AMAS: Attention Model for Attributed Sequence Classification

Size: px
Start display at page:

Download "AMAS: Attention Model for Attributed Sequence Classification"

Transcription

1 <latext sha1_base64="u5xncmv0ktxombzjkhvjvo2ai=">aaab/3cbzdptsjaeman+a/xh+rrsymx8ural3ok8ciro4ajgs7tmug7xazuzuhdqcfwks+gjfj1ufxcxwf+hbwc/z5jdvzjkzxyg508bzvp3sxubw9k55t7k3f3b4vd0+6eg0uxtbowpegyjrs4etg0zhb+lqpkehlvh+hzw7z6h0wvd2ymuhilfjekdhwupcdf1ctexvvlncd/ajqukg1qp70hynehsgcqj1z/ekcxkdkmcp5v+plesoyx9wkkqao8vmpu/fcokm3spv9wrhz9+9ethktj0looxrnq1jp/q/uye90eormymyjoylgucdek7uzf7pappizplbcqml3vpsocdu2nautmywv4nhascn4qzmsq+eq7lu+82qzpfrgc7ghc7bh2toqba0aykmbzak7w5z8678+f8llpltjfzcktyvn4b5aywgg==</latext> <latext sha1_base64="a4gdxlto5jabzev2+erjztv9cjg=">aaab/3cbzbltgjbeizr8ix4ql266uhmxjezrokccmsozwsmjcepgy69prmuntmyisfb3crr3bn3hout+a1bgawav5jj1/+qkpv/0eudau++0utrz3dvek+6wdw6pjk/lpwvvhqwlyyrgivtegggwx2dlccowmcmkucowek7t5vfoesvyppppgn5er5khnffjrydkubuuk27vxyhsgpddbxi1b+wf/jbmaytsmeg17nluyvymksozwfmpn2pmkjvqefysshqh9rpfqtyzz0hcwlnzrk4f6dygk9tqkbgdezvv1+bmf7veasjbp+mysq1ktlwupokymmz/tyzcitaoeyxe2thi2poszydfa2pmliiu5mjzumt57djrrrvc/yvvup/kmnabl3ahtxahrrqhbywgmelvmkb8+y8ox/o57k14oqz57a5+sx50wwgw==</latext> <latext sha1_base64="hs+0g4zhdq59q6az3y7yjjbno18=">aaab/3cbzgbeizr4vgv9slm8yguaozutblwe2wec0dkh0dgqsjj0ztxepeiyspibbpyi7cetrpihxsjpmwt+0pdxvxvv/qdscg1c99spbgxube8ud0t7+wehr+xjk5zouswwyrkrqe5aqoey9wi7ajfdioegoxnezevsjlezj/ggmev2idmmeckatr5k/7pfrrhvdy6ydl4ofcjv6jd/eooeprhghgmqdddzpfezqgxnaqelxqprujamq+xajgme2s/mp07jhxugjeyufbehc/fvreyjrsdrydsjakz6ttyz/6t1uxpe+hmpzwowzotfysqiscjs32taftijjhyou9zestiksqmtwdpsyqhcne8ldlkvuc1qf1vfus37uvwj3pqahnca6x4me1kaodwgcgyg8wcu8oc/ou/phfc5ac04+cwplcr5+aejeloq=</latext> <latext sha1_base64="ci8g7zineyzmemfrpe11gc=">aaab/3cbzgbeizr4vgv9slm8yguaoziugy4cbloybyrb6ojvjk56zprthcemwhscthsgdupuonsbr2elmyrj/apj4q4qq/gmpudau++0uja3tneku6w9/ypdo/lxsusnqwlyzilivcegggwpswm4edrcmkucgwh47tzvf2esvmkfjqtx5ehzepoapgwg+yf90vv9yqoxdzby+hcurq9ms/vuhc0ghjwwtvuuu50vgzvyyzgdsl9uokrvtixytxjrc7wfzu6fkwjodebkvtquft3iqor1pmosj0rso9wpuz/9w6qqlv/yzhmjuys8wmbxejgt2bzlgcpkrewuukw5vjwxefwxgpro0jzvdhtelmwy3moo69c6qnqw791krz5nviqzoidl8oagalchbjsbwrbe4bxengfn3flwphetbsefoyulov+/6newhq==</latext> <latext sha1_base64="zj4uys8vpw7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbiwqbxuejcx/ywqw5mavjlssudekauhzkgohuz5o9ot60tiddwkvdz6wfx0zjbqerb5vrtq86/nempyv1012opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrtrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> <latext sha1_base64="4aybh8rx2pm0qpnvgvrg0n1dlk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaola6ihhgbeqpultfjnmpvh0nsh1qfex/8rdywdhyycqtgwjlyzae3r13d3p+irg2rvtwchywl5zxyquvtfwzwqtvvwg41qxalyxorrpxoel9a23ah4tbtqybfq8yex437ngztmsbw3owt6er1ihnjgjaw8mt8lilteyarmwounimzu6ulpcot48my74cv+zkvkh0dvpdwmxoukohdoteu/eqzxci3dseb6qajrqutde7amxxcyqbomqzd4amn1floboqv3qphosyir1a10jji9d9bli3x/uwcxayk/ulwrp2ryojkdajylfkjonpdsbk//1uqkjw/2myyq1invojav2mr4hcwouajmxmgcyhs3t2l2rbvlxsy/tsvbgpgmfdsmmq2h3nw0dwft+6jfpriqmy2kv76aardibo0tw6qw3e0cv6rf/ou/tulj2qu/+voqxcs42mytn5ackwufy=</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffquetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzldmg2xrrlalsejxofodcatzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqou0jag6rxfobt2mlodx2hb/rt+xa2hfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbiwqbxuejcx/ywqw5mavjlssudekauhzkgohuz5o9ot60tiddwkvdz6wfx0zjbqerb5vrtq86/nempyv1012opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrtrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> <latext sha1_base64="1vmfuq/vvbb/jx6wo0glc55xy=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4goiyiarec1ibru5zk2x6jr7ycqkd+qn8dmwmgkg26bgbzc2dlrud/1tu6qcq6571xnixfpewv1bxq+sbm1ra7s9vwsayytfgevuuua2cs2gzbgq8pqpohah4dazxo/7jcyje/lghn0ytqxpokmgmv5luugenz8uu5hfdfqvjk99exru6aj0epj0frs5hgcg5bpnr4ryjngjcazj/vpfrxvh3rjwvcclqkoybn33sxsmlitbgao1h3paaxu2u4e1buu5mgllib7uphsklj0l18vljab9yjczqoe6xby/fvre5jrydxymmymmc92xuz//u6mymavzzldmg2wrrlalsejxkfodcataavltu/yvzmfwxg5j+1juv7cmbqvg0yzdahedfuhbor77z6xu2z0sqqox10ag6rxfobt2fmlodx2hb/rt+xdwhfznabopzzzq1pl1h4bwdc4zq==</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffquetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzldmg2xrrlalsejxofodcatzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqou0jag6rxfobt2mlodx2hb/rt+xa2hfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="zj4uys8vpw7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="55emaey4r0asqk+uwtj5pqz7rjm=">aaacncbvhltswfjxdv5rjdj2u+hgtsjmigqr0yyzzjo0hwazlskdkmbk+torkwujys3b+a/6g/mfs+8xvml40twuehzopvdhnbukgmvjefeo++tps+cvk+rz7xzvxf112/goskugxflrkkmaduguisr4ubafva40dajfh/3fynv0bpnsg7s0lhedol5bfn1fjkr/+zhxdz2d1luytfvokwyh9+/1lkph/v6vttkxd1sbaidepd53oleksj3nhughiutnttujxa/viuz0fkll/k19vem1vv/gykbi0uvldv/4wdxowxsae1trgffss8pmpwjscazhpsyv3czejjy9clfodc4i+wcxgukhulwtv2/4mcxlpv4saqy2pw+rc3ju/1zpmj+oucyzqzimjuzqjbbk8xqeouqjmxmycyhs3f8vsrrvlx5qzyvlt9ms6phhzmcazgntax+ifxvb2ugvxqe9ral4ghrpfazrei8tqx+ed88fpudw s1yln3qk9cr/9a0f7xqu=</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffquetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzldmg2xrrlalsejxofodcatzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqou0jag6rxfobt2mlodx2hb/rt+xa2hfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="zj4uys8vpw7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xja3tqu1+s6djlpfomeasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbiwqbxuejcx/ywqw5mavjlssudekauhzkgohuz5o9ot60tiddwkvdz6wfx0zjbqerb5vrtq86/nempyv1012opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrtrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> AMAS: Attenton Model for Attrbuted Sequence Classfcaton Zhongfang Zhuang Xangnan Kong Elke Rundenstener Abstract Classfcaton over sequental data s mportant for a wde range of applcatons from nformaton retreval, anomaly detecton to genomc analyss. eural network approaches, n partcular recurrent neural networks, have been wdely used n such tasks due to ther strong capablty of feature learnng. However, recent nnovatons n sequence classfcaton learn from not only the sequences but also the assocated attrbutes, called attrbuted sequences. Whle recent work shows the attrbuted sequences to be useful n real-world applcatons, neural attenton models have not yet been explored for attrbuted sequence classfcaton. Ths paper s the frst to study the problem of attrbuted sequence classfcaton wth the neural attenton mechansm. Ths s challengng that now we need to assess the mportance of each tem n each sequence consderng both the sequence tself and the assocated metadata. We propose a framework, called AMAS, to classfy attrbuted sequences usng the nformaton from the sequences, metadata, and the computed attenton. Emprcal results on real-world datasets demonstrate that the proposed AMAS framework sgnfcantly mproves the performance of classfcaton over the state-of-the-art methods on attrbuted sequences. 1 Introducton Classfcaton over sequental data s mportant for a wde range of applcatons over a varety of research areas, ncludng document classfcaton n nformaton retreval and gene classfcaton n genomc analyss. The conventonal approaches to sequence classfcaton focus on only the sequental data, whereas the metadata assocated wth the sequences s often dscarded. However, metadata s has been shown to be useful for a varety of topcs [30, 26]. In the lterature, the data type of a sequence and ts assocated metadata as a unty s called attrbuted sequence. Attrbuted sequences are heterogeneously structured and thus not naturally represented as fxed-sze vectors. For example, genes can be represented as attrbuted sequences, where each gene conssts of a DA sequence and a set of attrbutes {zzhuang, xkong, rundenst}@wp.edu, Computer Scence Department, Worcester Polytechnc Insttute Attrbuted Sequences p1 - p4 <latext sha1_base64="u5xncmv0ktxombzjkhvjvo2ai=">aaab/3cbzdptsjaeman+a/xh+rrsymx8ural3ok8ciro4ajgs7tmug7xazuzuhdqcfwks+gjfj1ufxcxwf+hbwc/z5jdvzjkzxyg508bzvp3sxubw9k55t7k3f3b4vd0+6eg0uxtbowpegyjrs4etg0zhb+lqpkehlvh+hzw7z6h0wvd2ymuhilfjekdhwupcdf1ctexvvlncd/ajqukg1qp70hynehsgcqj1z/ekcxkdkmcp5v+plesoyx9wkkqao8vmpu/fcokm3spv9wrhz9+9ethktj0looxrnq1jp/q/uye90eormymyjoylgucdek7uzf7pappizplbcqml3vpsocdu2nautmywv4nhascn4qzmsq+eq7lu+82qzpfrgc7ghc7bh2toqba0aykmbzak7w5z8678+f8llpltjfzcktyvn4b5aywgg==</latext> <latext sha1_base64="ci8g7zineyzmemfrpe11gc=">aaab/3cbzgbeizr4vgv9slm8yguaoziugy4cbloybyrb6ojvjk56zprthcemwhscthsgdupuonsbr2elmyrj/apj4q4qq/gmpudau++0uja3tneku6w9/ypdo/lxsusnqwlyzilivcegggwpswm4edrcmkucgwh47tzvf2esvmkfjqtx5ehzepoapgwg+yf90vv9yqoxdzby+hcurq9ms/vuhc0ghjwwtvuuu50vgzvyyzgdsl9uokrvtixytxjrc7wfzu6fkwjodebkvtquft3iqor1pmosj0rso9wpuz/9w6qqlv/yzhmjuys8wmbxejgt2bzlgcpkrewuukw5vjwxefwxgpro0jzvdhtelmwy3moo69c6qnqw791krz5nviqzoidl8oagalchbjsbwrbe4bxengfn3flwphetbsefoyulov+/6newhq==</latext> Classfcaton on Attrbutes Classfcaton on Sequences Classfcaton on Attrbuted Sequences P4 can only be <latext sha1_base64="55emaey4r0asqk+uwtj5pqz7rjm=">aaacncbvhltswfjxdv5rjdj2u+hgtsjmigqr0yyzzjo0hwazlskdkmbk+torkwujys3b+a/6g/mfs+8xvml40twuehzopvdhnbukgmvjefeo++tps+cvk+rz7xzvxf112/goskugxflrkkmaduguisr4ubafva40dajfh/3fynv0bpnsg7s0lhedol5bfn1fjkr/+zhxdz2d1luytfvokwyh9+/1lkph/v6vttkxd1sbaidepd53oleksj3nhughiutnttujxa/viuz0fkll/k19vem1vv/gykbi0uvldv/4wdxowxsae1trgffss8pmpwjscazhpsyv3czejjy9clfodc4i+wcxgukhulwtv2/4mcxlpv4saqy2pw+rc3ju/1zpmj+oucyzqzimjuzqjbbk8xqeouqjmxmycyhs3f8vsrrvlx5qzyvlt9ms6phhzmcazgntax+ifxvb2ugvxqe9ral4ghrpfazrei8tqx+ed88fpudw s1yln3qk9cr/9a0f7xqu=</latext> correctly classfed wth attrbuted sequences. Fgure 1: Usng both attrbutes and sequences s essental for predctng the of p 4. e.g., PPI, gene ontology ndcatng the propertes of the gene. etwork traffc can also be modeled as attrbuted sequences. amely, each network transmsson sesson conssts of a sequence of packages beng sent or receved by a router and a set of attrbutes characterzng the network traffc, e.g., date, tme, sze sender prorty etc. Desgnng a classfer to correctly predct the class of an attrbuted sequence s benefcal for applcatons such as automatc network traffc proflng for cyber securty. However, t has been shown that t s challengng to classfy sequences by themselves [31, 24, 19, 25]. Wth dependences between attrbutes and sequences, the attrbuted sequence classfcaton must tackle several mportant desgn challenges. In ths paper, we study the problem of attrbuted sequence classfcaton. Ths problem s dfferent from pror sequence classfcaton work [24, 19] as we now need to extract feature vectors from not only the sequences but also ncorporatng the metadata as the attrbutes, along wth the dependences between attrbutes and sequences. We summarze the challenges below. Attrbute-sequence dependences. Contrary to the smplfyng assumpton that the attrbutes and sequences are ndependent, there are varous dependences between them. Dependences between at- Copyrght c 2019 Copyrght for ths paper s retaned by authors

2 a Classfcaton on data attrbutes [1]. b Sequence classfcaton [31]. Attenton Block learnng the attenton from not only the sequences but also the hybrd of nformaton from both attrbutes and sequences. Our paper offers the followng contrbutons: We formulate the problem of attrbuted sequence classfcaton c Image classfcaton wth attenton [20] logn search search book search d Sequence classfcaton wth attenton [28] logn search search book search e Sequence classfcaton wth attrbute-guded attenton. ths paper Fgure 2: A comparson of related classfcaton problems. trbutes and sequences rase problems when learnng to classfy attrbuted sequence data. For example, n network traffc data, the devce type of the router.e., an attrbutes may affect the pattern of sendng/recevng TCP/UDP packets.e., sequences. Snce conventonal sequence classfcaton approaches focus on a sngle data type only, these dependences would thus not be captured. Attenton from both attrbutes and sequences. Recent sequence learnng research [34] has used neural attenton models to mprove the performance of sequence learnng, such as document classfcaton [34]. However, the attenton mechansm focuses on learnng the weght of certan tme steps or sub-sequences n each sequental nstance, wthout regards to ts assocated attrbutes. Wth nformaton from the attrbutes, the weght of tem or sub-sequence may be drastcally dfferent from the weght calculated by the attenton mechansm usng only sequences, whch would consequently have dfferent classfcaton results. To address the above challenges, we propose an endto-end soluton for attrbuted sequence classfcaton wth an attenton model, called AMAS. The AMAS model ncludes three man components: a Attrbute et to encode the nformaton from attrbutes, a Sequence et to encode the nformaton from sequences, and an We desgn a deep learnng framework, called AMAS, wth two attenton-based models to explot the nformaton from attrbutes and sequences. We demonstrate that the proposed models sgnfcantly mprove the performance of attrbuted sequence classfcaton usng performance experments and case studes. 2 Problem Formulaton 2.1 Prelmnares. We ntroduce the key defntons n ths secton. The mportant notatons are summarzed n Table 1. Defnton 1. Sequence Gven a fnte set I composed of r categorcal tems, a sequence s = x 1,, x t s an ordered lst of t tems, where x t I. We use the subscrpt to dstngush dfferent sequence nstances. Followng common pre-processng steps for deep learnng, we apply zero-paddng on the sequences of varable-length, n whch each sequence s padded to the maxmum length of the sequences n a dataset usng 0 s. The second step s to one-hot encode each sequence s [10]. We denote the [ one-hot encoded ] form of sequence s as a matrx s = x 1,, x t. Learnng models are capable of dsregardng the paddng so that the paddng has no effect on the tranng of models. Defnton 2. Attrbuted Sequence Gven a u- dmensonal attrbute vector v s composed of u attrbutes, an attrbuted sequence p s a par composed of an attrbute vector v and a one-hot encoded sequence s, denoted as p = v, s. 2.2 Problem Defnton. We formulate the attrbuted sequence classfcaton problem as the problem of fndng the parameters θ of a predctor Θ that mnmzes the predcton error of class s. Intutvely, we want to maxmze the possblty of correctly predctng s when gven a tranng set P = {p 1,, p k } of k attrbuted sequences. Thus, we formulate the tranng process as an optmzaton process: 2.1 arg mn θ Prl log Pr Θ p Copyrght c 2019 Copyrght for ths paper s retaned by authors

3 Table 1: Important Mathematcal otatons otaton Descrpton R The set of real numbers. P A set of attrbuted sequences. r The number of all possble tems n sequences. s A sequence of categorcal tems. x t The t-th tem n sequence s. t max The maxmum length of sequences. s A one-hot encoded sequence n the form of a matrx s R t max r. x t A one-hot encoded tem at t-th tme step. v An attrbute vector. p An attrbuted sequence..e.,, p = v, s p A feature vector of attrbuted sequence p. µ Attenton weghts. α Attenton vector. Our goal s to fnd the parameters that mnmze the categorcal cross-entropy loss between the predcted s usng parameters n functon Θ and the true s for all attrbuted sequences n the dataset. 3 Attrbuted Sequence Attenton Mechansm The proposed AMAS model has three components, one Attrbute et for learnng the attrbute nformaton, one Sequence et to learn the sequental nformaton, and one Attenton Block to learn the attenton from both attrbutes and sequences. 3.1 etwork Components Attrbute et. We buld Attrbute et usng fully connected neural network denoted as: 3.2 f A; W r, b r = tanhw r A + b r where W a and b a are two tranable parameters n the Attrbute et, denotng the weght matrx and bas vector, respectvely. We use the actvaton functon tanh here n our Attrbute et based on our emprcal studes. Other choces, such as ReLu or sgmod, may work equally well n other real-world scenaros. When gven an attrbuted sequence p = v, s, Attrbute et takes the attrbutes as nput and generates an attrbute vector r = fv ; W r, b r. Dfferent from prevous work n [4, 27] usng stacked fully connected neural network as autoencoder, where the tranng goal s to mnmze the reconstructon error, our goal of Attrbute et s to work together wth other network components to maxmze the possblty of predctng the correct s Sequence et. Dfferent from the attrbutes beng unordered, tems n our sequences have a temporal orderng. The nformaton about the sequences s n both the tem values and the orderng of tems. The temporal orderngs requre a model that s capable of handlng the dependences between dfferent tems. There have been extensve studes on usng recurrent neural networks R to handle temporal dependences. However, R suffers from the problem of explodng and vanshng gradent durng the tranng, where the gradent value becomes too large or too small and thus the network becomes untranable. Long Short- Term Memory LSTM [13] s desgned as one varaton and expanson of the R to handle such ssues. LSTM s capable of rememberng values over long tme ntervals by ntroducng addtonal nternal varables.e., varous gates and cell states. We use an LSTM to handle the dependences. Wth a varable X t at tme t, the Sequence et can be expressed as: 3.3 t = σ W X t + U h t 1 + b f t = σ W f X t + U f h t 1 + b f o t = σ W o X t + U o h t 1 + b o g t = tanh W c X t + U c h t 1 + b c c t = f t c t 1 + t g t h t = o t tanh c t where denotes the btwse multplcaton, σ s a sgmod actvaton functon, t, f t and o t are the nternal gates of the LSTM, and c t and h t are the cell and hdden states of the LSTM, respectvely. We denote the Sequence et as: 3.4 gx t ; W s, U s, b s = h t where W s = [W, W f, W o, W c ], U s = [U, U f, U o, U c ] and b s = [b, b f, b o, b c ]. [ ] Wth the sequence s = x 1,, x t as part of an attrbuted sequence p, the hdden states for nput x t are g x t ; W s, U s, b s = h t Attenton Block. Recent work [20, 6] has dentfed that even LSTM-based solutons cannot fully handle the sequence learnng on long sequences that the nformaton over a long tme may be lost. One popular soluton to ths problem s to ncorporate the attenton mechansm nto the model. The attenton mechansm effectvely summarzes the data wth the am to leverage the mportance of each tem n the sequental nput. Attrbuted Sequence Attenton. Dfferent from the common sequence attenton models, we now need to ncorporate the attrbute nformaton nto Copyrght c 2019 Copyrght for ths paper s retaned by authors

4 <latext sha1_base64="+newlwycyydy8+le/yujfrp7bbk=">aaacbxcbzc7sgbfiznvcz41ralabbkuzaabmwsrnbxcs7hnj2wtizowwfyesqx0aw30eo7h1oxwcx8jsovj/ghg4z/ncm78wrumyd49jy2t7z3dkt75f2dw6pjyslpw2dwewrjgwqm2ajapogwoydkuczbmgnwr86t3nkbpmokhm5eqczwukueg2c9rpinebd92q9ug1owl78oyqfvvkjzr/xeg4xydsiqhrxuhye0cy6voytbtbxzdrktmr5cz6hahhsczw+e+pfogfhpptwtxp+7fydyzlwe8mr1cmxgeru2m/+r9axjb+occmkcljylfrmm8yf/d4fuaxesikdtbr1t/pkhbumxmw0tmxkoqiyt8sumxa1h3vox9dcx/dbtd4omqhc3sbrlcibladvattrbbhl2gv/tmpxvv3of3uwjd8iqzm7qk7+sxbhszxw==</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="gtmv6ivthka+4horls3tcoxpqlm=">aaacfhcbvdlssafj34rpuvfdy4gsxcxvgsxey4kblcvybbqyt6u07dpjgzkum/wa9zqj7gtt+79an/dszufbt1w4xdovdzd8wloplksb2ldw19y7o0vd7e2d3bw8o2zjkbiuwjxgkuh6rwfkilcuuh24sgaqeh443vs39zmiyalwxk1caiydjnpkffacs3jfkduypptueayh7sqxhzxdz65zswqwvpgzwixpiikf3zpz+iabjaqcgnuvzsk1zosorlew7csyklhzag9tumsghtsaf4mn2llgp1i6akvnqp/l1issdkjpl2zp5wlx7+5/us5d84kqvjrefiz4/8hgmv4bwmpgacqoittqgvtgffdeqeoupxvclyccyjyvdtp2yg/lph1zszw/syr1rtfrcz2gu1rfrpgddratdrcfd2hf/sk3oxn4934md5nqytgcxoe5mb8/qigqz6q</latext> <latext sha1_base64="xg38qqc07e6ma225thsezgyyqsy=">aaab/ncbzdlsgmxfiyzxmu9jyor8e1ivlrhe6lljpsok9qdsomttthazkgsemgz4km5ckolw53dn252s9dwhwif/zmhc/jhklftpo/bwvldw9/ylg2vt3d29/bdg8o2tlkfsqsnlfhdcgncqcatqw0jxaki4hejnwh8o613honsbh3zjjwfq0jhzkwvusd9yam5f9ykomppacxp3novvxat5mcbn8aqgud0v/qdbkeccimz0rrne9iegvkgykbycj/vrci8rkpssygqjzrizufn8mw6axgnyj5h4mz9pzehrvwer7atizps7wp+v+tl5r4jsokkkhas8xxsmdjohtlocakoim1hawff7k8qjpba2rgydcff/piytc9rvuu7r1jvfhguwak4bvxgg2tqbw3qbc2aqqaewst4c56cf+fd+z3rjjfzbh4i+fzb/fhlm0=</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ke/ptvz4zdrkas+upaaqfp1c+2q=">aaacfhcbvdlssafj34rpuvfdy4crahlxj7osuomygn1ag8ketmonuzczeqomb/hb7jvt3anbt37bf6gkzyl23rgwugce7mh48emsmxb38ba+sbm1nzpp7y7t39wab4dd2sucajterfi9hwsgveobuuvg14saic+g64/uc397miss+r6yxuceecrpqgpwwpp0egi19o0nhn0ia0qj17vlzpprg1ewzrltgfqaaclc/8gqwjkotafwfyyr5jx8psvcummjkg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqraziwfjkpxtvaluccyjkvdtpocg+rpfovozrf2zvgs+ohm7qoaob12jbmqfmojgp7qc3pfb8az8w58gj/z1twjudlbczc+fgefdp6p</latext> <latext sha1_base64="l7u7aa1n2mxz5g7ot1dxzmoeikg=">aaab/ncbzdlsgmxfiyzxmu9jyor8e1ivlphtdftx0wcfeob2htjppq5msdjcgqz8ftcufhhrc7jzbuzbwwjrd4gp/5zdofkjyag2nvftrk1vbg5tl3bku3v7b4fu0xfhj6ncpi0tlqhehdrhvjc2oyarnlqe8yrbjs5ndw7j0rpmoh7m5uk4ggkaewxmtyk3dob5fem85a+zfutungf65d56fa8mjcxxaw/gaoo1ardr8ewwsknwmcgto77njrbhpshmjg8peg1kqhp0ij0lqreq6y+fk5vldoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykystaxsq/cxv7wknxrt3znvrrio4pnoap8ca0aoalaoa0wymazeavvzppz4rw7h4vwaeyoqf/5hz+ao/blmw=</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ppmkzzdoerbr3fzpsrauq4anq2e=">aaacf3cbzc7sgbfiznvcz4w7usm8egxmkwq4wwazuuecwfknwznzwkq2z3h7kiyqk+hw9gq49gj7awpogv4ersmmqfbj7+cw7nzb8jzpt2vg9nzxvtfwmzt5xf3tnd23cpdusqzjcjay8lc2ikoasgzpmmktscbxxkerdw7h9cyjsmxs5f4pbqqx6swsyyjr1grd47aii9w2gndrjyf7yio6zbdx56pqlxglbyk8dp4mcmmauj+tdsptekmnkvmv3ha4yijwjheb5tlegcb2qhrqsjqgfwstl4zwmxu6ujtk+xkj+7fyzesg3jyhbgrpfvym1s/ldrgd29ctkwckmhodfxcoxtve4d9xheqjmqwuesmzvxbrpjkhapja3xyebbm8jyzfzghzahflnzld16hxjlllemn6bqvky+uurlvubxveevp6aw9ojfn2xl3ppzpaeukm5s5qnyvn4b3lufna==</latext> <latext sha1_base64="h6mcvzrsgm5upml8x+0mrweya=">aaacf3cbzc7sgbfiznvcz4w7usm8egxmkwm0blge3kcoycsvxmjyfjkndys5cwbafwwew1uewe1tln8dxchiptoipax//oydz5g8fz0p73reztr6xubwd28nv7u0fhlphxw2vgemhthoeyfzifhawq10zzaeljjao5amr7etevmrpgjjfk/harorgcsszyjr1grc046iqtwxgnaxjaf7sis6yfflyyxwc17jmwqvgj+hapqrfrg/nv5ctqsxppwo1fy9obspkzprdlm+yxqiqkdkag2lmyladdppfzj8yz0e7fsvljjqft3iwruumotj0r0uo1xjuy/9xarvdvumlhdeq09mvufyj3sb+4xcvtzsqvcjbo3yjokklbtu1vyysraaoyyve3gx85hfrrlkm/5ztuqvomcugmnam8te1qqaqqqe6ougjvabx9oy8o+/oh/m5a11z5jmnaeho1y/cwj+b</latext> <latext sha1_base64="sgwewobqlwop/xciuubipjmyn+4=">aaacf3cbzdlsgmxfiyz9vbrrepk3aslubewgte6lljpsok9qkcomfs0du1mqpiryjd4hd6aw30ed+lwpu/ga5hefrb1h8dhf87hnpyh5ewb1/12cmvrg5tb+e3czu7e/khx8kp40rracyx6odeg2crdawzhboswvehbxa4eh2um89gtisju7wejxkehe+owsy62geojlewi/kytliqnyq1o2abv0lrkgwhir7lr4fbw5lbc9ad44/dmgidove647nsttkmcsgkfqjbejoa+hyjiga3u2nx8jwuxv6ub8r+ykdp+7fzqircctj2cmkferk3m/2qdxprvumlzgigorf/yrje+jhrjhffddxxyivczeumqkektw1hsyihcmcufwwy3nioq9c8qnw79xsttbpki9o0rkqiw9doyqqotpqiiqe0at6rw/os/pufdfs9acm585rgtyvn4b2ywfmg==</latext> <latext sha1_base64="mnwra8armv44xzwgxstrea/fm=">aaacfxcbzc7tsmwfiadcvlfmbgylgokmpsjswwvmlpwcr6kdoqoe5ja9vjltbqqi8bw/aco/ahlzeqjea7fqft+ydkn/5yjc/whgjolhefbkm1sbm3vlhcre/shh0f28ulhjamk0kyjt2qviao46gtmebqexjifhdobpo7wb37bfkxjh7quwfereyxcxkl2l+ftyquyahqsbcjinphroa9tlv7ttvp+7mhdfblackcrv8+2cwtggaqawpj0r1xudolysm8ohrwxsbylqcrlb32bmilbev9aj+m8rhis2lz67fycyek1jqltgre9vqu1mflfrz/q8blwcxsdtfdlaptjnwcz2ngizaz8aifqycyumyyij1sazps2pgemasv4xybroaxd57rugr53qo1mkveznamlvemuuke1eqt1eyu5egfvai369l6tz6sz0vryspmttgsrk9f6wefka==</latext> <latext sha1_base64="fihe3xjkd6ju2rqmqg1cqc+qw=">aaacfhcbvdlssafj3uv62vqodgtbaidwfj3oy4kblcvybbqyt6u07ddijmxohxpygh+bwp8gduhxvf/gbttosboubc4dz7uuejh8zkpvtfxultfwza3ydmvnd2//wdw86sgoeqtajgkr6plyaqmc2ooqbr1yaa59bl1/cpv73ucqkkb8xk1jcem84jsgbcsteebjimrq7afpoppoq1pthr10ljlprp1ewzrltgfqaiclc/8gqwjkotafwfyyr5jx8psvcummgqg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqraziwfjkpxtvaluccyjjvddpocg+rphvdzs/s6uztfrgz2m1rddrpgddreldrgbd2hf/sk3oxn4934md7nqywjudlgczc+fgedc56o</latext> <latext sha1_base64="vbafdy+0zk7w+2mnb7mw66wfo=">aaab/ncbzdlsgmxfiyz9vbrbvrcuqkwos4sm250wxdtzqv7gxycmmmmdu0yickizrjwvdy4umstz+hotzftz6gtpwq+/nmo5+spjkpae63u1pb39jckm9xdnb39g/cw6ootlkfsrsnlfg9cgncqcbtqw0jpaki4hej3whyo6t3h4nsbh3zpjwfi0jhzkwvucdyam5f9ygomppas+hd56fa9ujcxxaw/gcoo1ardr8ewwsknwmcgto77njrbhpshmjg8mkg1kqhp0ij0lqreq6y+fk5plfoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykystaxq/cxv7wknau6b/noqzaarrxlcaroqa344bo0qbo0qbtgkifn8arencfnxxl3phatjaeyoqz/5hz+ao5vlms=</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="4stvxtr8vdpbr6fgmjp1ow2tlui=">aaacencbvdlssafj34rpuvhzs3g0wom5k40wxbtzcv7apagbtm3bozbjmjki+qs/wk1+gjtx6w/4bf6gkzyl23rgwugce7mh48ecke0439ba+sbm1nzpp7y7t39wab8dt1wusaotgvfidn2gdmblc00h24sgyq+h44/uc39zixsjxr6cxdeiyexglggjefzppyr67afpoppyq1rvhrvmplv1jwz8cpxc1jbbzqe/dmfrjqjqwjkvi914n1icvsm8ohk/ctbtghezkcnqgchkag6sx9h+mmsrbjm0ijwfq34uuhepq99s5lnvspel/3m9rac3g5sjoeg6pxrkhcsi5xxgydmatv8aghkpmsmi6jjfsbwha+jpfiakyysmngxe5hlbsvaq7hd06l3g6kqezdi6qyexxqi4aqilakin9ije0zv1bl1bh9bnfhxkm5o0aksr18taz42</latext> <latext sha1_base64="adkmcmxvsu2los2dzqtmth55m=">aaab+ncbzc7tsmwfiadcvllsliylehlavkwgcsxkxspqtsfyxke1ajuw7ycqkedhyqahvp6ejbfbbtayy9z+vsfc3so/0gyqo3nftuljc2t7z3ybmvv/+dwyk0ed3wskkw6oggj6kdie0yf6rhqgollrrcpgolf05t5vfdalkajudmzsqkoxolgfcjrdctdwpmpmh9d6rm5be5kfb8xreqnad/ajqofa7dl+gowsnnadgdj64hvsbblshmjg8sow1uqpevjmraoecc6yban5/dcomyj8o+yedc/t2ria71jee2kymz0au1uflfbzca+driqjcpiqivf8upgyab8xzgcqcdztzqfhreyvee6qqjatg3bx/3yonqvg77lw6/wbbvxlmepoa14imr0aqt0aydgmejeaav4m15cl6cd+dj2vpypkt8efo5w9qajqf</latext> <latext sha1_base64="+newlwycyydy8+le/yujfrp7bbk=">aaacbxcbzc7sgbfiznvcz41ralabbkuzaabmwsrnbxcs7hnj2wtizowwfyesqx0aw30eo7h1oxwcx8jsovj/ghg4z/ncm78wrumyd49jy2t7z3dkt75f2dw6pjyslpw2dwewrjgwqm2ajapogwoydkuczbmgnwr86t3nkbpmokhm5eqczwukueg2c9rpinebd92q9ug1owl78oyqfvvkjzr/xeg4xydsiqhrxuhye0cy6voytbtbxzdrktmr5cz6hahhsczw+e+pfogfhpptwtxp+7fydyzlwe8mr1cmxgeru2m/+r9axjb+occmkcljylfrmm8yf/d4fuaxesikdtbr1t/pkhbumxmw0tmxkoqiyt8sumxa1h3vox9dcx/dbtd4omqhc3sbrlcibladvattrbbhl2gv/tmpxvv3of3uwjd8iqzm7qk7+sxbhszxw==</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ppmkzzdoerbr3fzpsrauq4anq2e=">aaacf3cbzc7sgbfiznvcz4w7usm8egxmkwq4wwazuuecwfknwznzwkq2z3h7kiyqk+hw9gq49gj7awpogv4ersmmqfbj7+cw7nzb8jzpt2vg9nzxvtfwmzt5xf3tnd23cpdusqzjcjay8lc2ikoasgzpmmktscbxxkerdw7h9cyjsmxs5f4pbqqx6swsyyjr1grd47aii9w2gndrjyf7yio6zbdx56pqlxglbyk8dp4mcmmauj+tdsptekmnkvmv3ha4yijwjheb5tlegcb2qhrqsjqgfwstl4zwmxu6ujtk+xkj+7fyzesg3jyhbgrpfvym1s/ldrgd29ctkwckmhodfxcoxtve4d9xheqjmqwuesmzvxbrpjkhapja3xyebbm8jyzfzghzahflnzld16hxjlllemn6bqvky+uurlvubxveevp6aw9ojfn2xl3ppzpaeukm5s5qnyvn4b3lufna==</latext> <latext sha1_base64="xg38qqc07e6ma225thsezgyyqsy=">aaab/ncbzdlsgmxfiyzxmu9jyor8e1ivlrhe6lljpsok9qdsomttthazkgsemgz4km5ckolw53dn252s9dwhwif/zmhc/jhklftpo/bwvldw9/ylg2vt3d29/bdg8o2tlkfsqsnlfhdcgncqcatqw0jxaki4hejnwh8o613honsbh3zjjwfq0jhzkwvusd9yam5f9ykomppacxp3novvxat5mcbn8aqgud0v/qdbkeccimz0rrne9iegvkgykbycj/vrci8rkpssygqjzrizufn8mw6axgnyj5h4mz9pzehrvwer7atizps7wp+v+tl5r4jsokkkhas8xxsmdjohtlocakoim1hawff7k8qjpba2rgydcff/piytc9rvuu7r1jvfhguwak4bvxgg2tqbw3qbc2aqqaewst4c56cf+fd+z3rjjfzbh4i+fzb/fhlm0=</latext> <latext sha1_base64="gtmv6ivthka+4horls3tcoxpqlm=">aaacfhcbvdlssafj34rpuvfdy4gsxcxvgsxey4kblcvybbqyt6u07dpjgzkum/wa9zqj7gtt+79an/dszufbt1w4xdovdzd8wloplksb2ldw19y7o0vd7e2d3bw8o2zjkbiuwjxgkuh6rwfkilcuuh24sgaqeh443vs39zmiyalwxk1caiydjnpkffacs3jfkduypptueayh7sqxhzxdz65zswqwvpgzwixpiikf3zpz+iabjaqcgnuvzsk1zosorlew7csyklhzag9tumsghtsaf4mn2llgp1i6akvnqp/l1issdkjpl2zp5wlx7+5/us5d84kqvjrefiz4/8hgmv4bwmpgacqoittqgvtgffdeqeoupxvclyccyjyvdtp2yg/lph1zszw/syr1rtfrcz2gu1rfrpgddratdrcfd2hf/sk3oxn4934md5nqytgcxoe5mb8/qigqz6q</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="h6mcvzrsgm5upml8x+0mrweya=">aaacf3cbzc7sgbfiznvcz4w7usm8egxmkwm0blge3kcoycsvxmjyfjkndys5cwbafwwew1uewe1tln8dxchiptoipax//oydz5g8fz0p73reztr6xubwd28nv7u0fhlphxw2vgemhthoeyfzifhawq10zzaeljjao5amr7etevmrpgjjfk/harorgcsszyjr1grc046iqtwxgnaxjaf7sis6yfflyyxwc17jmwqvgj+hapqrfrg/nv5ctqsxppwo1fy9obspkzprdlm+yxqiqkdkag2lmyladdppfzj8yz0e7fsvljjqft3iwruumotj0r0uo1xjuy/9xarvdvumlhdeq09mvufyj3sb+4xcvtzsqvcjbo3yjokklbtu1vyysraaoyyve3gx85hfrrlkm/5ztuqvomcugmnam8te1qqaqqqe6ougjvabx9oy8o+/oh/m5a11z5jmnaeho1y/cwj+b</latext> <latext sha1_base64="l7u7aa1n2mxz5g7ot1dxzmoeikg=">aaab/ncbzdlsgmxfiyzxmu9jyor8e1ivlphtdftx0wcfeob2htjppq5msdjcgqz8ftcufhhrc7jzbuzbwwjrd4gp/5zdofkjyag2nvftrk1vbg5tl3bku3v7b4fu0xfhj6ncpi0tlqhehdrhvjc2oyarnlqe8yrbjs5ndw7j0rpmoh7m5uk4ggkaewxmtyk3dob5fem85a+zfutungf65d56fa8mjcxxaw/gaoo1ardr8ewwsknwmcgto77njrbhpshmjg8peg1kqhp0ij0lqreq6y+fk5vldoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykystaxsq/cxv7wknxrt3znvrrio4pnoap8ca0aoalaoa0wymazeavvzppz4rw7h4vwaeyoqf/5hz+ao/blmw=</latext> <latext sha1_base64="ke/ptvz4zdrkas+upaaqfp1c+2q=">aaacfhcbvdlssafj34rpuvfdy4crahlxj7osuomygn1ag8ketmonuzczeqomb/hb7jvt3anbt37bf6gkzyl23rgwugce7mh48emsmxb38ba+sbm1nzpp7y7t39wab4dd2sucajterfi9hwsgveobuuvg14saic+g64/uc397miss+r6yxuceecrpqgpwwpp0egi19o0nhn0ia0qj17vlzpprg1ewzrltgfqaaclc/8gqwjkotafwfyyr5jx8psvcummjkg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqraziwfjkpxtvaluccyjkvdtpocg+rpfovozrf2zvgs+ohm7qoaob12jbmqfmojgp7qc3pfb8az8w58gj/z1twjudlbczc+fgefdp6p</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="sgwewobqlwop/xciuubipjmyn+4=">aaacf3cbzdlsgmxfiyz9vbrrepk3aslubewgte6lljpsok9qkcomfs0du1mqpiryjd4hd6aw30ed+lwpu/ga5hefrb1h8dhf87hnpyh5ewb1/12cmvrg5tb+e3czu7e/khx8kp40rracyx6odeg2crdawzhboswvehbxa4eh2um89gtisju7wejxkehe+owsy62geojlewi/kytliqnyq1o2abv0lrkgwhir7lr4fbw5lbc9ad44/dmgidove647nsttkmcsgkfqjbejoa+hyjiga3u2nx8jwuxv6ub8r+ykdp+7fzqircctj2cmkferk3m/2qdxprvumlzgigorf/yrje+jhrjhffddxxyivczeumqkektw1hsyihcmcufwwy3nioq9c8qnw79xsttbpki9o0rkqiw9doyqqotpqiiqe0at6rw/os/pufdfs9acm585rgtyvn4b2ywfmg==</latext> <latext sha1_base64="vbafdy+0zk7w+2mnb7mw66wfo=">aaab/ncbzdlsgmxfiyz9vbrbvrcuqkwos4sm250wxdtzqv7gxycmmmmdu0yickizrjwvdy4umstz+hotzftz6gtpwq+/nmo5+spjkpae63u1pb39jckm9xdnb39g/cw6ootlkfsrsnlfg9cgncqcbtqw0jpaki4hej3whyo6t3h4nsbh3zpjwfi0jhzkwvucdyam5f9ygomppas+hd56fa9ujcxxaw/gcoo1ardr8ewwsknwmcgto77njrbhpshmjg8mkg1kqhp0ij0lqreq6y+fk5plfoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykystaxq/cxv7wknau6b/noqzaarrxlcaroqa344bo0qbo0qbtgkifn8arencfnxxl3phatjaeyoqz/5hz+ao5vlms=</latext> <latext sha1_base64="fihe3xjkd6ju2rqmqg1cqc+qw=">aaacfhcbvdlssafj3uv62vqodgtbaidwfj3oy4kblcvybbqyt6u07ddijmxohxpygh+bwp8gduhxvf/gbttosboubc4dz7uuejh8zkpvtfxultfwza3ydmvnd2//wdw86sgoeqtajgkr6plyaqmc2ooqbr1yaa59bl1/cpv73ucqkkb8xk1jcem84jsgbcsteebjimrq7afpoppoq1pthr10ljlprp1ewzrltgfqaiclc/8gqwjkotafwfyyr5jx8psvcummgqg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqraziwfjkpxtvaluccyjjvddpocg+rphvdzs/s6uztfrgz2m1rddrpgddreldrgbd2hf/sk3oxn4934md7nqywjudlgczc+fgedc56o</latext> <latext sha1_base64="2ydsze4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1sshm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetp6fkccbajs40pjq6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx544p1hvz1yry8o6jxxde7bjdersm9tebokiedelaqb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="mnwra8armv44xzwgxstrea/fm=">aaacfxcbzc7tsmwfiadcvlfmbgylgokmpsjswwvmlpwcr6kdoqoe5ja9vjltbqqi8bw/aco/ahlzeqjea7fqft+ydkn/5yjc/whgjolhefbkm1sbm3vlhcre/shh0f28ulhjamk0kyjt2qviao46gtmebqexjifhdobpo7wb37bfkxjh7quwfereyxcxkl2l+ftyquyahqsbcjinphroa9tlv7ttvp+7mhdfblackcrv8+2cwtggaqawpj0r1xudolysm8ohrwxsbylqcrlb32bmilbev9aj+m8rhis2lz67fycyek1jqltgre9vqu1mflfrz/q8blwcxsdtfdlaptjnwcz2ngizaz8aifqycyumyyij1sazps2pgemasv4xybroaxd57rugr53qo1mkveznamlvemuuke1eqt1eyu5egfvai369l6tz6sz0vryspmttgsrk9f6wefka==</latext> <latext sha1_base64="adkmcmxvsu2los2dzqtmth55m=">aaab+ncbzc7tsmwfiadcvllsliylehlavkwgcsxkxspqtsfyxke1ajuw7ycqkedhyqahvp6ejbfbbtayy9z+vsfc3so/0gyqo3nftuljc2t7z3ybmvv/+dwyk0ed3wskkw6oggj6kdie0yf6rhqgollrrcpgolf05t5vfdalkajudmzsqkoxolgfcjrdctdwpmpmh9d6rm5be5kfb8xreqnad/ajqofa7dl+gowsnnadgdj64hvsbblshmjg8sow1uqpevjmraoecc6yban5/dcomyj8o+yedc/t2ria71jee2kymz0au1uflfbzca+driqjcpiqivf8upgyab8xzgcqcdztzqfhreyvee6qqjatg3bx/3yonqvg77lw6/wbbvxlmepoa14imr0aqt0aydgmejeaav4m15cl6cd+dj2vpypkt8efo5w9qajqf</latext> <latext sha1_base64="4stvxtr8vdpbr6fgmjp1ow2tlui=">aaacencbvdlssafj34rpuvhzs3g0wom5k40wxbtzcv7apagbtm3bozbjmjki+qs/wk1+gjtx6w/4bf6gkzyl23rgwugce7mh48ecke0439ba+sbm1nzpp7y7t39wab8dt1wusaotgvfidn2gdmblc00h24sgyq+h44/uc39zixsjxr6cxdeiyexglggjefzppyr67afpoppyq1rvhrvmplv1jwz8cpxc1jbbzqe/dmfrjqjqwjkvi914n1icvsm8ohk/ctbtghezkcnqgchkag6sx9h+mmsrbjm0ijwfq34uuhepq99s5lnvspel/3m9rac3g5sjoeg6pxrkhcsi5xxgydmatv8aghkpmsmi6jjfsbwha+jpfiakyysmngxe5hlbsvaq7hd06l3g6kqezdi6qyexxqi4aqilakin9ije0zv1bl1bh9bnfhxkm5o0aksr18taz42</latext> a Attrbuted Sequence Attenton. b Attrbuted Sequence Hybrd Attenton. Fgure 3: Two types of attenton [ for attrbuted ] sequence classfcaton n ths paper, where µ = µ 1,, µ t s the attenton weghts. the learnng process. Here, we desgn the Attenton Block as follows: Frst, we need to compute the attenton weght µ t at t-th tme as: g x t = h t exp g x t µ t = t j=1 g x j Then, the attenton weght s multpled wth the hdden state at each tme step: 3.5 α t = µ t g x t, t = 1, 2,, t The attenton weght µ t at t tme s randomly ntalzed and ncrementally adjusted durng the tranng process. The output at each tme step s then augmented wth the outputs from Attrbute et as: p t = fv α t At the last tme step t, we denote p = p t to smply the notaton. Attrbuted Sequence Hybrd Attenton. Dfferent from the prevous approach, the outputs of Attrbute et and Sequence et are augmented wth the Attenton Block. The attenton weght s wrtten as: d v, x t µ t = = fv g d exp t j=1 d v, x t x t v, x j Then, the vectors used for classfcaton s: 3.6 α t = µ t d v, x t, t = 1, 2,, t 3.2 Attrbuted Sequence Classfcaton. In the soluton of attrbuted sequence classfcaton wthout attenton, the Attrbute et and the Sequence et are frst concatenated as: 3.7 p = d v, x t = r h t Here, denotes the concatenaton and t denotes the last tem n s. Although all attrbuted sequences n the dataset are zero-padded to the maxmum length t max, the padded zero values are masked and not used n the computaton. We model the process of predctng the for each attrbuted sequence as: σw pp + b p, or o Attenton Θp = σ W pα t + b p, where σ s a sgmod actvaton functon and ˆl = Θp s the predcted. The W p and b p are both tranable n our model. 3.3 Tranng Regularzaton. We adopt multple strateges for dfferent components n our AMAS network. We emprcally select the followng regularzaton strateges n our model based on: 1. For Sequence et, we apply l 2 -regularzaton to the recurrent unt. 2. Copyrght c 2019 Copyrght for ths paper s retaned by authors

5 Table 2: Compared Methods ame Data Used Attenton ote Attrbutes o [12] Sequences o [28] S Attrbutes Sequences o [35] Sequences Yes [34] Attrbutes Sequences Yes Ths paper Attrbutes Sequences Yes Ths paper Dropout wth a rate of 0.5 s used to regularze the fully connected layer n Attrbute et. 3. Lastly, we use Dropout wth a rate of n other fully connected layers n the model. Based on our observatons, usng regularzaton on Attenton Block has no sgnfcant mpact on the performance of AMAS Optmzer. We use an optmzer that computes the adaptve learnng rates for every parameters, referred to as Adaptve Moment Estmaton Adam [15]. The core dea s to keep 1. an exponentally decayng average of gradents n the past and 2. a squared past gradents. Adam counteracts the bases as: ω t = β 1ω t β 1 m t 1 β t 1 ν t = β 2ν t β 2 m t 2 1 β t 2 where β 1 and β 2 are the decay rates, and m t s the gradent. We adopt β 1 = 0.9 and β 2 = as n [15]. Fnally, the Adam updates the parameters as: γ t+1 = γ t ρ ν t + ɛ ω t where ρ s a statc learnng rate and ɛ s a constant wth a small value to avod dvson errors, such as dvson by zero. We emprcally select ρ = Experments 4.1 Datasets. Our soluton has been motvated by use case scenaros observed at Amadeus corporaton. For ths reason, we work wth the log fles of an Amadeus [2] nternal applcaton. The log fles contan user sessons n the form of attrbuted sequences. In addton, we apply our methodology to real-world, publcly avalable Wkspeeda data [29] and Reddt data [16]. For each type of data, we sample two subsets and conduct experments ndependently. We summarze the data descrptons as follows: Amadeus data AMS-1, AMS-2 1. We sampled sx datasets from the log fles of an nternal applcaton at Amadeus IT Group. Each attrbuted sequence s composed of a user profle contanng nformaton e.g., system confguraton, offce name and a sequence of functon names nvoked by web clck actvtes e.g., logn, search ordered by tme. Wkspeeda data Wk-1, Wk-2. Wkspeeda s an onlne game requrng partcpants to clck through from a gven start page to an end page usng fewest clcks [29]. We select fnshed paths and extract several propertes of each path e.g.,, the category of the start path, tme spent per clck. We also sample sx datasets from Wkspeeda. The Wkspeeda data s avalable through the Stanford etwork Analyss Project 2 [17]. Reddt data Reddt-1, Reddt-2. Reddt s an onlne forum. Two datasets that contan the content of reddt submssons are used. The Reddt data s avalable through the Stanford etwork Analyss Project 3. We use 60% of the nstances n each dataset for the tranng and the rest 40% for testng. In the tranng, we holdout 20% of the tranng nstances for valdaton. 4.2 Compared Methods. We evaluate our two approaches, namely and and compare them wth the followng baselne methods. We summarze all compared methods used n ths research n Table 2. s bult usng a fully connected neural network to reduce the dmensonalty of the nput data, and then classfy each nstance. classfes sequences only data usng an LSTM. S utlzes the nformaton from both attrbutes and sequences. The resultng embeddngs generated by S are then used for classfcaton. bulds attenton on the sequence data for classfcaton, whle the attrbute data s not used. 4.3 Expermental Settng. Our paper focuses on mult-class classfcaton problem. We thus use accuracy as the metrc to evaluate the performance. A hgher accuracy score depcts more correct predctons of class s. For each method, we holdout 20% as the valdaton dataset randomly selected from tranng dataset. 1 Personal nformaton s not collected Copyrght c 2019 Copyrght for ths paper s retaned by authors

6 S a ASM-1, 83 classes 0.0 S S b Wk-1, 64 classes S 0.00 c Reddt-1, 140 classes d ASM-2, 83 classes e Wk-2, 64 classes f Reddt-2, 140 classes Fgure 4: Performance comparson on all sx datasets. S S For each expermental settng, we report the top-1 top-10 accuracy for each method. We ntalze our network usng the followng strateges: orthogonal matrces are used to ntalze the recurrent weghts, normalzed random dstrbuton [9] s used to ntalze weght matrces n Attrbute et, and bas vectors are ntalzed as zero vector Results. In Fgure 4, we compare the performance of our and solutons wth the other state-of-the-art methods n Table 2. acheves the best performance of top-1 accuracy on most datasets. In most cases, outperforms other solutons sgnfcantly. We also observe a sgnfcant performance mprovement by compared to other methods. That s, although the top-1 accuracy performance of s beneath that of, t stll outperforms wth sequence-only attenton and all other methods wthout attenton. The two closest compettors, the utlzng the attenton mechansm and classfyng each nstance based on only the sequental data, and S usng nformaton from both attrbutes and sequences, but wthout the help from an attenton mechansm, are outperformed by the our proposed models. 4.5 Parameter Senstvty Analyss Adaptve Samplng. As ponted out n recent work [4], adaptve samplng s capable of mprovng the effcency of the optmzaton processes by adaptng the tranng sample sze n each teraton.e., epoch. In ths set of experments, we evaluate the two models wth varyng adaptve samplng rates. We adopt the adaptve samplng functon as: τ = 1 λ τ 1 Here, τ denotes the epoch number, τ denotes the number of nstances used n the τ-th epoch and λ the rate of adaptve samplng. We choose λ = 1, 1.001, 1.005, and 1.01 n our experments, where λ = 1 means no adaptve samplng. The results presented n Fgure 5 shows that the adaptve samplng wth the above samplng rates can acheve smlar performance as the non-adaptve approach yet now wth much less tranng data Tranng wth Adaptve Samplng. Wth the contnuously ncreasng amount of tranng nstances, we expect the hstory of tranng loss to be jttery when a model encounters prevously unseen new nstances. Dfferent from prevous experments, where we use Early Stoppng strategy to avod overfttng, we now set a fxed number of 144 epochs for the model and 97 epochs for model and collect the hstory of tranng and valdaton to study the adaptve tranng strategy. In Fgure 6a, we observe the tranng wth adaptve samplng s more aggressve compared to the non-adaptve approach. From Fgure 6b we conclude that wth a hgher adaptve rate, the model more easly becomes overftted. Smlar concluson can also be made from Fgure 6d. Selectng a hgher adaptve samplng rate can shorten the tranng tme but rskng a hgher chance of overfttng. 4.6 Case Studes. Fgure 7 demonstrates the weghts of each word of ten nstances from the Reddt-2 dataset. Hgher weghts are represented wth a darker Copyrght c 2019 Copyrght for ths paper s retaned by authors

7 on-adaptve Adaptve rate=1.001 Adaptve rate=1.005 Adaptve rate=1.01 a model on AMS-1 dataset on-adaptve Adaptve rate=1.001 Adaptve rate=1.005 Adaptve rate= on-adaptve Adaptve rate=1.001 Adaptve rate= Adaptve rate=1.01 b model on Wk-1 dataset on-adaptve Adaptve rate=1.001 Adaptve rate=1.005 Adaptve rate= on-adaptve Adaptve rate=1.001 Adaptve rate=1.005 Adaptve rate=1.01 c model on Reddt-1 dataset. d model on AMS-1 dataset. e model on Wk-1 dataset. f model on Reddt-1 dataset. Fgure 5: The performance comparson between non-adaptve tranng and adaptve samplng on-adaptve Adaptve rate=1.001 Adaptve rate=1.005 Adaptve rate=1.01 Loss Epoch Loss Epoch Epoch a tran_loss of. b val_loss of. c tran_loss of. d val_loss of. Fgure 6: Comparson of the hstory of tranng and valdaton losses. Loss Loss Epoch color, whle lower weghts are represented wth a lghter color. Comparng the three cases, we fnd that the has the most polarzed weghts among the three cases. Ths may be caused by the fact that the attenton produced by s solely based on the sequences, whle and have been nfluenced by attrbute data. 5 Related Work 5.1 Deep Learnng Deep learnng has receved sgnfcant nterests n recent years. Varous deep learnng models and optmzaton technques have been proposed n a wde range of applcatons such as mage recognton [14, 32] and sequence learnng [5, 24, 33, 22]. Many of these applcatons nvolve the learnng of a sngle data type [5, 24, 33, 22], whle some applcatons nvolve more than one data type [14, 32]. The applcaton of deep learnng n sequence learnng s popular wth one of the most popular works, sequence-to-sequence [24], usng a long short-term memory model n machne translaton. The hdden representatons of sentences n the source language are transferred to a decoder to reconstruct n the target language. The dea s that the hdden representaton can be used as a compact representaton to transfer smlartes between two sequences. Mult-task learnng [18] examnes three mult-task learnng settngs for sequence-to-sequence models that am to share ether an encoder or a decoder n an encoder-decoder model settng. Although the above work s capable of learnng the dependences wthn a sequence, none of them focuses on learnng the dependences between attrbutes and sequences. Multmodal deep neural networks [14, 23, 32] are desgned for nformaton sharng across multple neural networks, but none of these works focuses on the attrbuted sequence classfcaton problem we target here. 5.2 Attenton etwork. Attenton network [20] has ganed a lot of research nterest recently. The attenton network has been appled n varous tasks, ncludng mage captonng [32, 21], mage generaton [11], speech recognton [6] and document classfcaton [34]. The goal of usng an attenton network n these tasks s to make the neural network focus on the nterestng Copyrght c 2019 Copyrght for ths paper s retaned by authors

8 How reddt seems to reacts whenever I share a mlestone that I passed How I felt when forgot to put spoler n a comment What r/askreddt dd to me when I asked somethng about 9gag The reacton face when express a vew for relgon When I see a rage comc out of ts sub Reddt Sttng as a /new knght of /r/gamng seeng all the nsanely twsted shadow planet flash sale posts How I act when I see a How I feel when post n /r/funny Pretty much what happened to my pxel art post on /r/mnecraft Seeng the same thng posted multple tmes by the same person n new Seeng somethng you posted yesterday on the front page posted by someone else a How reddt seems to reacts whenever I share a mlestone that I passed How I felt when forgot to put spoler n a comment What r/askreddt dd to me when I asked somethng about 9gag The reacton face when express a vew for relgon When I see a rage comc out of ts sub Reddt Sttng as a /new knght of /r/gamng seeng all the nsanely twsted shadow planet flash sale posts How I act when I see a How I feel when post n /r/funny Pretty much what happened to my pxel art post on /r/mnecraft Seeng the same thng posted multple tmes by the same person n new Seeng somethng you posted yesterday on the front page posted by someone else b How reddt seems to reacts whenever I share a mlestone that I passed How I felt when forgot to put spoler n a comment What r/askreddt dd to me when I asked somethng about 9gag The reacton face when express a vew for relgon When I see a rage comc out of ts sub Reddt Sttng as a /new knght of /r/gamng seeng all the nsanely twsted shadow planet flash sale posts How I act when I see a How I feel when post n /r/funny Pretty much what happened to my pxel art post on /r/mnecraft Seeng the same thng posted multple tmes by the same person n new Seeng somethng you posted yesterday on the front page posted by someone else c Fgure 7: Weghts of each words from 10 nstances n Reddt-2. Hgher weghts are darker. parts of each nput, such as, a small regon of an mage or words that are most helpful to classfyng documents. There are varatons of attenton networks, ncludng herarchcal attenton [34] and dual attenton [21]. 5.3 Sequence Mnng. Recent work n sequence mnng area ams to fnd the most frequent subsequence patterns [19, 8]. Several recent works [3, 19] focus on fndng the most frequent subsequence that meets certan constrants. That s, they fnd the set of sequental patterns satsfyng varous lngustc constrants e.g., syntactc, symbolc. Many sequence mnng works focus on frequent sequence pattern mnng. Recent work n [19] targets fndng subsequences of possble non-consecutve actons constraned by a gap wthn sequences. [7] ams at solvng pattern-based sequence classfcaton problems usng a parameter-free algorthm from the model space. [8] bulds a subsequence nterleavng model for mnng the most relevant sequental patterns. However, none of the above works supports attrbute data alongsde the sequences, nor do they classfy attrbuted sequences. 6 Concluson In ths paper, we propose a AMAS framework wth two models for classfyng attrbuted sequences. Our and models progressvely ntegrate the nformaton from both attrbutes and sequences whle weghtng each tem n the sequence to mprove the classfcaton accuracy. Expermental results demonstrate that our models sgnfcantly outperform state-of-the-art methods. 7 Acknowledgement We would lke to thank the Amadeus IT Group for the generous supports n fundng, computng resources and data access. References [1] Z. Akata, F. Perronnn, Z. Harchaou, and C. Schmd, Label-embeddng for attrbute-based classfcaton, n Proceedngs of the IEEE Conference on Computer Vson and Pattern Recognton CVPR, 2013, pp [2] Amadeus, Amadeus IT Group. com. Accessed: Copyrght c 2019 Copyrght for ths paper s retaned by authors

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

CSC 411 / CSC D11 / CSC C11

CSC 411 / CSC D11 / CSC C11 18 Boostng s a general strategy for learnng classfers by combnng smpler ones. The dea of boostng s to take a weak classfer that s, any classfer that wll do at least slghtly better than chance and use t

More information

Regularized Discriminant Analysis for Face Recognition

Regularized Discriminant Analysis for Face Recognition 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

We present the algorithm first, then derive it later. Assume access to a dataset {(x i, y i )} n i=1, where x i R d and y i { 1, 1}.

We present the algorithm first, then derive it later. Assume access to a dataset {(x i, y i )} n i=1, where x i R d and y i { 1, 1}. CS 189 Introducton to Machne Learnng Sprng 2018 Note 26 1 Boostng We have seen that n the case of random forests, combnng many mperfect models can produce a snglodel that works very well. Ths s the dea

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek Dscusson of Extensons of the Gauss-arkov Theorem to the Case of Stochastc Regresson Coeffcents Ed Stanek Introducton Pfeffermann (984 dscusses extensons to the Gauss-arkov Theorem n settngs where regresson

More information

Home Assignment 4. Figure 1: A sample input sequence for NER tagging

Home Assignment 4. Figure 1: A sample input sequence for NER tagging Advanced Methods n NLP Due Date: May 22, 2018 Home Assgnment 4 Lecturer: Jonathan Berant In ths home assgnment we wll mplement models for NER taggng, get famlar wth TensorFlow and learn how to use TensorBoard

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan Wnter 2008 CS567 Stochastc Lnear/Integer Programmng Guest Lecturer: Xu, Huan Class 2: More Modelng Examples 1 Capacty Expanson Capacty expanson models optmal choces of the tmng and levels of nvestments

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem H.K. Pathak et. al. / (IJCSE) Internatonal Journal on Computer Scence and Engneerng Speedng up Computaton of Scalar Multplcaton n Ellptc Curve Cryptosystem H. K. Pathak Manju Sangh S.o.S n Computer scence

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Improved Machine Learning Models for Predicting Selective Compounds

Improved Machine Learning Models for Predicting Selective Compounds Improved Machne Learnng Models for Predctng Selectve Compounds Xa Nng Computer Scence & Engneerng Unversty of Mnnesota, Twn Ctes xnng@cs.umn.edu George Karyps Computer Scence & Engneerng Unversty of Mnnesota,

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

MATH 567: Mathematical Techniques in Data Science Lab 8

MATH 567: Mathematical Techniques in Data Science Lab 8 1/14 MATH 567: Mathematcal Technques n Data Scence Lab 8 Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 11, 2017 Recall We have: a (2) 1 = f(w (1) 11 x 1 + W (1) 12 x 2 + W

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

P exp(tx) = 1 + t 2k M 2k. k N

P exp(tx) = 1 + t 2k M 2k. k N 1. Subgaussan tals Defnton. Say that a random varable X has a subgaussan dstrbuton wth scale factor σ< f P exp(tx) exp(σ 2 t 2 /2) for all real t. For example, f X s dstrbuted N(,σ 2 ) then t s subgaussan.

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES Manuel J. C. Mnhoto Polytechnc Insttute of Bragança, Bragança, Portugal E-mal: mnhoto@pb.pt Paulo A. A. Perera and Jorge

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

An Improved multiple fractal algorithm

An Improved multiple fractal algorithm Advanced Scence and Technology Letters Vol.31 (MulGraB 213), pp.184-188 http://dx.do.org/1.1427/astl.213.31.41 An Improved multple fractal algorthm Yun Ln, Xaochu Xu, Jnfeng Pang College of Informaton

More information

Deep Learning. Boyang Albert Li, Jie Jay Tan

Deep Learning. Boyang Albert Li, Jie Jay Tan Deep Learnng Boyang Albert L, Je Jay Tan An Unrelated Vdeo A bcycle controller learned usng NEAT (Stanley) What do you mean, deep? Shallow Hdden Markov models ANNs wth one hdden layer Manually selected

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Fast Tree-Structured Recursive Neural Tensor Networks

Fast Tree-Structured Recursive Neural Tensor Networks Fast Tree-Structured ecursve Neural Tensor Networks Anand Avat, Na-Cha Chen Stanford Unversty avat@csstanfordedu, ncchen@stanfordedu Project TA: Youssef Ahres 1 Introducton In ths project we explore dfferent

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Introduction to the Introduction to Artificial Neural Network

Introduction to the Introduction to Artificial Neural Network Introducton to the Introducton to Artfcal Neural Netork Vuong Le th Hao Tang s sldes Part of the content of the sldes are from the Internet (possbly th modfcatons). The lecturer does not clam any onershp

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 89 Fall 206 Introducton to Machne Learnng Fnal Do not open the exam before you are nstructed to do so The exam s closed book, closed notes except your one-page cheat sheet Usage of electronc devces

More information

Maximizing Overlap of Large Primary Sampling Units in Repeated Sampling: A comparison of Ernst s Method with Ohlsson s Method

Maximizing Overlap of Large Primary Sampling Units in Repeated Sampling: A comparison of Ernst s Method with Ohlsson s Method Maxmzng Overlap of Large Prmary Samplng Unts n Repeated Samplng: A comparson of Ernst s Method wth Ohlsson s Method Red Rottach and Padrac Murphy 1 U.S. Census Bureau 4600 Slver Hll Road, Washngton DC

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

CSE 546 Midterm Exam, Fall 2014(with Solution)

CSE 546 Midterm Exam, Fall 2014(with Solution) CSE 546 Mdterm Exam, Fall 014(wth Soluton) 1. Personal nfo: Name: UW NetID: Student ID:. There should be 14 numbered pages n ths exam (ncludng ths cover sheet). 3. You can use any materal you brought:

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

CS294A Lecture notes. Andrew Ng

CS294A Lecture notes. Andrew Ng CS294A Lecture notes Andrew Ng Sparse autoencoder 1 Introducton Supervsed learnng s one of the most powerful tools of AI, and has led to automatc zp code recognton, speech recognton, self-drvng cars, and

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) ,

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) , A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS Dr. Derald E. Wentzen, Wesley College, (302) 736-2574, wentzde@wesley.edu ABSTRACT A lnear programmng model s developed and used to compare

More information