercises E28.b E28.2b E28.3b Discussion questions The motion of one section of a crystal past another a dislocation results in steps and terraces. See Figures

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'. : s / ; '.... ;. : : ^.'-'. Catalytic Chemistry Bruce C. Gates University of Delaware John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Contents List of Notation xix 1 INTRODUCTION

More information

Definition: A hydrocarbon is an organic compound which consists entirely of hydrogen and carbon.

Definition: A hydrocarbon is an organic compound which consists entirely of hydrogen and carbon. Hydrocarbons Definition: A hydrocarbon is an organic compound which consists entirely of hydrogen and carbon. It is important to note that carbon atoms have 4 free bonds and that hydrogen has 1 free bond.

More information

Lecture 22 February 25, 2011 Metal Oxide Catalysis

Lecture 22 February 25, 2011 Metal Oxide Catalysis Lecture 22 February 25, 2011 Metal xide Catalysis ature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Controlling the Rate E a Page 1 of 18 Learning Outcomes Controlling the Rate Circle a face to show how much understanding you have

More information

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Slide 2 Introduction Organic chemistry is the study of and its compounds. The major sources of carbon are the fossil fuels: petroleum, natural gas,

More information

Unraveling the Mechanism of Water Oxidation by Ruthenium-Oxo Complexes

Unraveling the Mechanism of Water Oxidation by Ruthenium-Oxo Complexes Unraveling the Mechanism of Water xidation by thenium-xo Complexes Casseday Richers Literature Seminar ovember 20, 2007 The oxidation of water to dioxygen and protons represents one half the watersplitting

More information

CH0204 Organic Chemical Technology

CH0204 Organic Chemical Technology CH0204 Organic Chemical Technology Lecture 8 Chapter 2 Synthe1c Organic Chemicals Assistant Professor (OG) Department of Chemical Engineering 1 Overview of topics Chapter 2 SYNTHETIC ORGANIC CHEMICALS

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry The stoichiometric coefficients in the chemical reaction equation Is (1 for C 7 H 16, 11 for O 2 and so on). Another way to

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring

More information

Propylene: key building block for the production of important petrochemicals

Propylene: key building block for the production of important petrochemicals Propylene production from 11-butene and ethylene catalytic cracking: Study of the performance of HZSMHZSM-5 zeolites and silicoaluminophosphates SAPO--34 and SAPOSAPO SAPO-18 E. Epelde Epelde*, *, A.G.

More information

Reactions of Alkenes and Alkynes

Reactions of Alkenes and Alkynes 5 2 2 2 2 2 2 2 Reactions of Alkenes and Alkynes APTER SUMMARY Addition is the characteristic reaction of alkenes and alkynes. Since the carbons of a double or triple bond do not have the maximum number

More information

Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys

Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys Introduction Catalysis is critical to modern chemical industry 60% of chemical products 90% of chemical

More information

Chapter 23 Aldehydes and Ketones

Chapter 23 Aldehydes and Ketones Chapter 23 Aldehydes and Ketones Ketones are common solvents for quickdrying paints. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison, and Susan

More information

Chapter 5 Notes Science 10 Name:

Chapter 5 Notes Science 10 Name: 5.1 Acids and Bases Many familiar compounds are acids or bases. o Classification as acids or bases is based on chemical composition. Acids and bases can be very dangerous. o Both can be very. o NEVER try

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

CO + H 2. hydrocarbons oxygenates

CO + H 2. hydrocarbons oxygenates C + 2 hydrocarbons oxygenates Why? ydrocarbons and oxygenates as fuels and chemicals. Conversion of synthesis gas from diverse carbon sources (biomass, coal, natural gas, tar sands, ) Known chemistries,

More information

HYDROCARBON CHEMISTRY

HYDROCARBON CHEMISTRY HYDROCARBON CHEMISTRY George A. Olah Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, California Ärpäd Molnär Department of Organic Chemistry

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

C (s) + O 2 (g) CO 2 (g) S (s) + O 2 (g) SO 2 (g)

C (s) + O 2 (g) CO 2 (g) S (s) + O 2 (g) SO 2 (g) Combustion The rapid combination of oxygen with a substance. A major type of chemical reaction. When elemental carbon or carbon-containing compounds burn in air, oxygen combines with the carbon to form

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

IGCSE SEPARATE SCIENCES TOPIC C14: ORGANIC CHEMISTRY REVISION NOTES

IGCSE SEPARATE SCIENCES TOPIC C14: ORGANIC CHEMISTRY REVISION NOTES IGCSE SEPARATE SCIENCES TOPIC C14: ORGANIC CHEMISTRY REVISION NOTES Organic chemistry is the chemistry of a huge number of compounds containing carbon. Carbon atoms are in group 4 which means they form

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

Aromatic Hydrocarbons

Aromatic Hydrocarbons Aromatic Hydrocarbons Aromatic hydrocarbons contain six-membered rings of carbon atoms with alternating single and double carbon-carbon bonds. The ring is sometimes shown with a circle in the center instead

More information

Module overview. The approach. Practical work. ICT resources. The topics. Skills assessment. Health and safety. Advance preparation

Module overview. The approach. Practical work. ICT resources. The topics. Skills assessment. Health and safety. Advance preparation Module overview The approach This module is equivalent in extent to three of the earlier modules C1 C3 or C4 C6. There are three broad aims: to extend the coverage of key themes in modern chemistry (organic

More information

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation Supporting Information for: Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation Weifeng Tu, 1 Mireille Ghoussoub, Chandra Veer Singh,,3** and Ya-Huei (Cathy) Chin 1,*

More information

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry 1 Structure and Bonding 2 Structure and Bonding Rotation around the C=C bond is restricted 90 rotation The p orbitals are orthogonal

More information

Insertion and elimination. Peter H.M. Budzelaar

Insertion and elimination. Peter H.M. Budzelaar Peter H.. Budzelaar Insertion reactions If at a metal centre you have a) a σ-bound group (hydride, alkyl, aryl) b) a ligand containing a π-system (olefin, alkyne, C) the σ-bound group can migrate to the

More information

Regents review Organic chemistry

Regents review Organic chemistry 2011-2012 1. Which structural formula represents a saturated hydrocarbon? 2. Which molecule contains ten hydrogen atoms? A) butane B) butene C) propane D) propene 3. A double carbon-carbon bond is found

More information

Definitions and Concepts

Definitions and Concepts 2 Definitions and Concepts It is important that precise and unambiguous terms be used when dealing with rates of reaction and reaction modeling of a chemical system. Many of the definitions provided here

More information

AUTOMOTIVE EXHAUST AFTERTREATMENT

AUTOMOTIVE EXHAUST AFTERTREATMENT AUTOMOTIVE EXHAUST AFTERTREATMENT CATALYST FUNDAMENTLS Catalyst in its simplest term is a material that increase the rate (molecules converted by unit time) of a chemical reaction while itself not undergoing

More information

Nucleophilic attack on ligand

Nucleophilic attack on ligand Nucleophilic attack on ligand Nucleophile "substitutes" metal hapticity usually decreases xidation state mostly unchanged Competition: nucleophilic attack on metal usually leads to ligand substitution

More information

PROCESS TECHNOLOGY- ORGANIC II. 51. Gas phase dehydrogenation of ethyl-benzene to styrene occurs over catalyst based on

PROCESS TECHNOLOGY- ORGANIC II. 51. Gas phase dehydrogenation of ethyl-benzene to styrene occurs over catalyst based on PROCESS TECHNOLOGY- ORGANIC II 51. Gas phase dehydrogenation of ethyl-benzene to styrene occurs over catalyst based on (a) iron oxide, (b) silica alumina, (c) titanium dioxide, (d) sodium silicate, 52.

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Rates of Reaction HL

Rates of Reaction HL Name: Rates of Reaction Objectives 16. Rates of Reaction -define rate of reaction -define catalysis -monitor the rate of production of oxygen from hydrogen peroxide, using manganese dioxide as a catalyst

More information

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Journal of Natural Gas Chemistry 12(2003)205 209 Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Haitao Wang, Zhenhua Li, Shuxun Tian School of Chemical Engineering

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Introduction to Chemical Reactions. Chapter 6

Introduction to Chemical Reactions. Chapter 6 Introduction to Chemical Reactions Chapter 6 Instructional Goals 1. Given the reactants and product in a chemical reaction, the student will be able to write and balance chemical equations. 2. Identify

More information

SINOPEC MTP and MTX technologies

SINOPEC MTP and MTX technologies COPYRIGHT@SUNJUNNAN COPYRIGHT@SUNJUNNAN 18-19 th, July, 2016, Parsian Azadi Hotel, Tehran, Iran Methanol+Toluene to Xylenes SINOPEC MTP and MTX technologies July 18 th, 2016 CONTENT MTP Introduction S-MTP

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: CO 2, N 2, H 2 0, CH 4 O C 2.58Ǻ

More information

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially 3.2 Alkanes Refining crude oil Fractional Distillation: Industrially Petroleum is a mixture consisting mainly of alkane hydrocarbons Petroleum fraction: mixture of hydrocarbons with a similar chain length

More information

Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane

Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane DOI: 10.1038/NMAT2384 Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane Stefan Vajda, Larry A. Curtiss, Peter Zapol et al. Center for

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16 Understanding Chemical Reactions through Computer Modeling Tyler R. Josephson University of Delaware 4/21/16 A little about me B.S. in Chem E from U of M, 2011 Currently, Ph.D. student at University of

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes 1. Combustion Alkanes are very important fossil fuels. The combustion of alkanes is very exothermic and carbon dioxide and water are produced. General

More information

Zeolitter Mekanismestudier som nøkkel til nye materialer

Zeolitter Mekanismestudier som nøkkel til nye materialer Zeolitter Mekanismestudier som nøkkel til nye materialer Morten Bjørgen University of Oslo NIS Centre of Excellence Turin Reaction The catalysis group at UiO Research vision Catalyst Reaction mechanism

More information

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts Rodrigo Suárez París Supervisors: Magali Boutonnet, Sven Järås Division of Chemical Technology, KTH OUTLINE Introduction and objective Experimental

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 4 Stoichiometry and MB with Reactions Stoichiometry Stoichiometry provides a quantitative means of relating the amount of

More information

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY CHEMICAL KINETICS EDITED BY C.H. BAMFORD M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C., F.R.S. Campbell-Brown Professor of Industrial Chemistry, Uniuersity of Liverpool AND C.F.H. TIPPER Ph.D. (Bristol), D.Sc.

More information

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium?

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium? UNIT 9: KINETICS & EQUILIBRIUM Essential Question: What mechanisms affect the rates of reactions and equilibrium? What is Kinetics? Kinetics is the branch of chemistry that explains the rates of chemical

More information

SYNTHESIS OF INTERMEDIATES FOR THE PETROCHEMICAL INDUSTRY

SYNTHESIS OF INTERMEDIATES FOR THE PETROCHEMICAL INDUSTRY 11 SYNTESIS F INTERMEDIATES FR TE PETRCEMICAL INDUSTRY 11.1 xidation processes 11.1.1 Gas phase oxidation processes Introduction Selective oxidation processes, in particular those that make use of solid

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School Topic 10 Organic Chemistry Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School -Alkanes: have low reactivity and undergo free radical substitution. -Alkenes: are more reactive than alkanes, since

More information

CHEM Chapter3. Mass Relations in Chemical Reactions (Homework)

CHEM Chapter3. Mass Relations in Chemical Reactions (Homework) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. There are two different common crystalline forms of carbon diamond and graphite. A less common form called

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

1 Which of the compounds shown are in the same homologous series? 1 CH 3 OH 2 CH 3 CH 2 OH 3 CH 3 COOH C 3 CH 2 CH 2 OH

1 Which of the compounds shown are in the same homologous series? 1 CH 3 OH 2 CH 3 CH 2 OH 3 CH 3 COOH C 3 CH 2 CH 2 OH 1 Which of the compounds shown are in the same homologous series? 1 3 2 3 2 3 3 4 3 2 2 1, 2 and 3 1, 2 and 4 1, 3 and 4 2, 3 and 4 2 Which compound is not an alkane, n 2n+2? 3 2 2 3 ( 3 ) 2 3 3 3 ( 3

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: C 2, N 2, H 2 0, CH 4 C 2.58Ǻ?

More information

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon.

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon. Organic Chemistry Organic Chemistry Organic chemistry is the chemistry of compounds containing carbon. In this chapter we will discuss the structural features of organic molecules, nomenclature, and a

More information

CHEM J-11 June /01(a)

CHEM J-11 June /01(a) CHEM1001 2014-J-11 June 2014 22/01(a) Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kj) absorbed

More information

Chapter Practice Test

Chapter Practice Test Name: Class: Date: Chapter 17-18 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Examining a chemical system before and after a reaction

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #3 Alkenes and Alkynes. Structure, Synthesis and Reactions. Friday, November 17, 2000, 9:00-9:50 Name: Question 1. Alkenes

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate M. Gruber and K. Hermann Inorg. Chem. Dept., Fritz-Haber-Institut der Max-Planck-Gesellschaft,

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE

DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE 8 Dr Ali El-Agamey 1 LEARNING OUTCOMES LECTURE 8 (1) The Woodward-Hoffmann rules for [1,n] sigmatropic rearrangements -[1,2] cationic shift -[1,2]

More information

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is Kinetics Quiz 4 Potential Energy Diagrams 1. A catalyst increases the rate of a reaction by A. Increasing the concentration of the reactant(s) B. Decreasing the concentration of the reactant(s) C. Increasing

More information

Lecture February 6-8, Metal Oxide Catalysis

Lecture February 6-8, Metal Oxide Catalysis Lecture 15-16 February 6-8, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture 24 March 02, 2011 Metal Oxide Catalysis Bucky tube overni

Lecture 24 March 02, 2011 Metal Oxide Catalysis Bucky tube overni Lecture 24 March 02, 2011 Metal xide Catalysis Bucky tube overni Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information