McCabe Thiele Graphical Equilibrium-Stage

Size: px
Start display at page:

Download "McCabe Thiele Graphical Equilibrium-Stage"

Transcription

1 Limiting condition McCabe Thiele Graphical Equilibrium-Stage When analzing or designing a process, it is useful to look at limiting cases to assess the possible values of process parameters. In distillation analsis, separation of a pair of components can be improved b increasing the number of stages while holding reflu constant, or b increasing the reflu flow for a given number of stages. This tradeoff sets up two limiting cases: 1. Total Reflu (minimum ideal stages) 2. Minimum Reflu (infinite ideal stages) The design tradeoff between reflu and stages is the standard economic optimization problem chemical engineers alwas face -- balancing capital costs (the number of tras to be built) vs. the operating cost (the amount of reflu to be recirculated). good design will operate near a cost optimum reflu ratio. ChE 334: Separation rocesses r Saad l-shahrani

2 McCabe Thiele Graphical Equilibrium-Stage a) Minimum number of plates: L If the reflu ratio ( R ) is increased to ver large value, the operating lines become the 45 o line. The infinite reflu ratio occurs in real life when the column is operated under what are called (total reflu) condition Under these conditions, no feed is added to the column (F=0) and no products are withdrawn (=0, =0), but the vapor is raised up and condensed to the column. So the column is just circulating vapor and liquid up and down. Most columns are started up under total reflu conditions. ChE 334: Separation rocesses r Saad l-shahrani

3 istillation of inar Miture Since the liquid flow rate in the column is same as the vapor flow rate, L V V L 1.0 The operating line and n1 L L n L n, m1 L L m L m The composition in the base of the column under total reflu =, and the composition of the liquid in the reflu drum = In this case the number of ideal plates is minimum. ChE 334: Separation rocesses r Saad l-shahrani

4 inar Multistage istillation The minimum number of ideal plates can be done b: a) Graphicall as shown in the figure Minimum number of plates = 3+reboiler 2 1 X 1 Composition of liquid in reflu drum 1 = 2 = 1 3 Operating lines as total reflu 3 = 2 X 2 4 = 3 4 = X X 3 Composition of liquid in re-boiler X X F X ChE 334: Separation rocesses r Saad l-shahrani

5 inar Multistage istillation b) nalticall (using Fenske Equation) This equation gives the number of plates required under total reflu at constant. It is applicable to multi-component sstem as well as binar sstem (= constant, total reflu, ideal sstem). It is ver useful for getting quick estimates of the size of a column. erivation of Fenske Equation Consider two component (,) forming ideal solution K K / / / / mole ratio in top product mole ration in bottomproduct (1) ChE 334: Separation rocesses r Saad l-shahrani

6 r Saad l-shahrani ChE 334: Separation rocesses n ideal miture follows Raoult s law and = vapor product ratio inar Multistage istillation K K / / / / / does not change much over the range of temperature encountered, constant 1, 1 (2)

7 inar Multistage istillation Substitute (2) in (1) 1 1 For plate n+1 n1 n1 1 n 1 1 n 1 Since = 0 (total reflu), L / V= 1.0, n1 L L n L zero Then n+1 = n and n n1 1 n 1 n 1 ChE 334: Separation rocesses r Saad l-shahrani

8 inar Multistage istillation t the top of the column, if a total condenser is used 1 =, n = 0 Substitute in (2) n ChE 334: Separation rocesses 1 For plate (1) n1 1 n 1 1 n 1 1 n n For plate (2) For plate (n) For re-boiler plate 1 n-1 n n-1 r n L b, b water steam Re-boiler r Saad l-shahrani V b b

9 inar Multistage istillation If all equations are multiplied together and all the intermediate terms canceled, n ( ) ( ) N min 1 1 Where n= Nmin + reboiler N min 1 ln[( /1 ln ) /( /1 )] ln[(mole ration) /(mole ration) or N min1 ln( / ln ln ] ) /( / ) ChE 334: Separation rocesses r Saad l-shahrani

10 McCabe Thiele Graphical Equilibrium-Stage Eample: Calculate the minimum number of tras required to achieve a separate from 5 mole % bottoms to 90 moles % distillate in a binar column with =2.5 solution = 0.05, = 0.9 N min 1 ln[( /1 ln ) /( /1 )] N min ln[(0.9/1 0.9) /(0.05/1 0.05)], ln N min ChE 334: Separation rocesses r Saad l-shahrani

11 McCabe Thiele Graphical Equilibrium-Stage Eample: in a miture to be fed to a continuous distillation column, the mole fraction of phenol is 0.35, of o-cresol 0.15, of m-cresol 0.3 and of lenes 0.2. it is hoped to obtain a product with a mole fraction of phenol 0.952, of o-cresol , of m-cresol if p-o = 1.26, m-o =0.7, estimate how man theoretical plates would be required at total reflu. ssume no phenol in the bottoms. Solution: light component (o-cresol) heav component (m-cresol) Total balance 100= + = zero For phenol 100*0.35=*0.952+*,p = 36.8 Kmol, = 63.2 Kmol For o cresol 100*0.15=0.0474*36.8+,o *63.2,o =0.21 ChE 334: Separation rocesses r Saad l-shahrani

12 McCabe Thiele Graphical Equilibrium-Stage For m cresol 100*0.3=0.0006*36.8+,m *63.2,m =0.474,X =0.316 component Feed top ottms phenol p-o = 1.26 o-cresol o-o = 1.0 m-cresol m-o =0.7 lenes ln[( / 0.474)] o-m = 1/0.7=1.43 N ) /(0.21/ min N min ln1.43 ChE 334: Separation rocesses r Saad l-shahrani

13 McCabe Thiele Graphical Equilibrium-Stage b) Minimum Reflu Ratio The net figure shows how changing the reflu ratio affects the operating lines: the lower the reflu ratio, the closer the operating line moves toward the equilibrium curve, and the larger the number of plates. If the reflu ratio finall reduced to the point where either operating line intersects or becomes tangent to the VLE curve, an infinite number of plates will be required and the reflu ratio is minimum. ChE 334: Separation rocesses r Saad l-shahrani

14 McCabe Thiele Graphical Equilibrium-Stage To obtain the R min n1 R R 1 n R 1 (, ) ab intercept R min 1 R a min 1 b ` ChE 334: Separation rocesses r Saad l-shahrani

15 McCabe Thiele Graphical Equilibrium-Stage If the equilibrium curve has a cavit upward, e.g., the curve for waterethanol shown in the figure in this case the minimum reflu ratio must be computed from the slope of the operating line (ac) that is tangent to the equilibrium R a min 1 ` Feed line Non-ideal Line VLE c b ` ChE 334: Separation rocesses r Saad l-shahrani

16 McCabe Thiele Graphical Equilibrium-Stage Eamole. continuous fractionating column is to be design to separate 30,000 kg/h of a miture of 40 percent benzene and 60 percent toluene into an overhead product containing 97 percent benzene and a bottom product containing 98 percent toluene. These percentages are b weight. reflu ratio of 3.5 mol to 1 mol of product is to be used. The molal latent heats of benzene and toluene are 7,360 and 7,960 cal/ gmol, respectivel. enzene and toluene form an ideal sstem with a relative volatilit of about 2.5. The feed has a boiling point of 95 o C at a pressure of 1 atm. (a) Calculate the moles of overhead product and bottom product per hour. (b) etermine the number of deal plate and the position of the feed plate (i) if the feed is liquid and at its boiling point. ii)if the feed is liquid and at 20 o C (specific heat 0.44 cal/ g- o C) (iii) if the feed is a miture of two-thirds and one-third liquid. (c) If steam at 20 Ib,/in 2 (1.36 atm) gauge is used for heating, how much steam is required per hour for each of the above three cases, neglecting heat losses and assuming the reflu is a urated liquid? (d) If cooling water enters the condenser at 25 C and leaves at 40 C, how much cooling water a required, in gallons per minute? ChE 334: Separation rocesses r Saad l-shahrani

17 Feed line R R F = = =0.974

18

19

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

Continuous Distillation 1: McCabe-Thiele Method

Continuous Distillation 1: McCabe-Thiele Method Guidelines for the Number of Distillation Separation Stages Februar, 9 refeed Corporation Dr. Yoshio Kumagae Continuous Distillation : McCabe-Thiele Method Continuous Distillation : McCabe-Thiele Method.

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 6 Fractional Distillation: McCabe Thiele

More information

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data. Distillation Distillation may be defined as the separation of the components of a liquid mixture by a process involving partial vaporization. The vapor evolved is usually recovered by condensation. Volatility

More information

Problem Appendix Antoine constants Important properties of unordered packings... 22

Problem Appendix Antoine constants Important properties of unordered packings... 22 Contents Sample problems and eercises Distillation... 3 Sample problems... 3 Sample : Calculating vapor phase composition for immiscible liquids... 3 Sample 2: Calculating boiling point and vapor phase

More information

L/O/G/O 單元操作 ( 三 ) Chapter 21 Distillation 化學工程系李玉郎

L/O/G/O 單元操作 ( 三 ) Chapter 21 Distillation 化學工程系李玉郎 /O/G/O 單元操作 ( 三 ) Chapter 21 istillation 化學工程系李玉郎 ifferent methods: Batch: Single stage without reflu -- Simple dist. Multi-stage with reflu Continuous: Single stage without reflu--flash dist. Multi-stage

More information

Solid-Liquid Extraction

Solid-Liquid Extraction Chapter (10) Solid-Liquid Extraction (( Leaching )) Leaching: is the separation of a solute from solid mixture by dissolving it in a liquid phase. Leaching occurs in two steps: 1. Contacting solvent and

More information

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module -5 Distillation Lecture - 8 Fractional Distillation: Subcooled Reflux,

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

Chemical unit operations 2. lectures 2 hours/week calculation seminars weekly 1 hours laboratory weekly 3 hours

Chemical unit operations 2. lectures 2 hours/week calculation seminars weekly 1 hours laboratory weekly 3 hours Chemical unit operations 2. lectures 2 hours/week calculation seminars weekl 1 hours laborator weekl 3 hours Requirements Attendance will be checked. Requirements for the signature: Attending on minimum

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MODULE 5: DISTILLATION LECTURE NO. 5 Determination of the stripping section operating line (SOL): The stripping section operating line (SOL) can be obtained from the ROL and q- line without doing any material

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia Shortcut Distillation Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia The use of separation column in HYSYS The column utilities in HYSYS can be used to model a wide variety of

More information

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another.

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another. Introduction: Virtually all commercial chemical processes involve operations in which material is transferred from one phase (gas, liquid, or solid) into another. rewing a cup of Coffee (Leaching) Removal

More information

Absorption/Stripping

Absorption/Stripping Absorption/Stripping Gas-liquid separation processes (Ch. 10) Cooling (condenser) Feed A+B Distillation(Ch.11) Absorption (Ch.10) Stripping (Ch.10) B COUNTER-CURRENT MULTISTAGE CONTACT OF GAS AND LIQUID

More information

Chapter 4: Column Distillation: Internal Stage-by-Stage Balances

Chapter 4: Column Distillation: Internal Stage-by-Stage Balances Chapter 4: Column Distillation: Internal Stage-by-Stage Balances In Chapter 3 (Introduction to Column Distillation), we performed the external balances or the balances around the distillation column To

More information

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Distillation Senior Design CHE 396 Andreas Linninger Innovative Solutions Michael Redel Alycia Novoa Tanya Goldina Michelle Englert Table of Contents Introduction 3 Flowsheet 4 Limitations 5 Applicability

More information

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. #23 Gas Separation So, welcome to the 23rd lecture, on Cryogenic Engineering,

More information

EXAMPLE 2: Visualization and Animation of Enthalpy Method in Binary Distillation

EXAMPLE 2: Visualization and Animation of Enthalpy Method in Binary Distillation EXAMPLE 2: Visualization and Animation of Enthalp Method in Binar Distillation A graphical method that includes energ balances as well as material balances and phase equilibrium relations is the Ponchon-Savarit

More information

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation 25 DISTILLATION Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation Distillation refers to the physical separation of a mixture into two or more fractions that have different

More information

Computer Aided Design Module for a Binary Distillation Column

Computer Aided Design Module for a Binary Distillation Column Computer Aided Design Module for a Binary Distillation Column K. R. Onifade Department of Chemical Engineering, Federal University of Technology Minna, Nigeria Abstract A Computer Aided Design (CAD) module

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

Chapter 3. Solution

Chapter 3. Solution Chapter 3 Eample 3.2-2 1. ---------------------------------------------------------------------------------- In an eperimental stud of the absorption of ammonia b water in a wetted-wall column, the value

More information

Chapter 3. Economic Decision Making: Design of a Solvent Recovery System

Chapter 3. Economic Decision Making: Design of a Solvent Recovery System Chapter 3 Economic Decision Makg: Design of a Solvent Recover Sstem Followg stream is currentl sent to flare: 10.3 mol/hr acetone 687 mol/hr air Is it beneficial to recover acetone? Economic Potential

More information

CL-333 Manual. MT 303: Batch Distillation

CL-333 Manual. MT 303: Batch Distillation CL-333 Manual MT 303: Batch Distillation Batch Distillation Equipment Operating Panel Refrectometer 1 CL-333 Manual MT 303: Batch Distillation Objectives: To determine the height equivalent to number of

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad Distillation Separation of liquid mixtures by repeated evaporation multi-stage with reflux Old name: Rectification Basis:

More information

See section and the dew and bubble point calculations in example 11.9.

See section and the dew and bubble point calculations in example 11.9. Solution 1.1 See section 11.3.2 and the dew and bubble point calculations in example 11.9. This type of problem is best solved using a spread-sheet, see the solution to problem 11.2. Solution 11.2 This

More information

Process Classification

Process Classification Process Classification Before writing a material balance (MB) you must first identify the type of process in question. Batch no material (mass) is transferred into or out of the system over the time period

More information

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2 Multicomponent Distillation All Rights Reserved. Armando B. Corripio, PhD, P.E., 2013 Contents Multicomponent Distillation... 1 1 Column Specifications... 2 1.1 Key Components and Sequencing Columns...

More information

Mass transfer and separation technology Massöverföring och separationsteknik ( MÖF-ST ) , 7 sp

Mass transfer and separation technology Massöverföring och separationsteknik ( MÖF-ST ) , 7 sp 42432 Mass transfer and separation technology Massöverföring och separationsteknik ( MÖF-ST ) 4432, 7 sp. Batch distillation Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory

More information

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION Santanu Bandyopadhyay Energy Systems Engineering and Department of Mechanical Engineering, Indian Institute of Technology, Bombay,

More information

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method Syed Mujahed Ali Rizwan Senior Lecturer in Chemistry Challenger College, Moinabad, Hyderabad. Abstract: In this

More information

Example CHEE C 8 : C 10 : lb-moles/h C 8 : C 10 : C 8 : C 10 : 0.854

Example CHEE C 8 : C 10 : lb-moles/h C 8 : C 10 : C 8 : C 10 : 0.854 Eample A feed stream containing C 8 and C hdrocarbons is split into 3 product streams: an overhead fraction, a middle cut and a bottom fraction, whose mole fraction compositions are shown below. Sevent

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

Comprehend and execute the 10 elements of effective problem

Comprehend and execute the 10 elements of effective problem Lecture 8, 3/9/2012 Chapter 7: A GENERAL Strategy for Solving Material Balance Problems Objectives: Comprehend and execute the 10 elements of effective problem Drive a flow chart and Place labels on the

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Temperature C. Heat Added (Joules)

Temperature C. Heat Added (Joules) Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance.

More information

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2 78 Chapter Sstems of Linear Equations Section. Concepts. Solutions to Sstems of Linear Equations. Dependent and Inconsistent Sstems of Linear Equations. Solving Sstems of Linear Equations b Graphing Solving

More information

Vapor-liquid equilibrium

Vapor-liquid equilibrium Vapor-liquid equilibrium From Wikipedia, the free encyclopedia Vapor-liquid equilibrium, abbreviated as VLE by some, is a condition where a liquid and its vapor (gas phase) are in equilibrium with each

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Chapter 10. Vapor/Liquid Equilibrium: Introduction

Chapter 10. Vapor/Liquid Equilibrium: Introduction Chapter 10 Vapor/Liquid Equilibrium: Introduction Preceding chapters have dealt largely with pure substances or with constant-composition mixtures. e.g., air. However, composition changes are the desired

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis Lecture 5. Single Equilibrium Stages (1) Phase Separation [Ch. 4] Degree of Freedom Analysis - Gibbs phase rule F CP2 -General analysis Binary Vapor-Liquid Systems - Examples of binary system - Phase equilibrium

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 4 Absorption Lecture - 3 Packed Tower Design Part 2 (Refer Slide

More information

Distillation. JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas. 5.1 INTRODUCTION 5.

Distillation. JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas. 5.1 INTRODUCTION 5. PART Il I N D I V I D U A L S E P A R A T I O N P R O C E S S E S C H A P T E R 5 Distillation JAMES R. FAIR Department of Chemical Engineering The University of Texas Austin, Texas 5.1 INTRODUCTION 5.M

More information

Pressure Swing Distillation with Aspen Plus V8.0

Pressure Swing Distillation with Aspen Plus V8.0 Pressure Swing Distillation with Aspen Plus V8.0 1. Lesson Objectives Aspen Plus property analysis RadFrac distillation modeling Design Specs NQ Curves Tear streams Understand and overcome azeotrope Select

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Liquid-liquid extraction

Liquid-liquid extraction Liquid-liquid extraction Basic principles In liquid-liquid extraction, a soluble component (the solute) moves from one liquid phase to another. The two liquid phases must be either immiscible, or partially

More information

DATE: POGIL: Colligative Properties Part 1

DATE: POGIL: Colligative Properties Part 1 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 1 Why? There is a general misconception that adding sodium chloride to cooking water for pasta increases the temperature of the boiling water

More information

They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c).

They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c). They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c). PHASE EQUILIBRIUM one of the most important sources of information

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

EVAPORATION YUSRON SUGIARTO

EVAPORATION YUSRON SUGIARTO EVAPORATION YUSRON SUGIARTO Evaporation: - Factors affecting evaporation - Evaporators - Film evaporators - Single effect and multiple effect evaporators - Mathematical problems on evaporation Principal

More information

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process Korean J. Chem. Eng., 27(3), 970-976 (2010) DOI: 10.1007/s11814-010-0206-7 RAPID COMMUNICATION A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts

More information

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column Background Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column In Problem SM.6 of the HYSYS manual, a modified form of successive substitution, called the Wegstein method, was used to close the material

More information

01/12/2009. F. Grisafi

01/12/2009. F. Grisafi Multicomponent distillation F. Grisafi 1 Introduction The problem of determining the stage and reflux requirements for multicomponent t distillations is much more complex than for binary mixtures. With

More information

CHAPTER / CONTENT. Definition & Application. Solvent selectivity. LLE for Partially Miscible Solvent. LLE for Immiscible Solvent

CHAPTER / CONTENT. Definition & Application. Solvent selectivity. LLE for Partially Miscible Solvent. LLE for Immiscible Solvent CHAPTER / COTET Definition & Application Solvent selectivit LLE for Partiall Miscible Solvent LLE for Immiscible Solvent Liquid liquid etraction equipment Definition & Application The separation of constituents

More information

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective Introduction In this experiment, you will use thin-film evaporator (TFE) to separate a mixture of water and ethylene glycol (EG). In a TFE a mixture of two fluids runs down a heated inner wall of a cylindrical

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS

Simulation and Analysis of Ordinary Distillation of Close Boiling Hydrocarbons Using ASPEN HYSYS International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 16 No. 4 Jun. 2016, pp. 805-813 2016 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Simulation

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

J. Reyes, A. Gómez & A. Marcilla Dpto. Ingeniería Química, Universidad de Alicante, Apdo. de Correos nº 99, Alicante 03080, España.

J. Reyes, A. Gómez & A. Marcilla Dpto. Ingeniería Química, Universidad de Alicante, Apdo. de Correos nº 99, Alicante 03080, España. MULTICOMPONENT RECTIFICATION: A NEW METHOD OF CALCULATION J. Reyes, A. Gómez & A. Marcilla Dpto. Ingeniería Química, Universidad de Alicante, Apdo. de Correos nº 99, Alicante 03080, España. This poster

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM I-Lung Chien and Kai-Luen Zeng Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei

More information

Colligative Properties

Colligative Properties Colligative Properties! Consider three beakers: " 50.0 g of ice " 50.0 g of ice + 0.15 moles NaCl " 50.0 g of ice + 0.15 moles sugar (sucrose)! What will the freezing temperature of each beaker be? " Beaker

More information

1. All the solutions have the same molality. 2. All the solutions have the same molarity.

1. All the solutions have the same molality. 2. All the solutions have the same molarity. I. (41 points) A. (12 points) Write your answers on the blanks provided. 1. Which of the following solutes would be more soluble in water? a. CH 3 OH or C 17 H 35 OH b. C 2 H 5 Cl or NaCl c. CHCl 3 or

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Data acquisitions system for laboratory distillation column

Data acquisitions system for laboratory distillation column Data acquisitions system for laboratory distillation column Item Type text; Thesis-Reproduction (electronic) Authors Cordoba Molina, Jesus Francisco, 1947- Publisher The University of Arizona. Rights Copyright

More information

Heterogeneous Azeotropic Distillation Operational Policies and Control

Heterogeneous Azeotropic Distillation Operational Policies and Control Heterogeneous Azeotropic Distillation Operational Policies and Control Claudia J. G. Vasconcelos * and Maria Regina Wolf-Maciel State University of Campinas, School of Chemical Engineering, Campinas/SP,

More information

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat

Physics 111. Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Physics 111 Lecture 34 (Walker 17.2,17.4-5) Kinetic Theory of Gases Phases of Matter Latent Heat Dec. 7, 2009 Kinetic Theory Pressure is the result of collisions between gas molecules and walls of container.

More information

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion Chapter 5 Energy and States of Matter Changes of State 5.6 Melting and Freezing 5.7 Boiling and Condensation 1 2 Melting and Freezing A substance is melting while it changes from a solid to a liquid. A

More information

CHE 205 Exam 1 Solutions

CHE 205 Exam 1 Solutions CHE 05 Exam 1 Solutions Problem 1 a) Figure +5 Reactor, Still, Condenser, Combustion Heater, Mixing point +1 dots on flowrates +1 for and x for molar composition + for correctl labeled streams b) Degree

More information

Problem 2 Distillation of air (20%) Solution

Problem 2 Distillation of air (20%) Solution Problem 2 Distillation of air (20%) A feed with two components (79 mole% N 2 and 21% O 2 ) is to be separated by continuous distillation. (a) Compute equilibrium data (y,x) at 1 atm for N 2 -O 2 at x=0,

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13.

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13. Lecture 20 Phase ransitions Phase diagrams Latent heats Phase-transition fun Reading for this Lecture: Elements Ch 13 Lecture 20, p 1 Solid-gas equilibrium: vapor pressure Consider solid-gas equilibrium

More information

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice BOUNDARY AUE DESIGN METHOD FOR COMPEX DEMETHANIZER COUMNS Muneeb

More information

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients 2.1 Vapour Pressure Calculations The basis for all phase equilibrium calculations are the vapour pressures

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

The most important nomenclature used in this report can be summarized in:

The most important nomenclature used in this report can be summarized in: Notation The most important nomenclature used in this report can be summarized in: V Vapor flow rate V T Vapor flow rate in the top L Liquid flow rate D Distillation product B Bottom product q Liquid fraction

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1

More information

Modeling, design and control of cyclic distillation systems

Modeling, design and control of cyclic distillation systems Available online at www.sciencedirect.com Procedia Engineering 42 (22 ) 22 23 2 th International Congress of Chemical and Process Engineering CHISA 22 25 29 August 22, Prague, Czech Republic Modeling,

More information

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations MA 800, Summer 06 Lesson Notes Solving a Sstem of Equations b substitution (or elimination) Matrices Consider the graphs of the two equations below. A Sstem of Equations From our mathematics eperience,

More information

A GENERAL Strategy for Solving Material Balance Problems. Comprehend and execute the 10 elements of effective problem

A GENERAL Strategy for Solving Material Balance Problems. Comprehend and execute the 10 elements of effective problem Chapter 7: A GENERAL Strategy for Solving Material Balance Problems Objectives: Comprehend and execute the 10 elements of effective problem Drive a flow chart and Place labels on the diagram. Choose a

More information

Name: First three letters of last name

Name: First three letters of last name Name: First three letters of last name Chemistry 342 Third Exam April 22, 2005 2:00 PM in C6 Lecture Center Write all work you want graded in the spaces provided. Both the logical solution to the problem

More information

General approach separation

General approach separation Summary septek Sigurd s part Equilibrium Flash Distillation Absorption/stripping Extraction Process control General approach separation 1. Overall material balance. What are the desired products? 2. Choose

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases. 73 COLLIGATIVE PROPERTIES - properties unique to solutions. - depend only on the CONCENTRATION of a solution and not the IDENTITY of the solute** **ionic solutes: Remember that they dissociate into MULTIPLE

More information

Rigorous column simulation - SCDS

Rigorous column simulation - SCDS Rigorous column simulation - SCDS Problem & solution principle: A rectification can be realistically displayed by performing a rigorous column simulation. It is possible to simulate ideal and real mixtures.

More information

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

Design and Analysis of Divided Wall Column

Design and Analysis of Divided Wall Column Proceedings of the 6th International Conference on Process Systems Engineering (PSE ASIA) 25-27 June 2013, Kuala Lumpur. Design and Analysis of Divided Wall Column M. Shamsuzzoha, a* Hiroya Seki b, Moonyong

More information