They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c).

Size: px
Start display at page:

Download "They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c)."

Transcription

1 They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c). PHASE EQUILIBRIUM one of the most important sources of information concerning the behavior of elements, compounds and solutions.

2 DEFINITION ONE COMPONENT SYSTEM TWO COMPONENT SYSTEM

3 COMPONENTS PHASE DEFINITION PHASE RULE: DEGREE OF FREEDOM

4 1) The mixture of ice and water = have two phase which is solid and liquid 2) The mixture of oxygen gas and nitrogen gas = have one phase which is gas phase (the system is homogen) A chemically and structurally homogeneous portion of material Separated with other parts of the system 3) The mixture of oil and water = have 2 same phase(liquid). Oil and water are not homogenand have the boundaries to separate both phase 4) CaCO 3(s) CaO (s) + CO 2(g) = 3 phase (2 solid,1 gas) Determines the number of independent variables needed Is the correlation between the number of phase (P), components (C), and degree of freedom PHASE

5 The number of chemical species that can explained the composition of all phase in a system OR The least number of different substances required to describe the composition of all phases in the system 1) water, CO 2 = one component 2) Aqueous solution of potassium nitrate = 2 system component because have potassium nitrate salt and water. COMPONENT

6 PHASE RULES Also known as Gibbs phase rule F = C P +2 Degree of freedom or the number of independent variables Number of component The number of phase 2 variables (temperature and pressure)

7 DEGREE OF FREEDOM (F) The number of variables that may be changed independently without causing the appearance of a new phase or disappearance of an existing phase TYPES UNIVARIANT BIVARIANT EXAMPLES CaCO 3(s) CaO (s) + CO 2(g) Calculate the degree of freedom (F) F = C P +2 = = 1 (univariant) Means: only one variable, either temperature or pressure can be changed independently The number of components is not always easy to determine at first glance, and it may require careful examination of the pyhsical conditions of the system at equilibrium

8 Standard phase diagram for water (H2O) ONE COMPONENT SYSTEM Standard phase diagram for carbon dioxide (CO2)

9 Standard phase diagram for one component system H 2 O CO 2 B Critical point??? O What does it means by: 1)AO curve 2)OB curve 3)OC curve 4)AOB curve 5)BOC curve 6)AOC curve A?????

10 Standard phase diagram for water (H2O) Special case!!!!! TA curve = known as melting point or freezing point Represent the equilibrium between ice and liquid Has a negative slope Water as the liquid is denser than the solid (ice floats on water). That means that an increase of pressure favors the formation of liquid and that the melting point of water falls with increasing pressure. According to Le Chatelier sprinciple, when pressure is applied, the reaction shifts in the direction that can release the stress and cause ice to melt This unique properties of water is due to the network of hydrogen bonding in ice is more extensive than in liquid

11 LEARNING CHECK!!!!! 50 (d) (c) (b) (a)

12 LEARNING CHECK!!!!! 50 (a) (b) (c) (d) (e)

13 Standard phase diagram for carbon dioxide (CO2) The point O is the triple point for CO 2 (at 5.1 atm, -57 o C). So, CO 2 solid can t changed to liquid form at 1 atm. Critical point Has a positive slope So, its shows that the increases of pressure, will increased the melting point for CO 2 solid O sublimation

14 Two completely miscible liquid ideal, non-ideal, positive and negative deviation Raoult s law in explaining the effect of non-volatile solute on vapour pressure of solvent and its melting and boiling point TWO COMPONENT SYSTEM Eutectic system and cooling curves Composition diagram vs boiling point composition for ideal, non-ideal, negative n positive deviation Fractional distillation and azeotropic system

15 VAPOUR PRESSURE

16 Vapour pressure increases with increasing temperature due to its KE When a liquid evaporates in a closed vessel, its gaseous molecules formed above the liquid have high KE and exert a vapour pressure. The molecules collide with the pinston and push the pinston upward sublimation Microscopic equilibrium between gas and liquid. Note that the rate of evaporation of the liquid is equal to the rate of condensation of the gas. Microscopic equilibrium between gas and solid. Note that the rate of evaporation of the solid is equal to the rate of condensation of the gas.

17 Volatile liquid is a liquid that can easily evaporate at one atmospheric pressure and room temperature Molecules of volatile liq escape the liquid phase into gaseous phase.(ke) A volatile liquid has a strong tendency to vapourize or evaporate into vapour, creating high vapour pressure. On contrary a less volatile liquid has low vapour pressure because of lower tendency to vapourize

18 Types of Molecules: the types of molecules that make up a solid or liquid determine its vapor pressure. If the intermolecular forces between molecules are: relatively strong, the vapor pressure will be relatively low. relatively weak, the vapor pressure will be relatively high. 1 ethyl ether (C 4 H 10 O) P vapor (25 o C) = 520 torr ethyl alcohol (C 2 H 6 O) P vapor (25 o C) = 75 torr Low Temperature Temperature: at a higher temperature, more molecules have enough energy to escape from the liquid or solid. At a lower temperature, fewer molecules have sufficient energy to escape from the liquid or solid. 2 High Temperature

19 COMPLETELY MISCIBLE LIQUID RAOULT S LAW

20 Liquid solution in liquid Complete Miscible liquid Methanol and ethanol ether and water Oil and water 3 types : 1) Complete Miscible liquid 2) Half miscible liquid 3) Immiscible liquid Ideal solution- mostly involve the substance that have similar physicochemical properties. Ex: MeOH/EtOH, benzene/toluene, n- hexane/n-heptane 2 types of complete miscible liquid which is ideal and non-ideal solution An ideal solution is a solution that obeys Raoult s law and non-ideal solution disobey. A solution is a ideal solution when: A A A B = The intermolecular attractions between the mixture of same molecule with the the mixture of different molecule are equal. The volume of the mixture are the total volume of both liquid (volume of liquid A add with volume of liquid B) No heat changes (no endo-exothermic process) Obeys Raoult s law

21 Relationship between vapour pressure of a solvent and its mole fraction States the vapour pressure of the solute containing solution (P A ) is equal to the mole fraction of the solvent (X A ) times the vapour pressure of the pure solvent (P o A) P A = X A P o A P solution = X solvent P o solvent P T = P A + P P total = X A P o A + X B P o B EXAMPLE!!!!! A solution is prepared by adding 2.0 mole of glucose in 15.0 mole of water at 25 o C. The vapour pressure of pure water at 25 o C is mmhg. Calculate the vapour pressure of the solution at 25 o C P solution = X solvent P o solvent The mole fraction: X A = n A / n t = 15.0 /17.0= 0.88 Therefore, P solution = 0.88 x mmhg = mmhg

22 EXAMPLE!!!!! At 25 o C the vapour pressure of pure benzene and toluene are 93.4 mmhg and 26.9 mmhg. If the mixture contains 60.0g of benzene and 40.0 g of toluene, calculate the vapour pressure of this solution P T = P A + P P total = X A P o A + X B P o B Calculate the number of moles for benzene and toluene: n of benzene : P A + P B = 60/78 = 0.77 mole n of toluene : P A + P B = 40/92 = 0.43 mole P total =X A P o A +X B P o B = 0.77 x 93.4 mmhg x 26.9 mmhg =69.54mmHg

23 IDEAL SOLUTION DIAGRAMS (RAOULT S LAW) VAPOUR PRESSURE/ COMPOSITION DIAGRAM BOILING POINT/ COMPOSITION DIAGRAM

24 There is actually no such thing as an ideal mixture! However, some liquid mixtures get fairly close to being ideal. These are mixtures of two very closely similar substances. Commonly quoted examples include: hexane and heptane benzene and methylbenzene propan-1-ol and propan-2-ol Pure vapour pressure Pure mixture vapour pressure Notice that the vapour pressure of pure B is higher than that of pure A. That means that molecules B must break away more easily than of A. B is the more volatile liquid. Total vapour pressure of the mixture

25 We'll start with the boiling points of pure A and B.B has the higher vapour pressure. That means that it will have the lower boiling point. VP BP The diagram just shows what happens if you boil a particular mixture of A and B. Notice that the vapour over the top of the boiling liquid has a composition which is much richer in B - the more volatile component.

26 EXAMPLE!!!!! Which vapour sample rich at this point? composition

27 NON-IDEAL DIAGRAMS NEGATIVE DEVIATION POSITIVE DEVIATION

28 Involves the intermolecular forces between molecules in solution are stronger than those in pure liquid Therefore, vapour pressure of the solution is lower than vapour pressure of its components or pure liquid. Example : A A = B B WEAKER THAN A B SO,the molecules in the solution have lower tendency to escape into vapour phase. Therefore the process is EXOTHERMIC

29 Azeotrope Nitric acid and water form mixtures in which particles break away to form the vapour with much more difficulty than in either of the pure liquids. That means that mixtures of nitric acid and water can have boiling points higher than either of the pure liquids because it needs extra heat to break the stronger attractions in the mixture. In the case of mixtures of nitric acid and water, there is a maximum boiling point of C when the mixture contains 68% by mass of nitric acid. That compares with the boiling point of pure nitric acid at 86 C, and water at 100 C. Notice the much bigger difference this time due to the presence of the new ionic interactions

30 USING THE DIAGRAM Distilling dilute nitric acid Start with a dilute solution of nitric acid with a composition of C 1 and trace through what happens. As the acid loses water, it becomes more concentrated. Its concentration gradually increases until it gets to 68% by mass of nitric acid. At that point, the vapour produced has exactly the same concentration as the liquid, because the two curves meet. You produce a constant boiling mixture (or azeotropic mixture or azeotrope). If you distil dilute nitric acid, that's what you will eventually be left with in the distillation flask. You can't produce pure nitric acid from the dilute acid by distilling it. The vapour produced is richer in water than the original acid. If you condense the vapour and reboil it, the new vapour is even richer in water. Fractional distillation of dilute nitric acid will enable you to collect pure water from the top of the fractionating column.

31 Distilling nitric acid more concentrated than 68% by mass This time you are starting with a concentration C 2 to the right of the azeotropic mixture. The vapour formed is richer in nitric acid. If you condense and reboil this, you will get a still richer vapour. If you continue to do this all the way up the fractionating column, you can get pure nitric acid out of the top. Distilling a nitric acid / water mixture containing more than 68% by mass of nitric acid gives you pure nitric acid from the top of the fractionating column and the azeotropic mixture left in the distillation flask. As far as the liquid in the distillation flask is concerned, it is gradually losing nitric acid. Its concentration drifts down towards the azeotropic composition. Once it reaches that, there can't be any further change, because it then boils to give a vapour with the same composition as the liquid.

32 Formed when the intermolecular forces between molecules in the mixture are weaker than those in pure liquids. A A = B B STRONGER THAN A B Vapour pressure of the solution is higher than expected The solution has a greater tendency to evaporate or escape into vapour The process is endothermic

33 A large positive deviation from Raoult's Law produces a vapour pressure curve with a maximum value at some composition other than pure A or B. If a mixture has a high vapour pressure it means that it will have a low boiling point The molecules are escaping easily and you won't have to heat the mixture much to overcome the intermolecular attractions completely. The implication of this is that the boiling point / composition curve will have a minimum value lower than the boiling points of either A or B.

34 USING THE DIAGRAM Suppose you are going to distil a mixture of ethanol and water with composition C 1 as shown on the next diagram. It will boil at a temperature given by the liquid curve and produce a vapour with composition C 2. When that vapour condenses it will, of course, still have the composition C 2. If you reboil that, it will produce a new vapour with composition C 3.

35 AZEOTROPE This particular mixture of ethanol and water boils as if it were a pure liquid. It has a constant boiling point, and the vapour composition is exactly the same as the liquid. It is known as a constant boiling mixture or an azeotropic mixture or an azeotrope. SUMMARISE Distilling a mixture of ethanol containing less than 95.6% of ethanol by mass lets you collect: A distillate containing 95.6% of ethanol in the collecting flask (provided you are careful with the temperature control, and the fractionating column is long enough Pure water in the boiling flask.

36 FRACTIONAL DISTILLATION

37 Typical fractional distillation in the lab to give the maximum possible surface area for vapour to condense on the thermometer bulb is placed exactly at the outlet from the fractionating column Some fractionating columns have spikes of glass sticking out from the sides which serve the same purpose In some cases, where you are collecting a liquid with a very low boiling point, you may need to surround the collecting flask with a beaker of cold water or ice.

38 Relating what happens in the fractionating column to the phase diagram Boil a mixture with composition C 1. Which compound that rich at this point? What phase? Which compound that rich at this point? What phase The vapour over the top of the boiling liquid will be richer in the more volatile component, and will have the composition C 2.

39 Which compound that rich at this point? What phase? Each time the vapour condenses to a liquid, this liquid will start to trickle back down the column where it will be reboiled by up-coming hot vapour. Each time this happens the new vapour will be richer in the more volatile component. The aim is to balance the temperature of the columnsothatby the time vapour reachesthe top after huge numbers of condensing and reboiling operations, it consists only of the morevolatilecomponent -inthis case,b. The boiling points of the two liquids. The closer they are together, the longer the column has to be.

40 what is the point of the packing in the column? To make the boiling-condensing-reboiling process as effective as possible, it has to happen over and over again. By having a lot of surface area inside the column, you aim to have the maximum possible contact between the liquid trickling down and the hot vapour rising. If you didn't have the packing, the liquid would all be on the sides of the condenser, while most of the vapour would be going up the middle and never come into contact with it.

41 BOILING POINT ELEVATION FREEZING POINT DEPRESSION

42 BOILING POINT : is the temperature at which its vapourpressure equals the external pressure Boiling point elevation T b = T b - T o b Boiling point of solution Boiling point of pure solvent Boiling point solvent is higher than boiling point of solution WHY?? Molal(m) = mol solute Kg solvent T b is proportional to molality of solute in the solution, so. T b = K b m Molar mass of solute = K b (gram solute) ( T b ) (kg solvent) The molal boiling point elevation constant with unit o C/m or o C kg/mol

43 EXAMPLES: What is the boiling point elevation when 11.4 g of ammonia (NH 3 ) is dissolved in 200. g of water? K b for water is 0.52 C/m. 1) Determine molality of 11.4 g of ammonia in 200. g of water: 11.4 g / g/mol = mol mol / kg = m 2) Determine bp elevation: t = K b m t = (0.52 C/m) ( m) t = 1.74 C

44 EXAMPLES: Calculating Molecular Mass (Formula Weight) of Solute 1.15g of an unknown, nonvolatile compound raises the boiling point of 75.0g benzene (C 6 H 6 ) by o C. Calculate the molecular mass (formula weight) of the unknown compound. Calculate the molality of solute particles: m = T b K b T b = o C K b = 2.53 o Cm -1 (from table above) m = = 0.109m Calculate the moles of solute present: molality = moles solute kg solvent n(solute) = m x kg solvent = x 75.0 x 10-3 = x 10-3 mol Calculate the molecular mass (formula weight) of the solute: n(solute) = mass(solute) MM(solute) MM(solute) = mass(solute) n(solute) = x 10-3 = 141 g/mol

45 FREEZING POINT DEPRESSION : is the temperature at which solid begins to appear in liquid or solution T f = T o f -T f Boiling point of solution Boiling point of pure solution T o f > T f Molal(m) = mol solute Kg solvent T f is proportional to molalityof solute in the solution, so. T f = K f m Molar mass of solute = K f (gram solute) ( T f ) (kg solvent)

46 the freezing point (melting point) of the solvent in a solution is lower than that of the pure solvent. the boiling point of the solvent in a solution is higher than that of the pure solvent;

47 Learning check!!!!!! Automobile antifreeze is ethylene glycol, C 2 H 6 O 2. It is a non-electrolyte. If a radiator contains 40.0% antifreeze and 60.0% water, by mass, what is the freezing point of the solution in the radiator? The normal freezing point for water is 0.0 C and K f is 1.86 C mol/kg. Find the molality of the solution. The mass of the solvent is kg and the formula weight of the solute is g/mol. Use the freezing point depression formula

48 It s the BONUS TIME AND YOUR HAPPY HOUR. THIS IS YOUR HOMEWORKS TO FIND ABOUT EUTECTIC MIXTURE AND COOLING CURVES EUTECTIC MIXTURE AND COOLING CURVES YOU HAVE TO MAKE A SHORT NOTES ON THIS SUBTOPIC AND SUBMIT IT TO YOUR KAWAII LECTURER

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Solution homogeneous mixtures composition may vary from one sample to another appears to be one substance, though really contains multiple

More information

PSI AP Chemistry: Solutions Practice Problems

PSI AP Chemistry: Solutions Practice Problems PSI AP Chemistry: Solutions Practice Problems Name Solutions: Mixtures, Solubility and Concentration Classwork 1. A student determined that there were 0.032 grams of oxygen gas dissolved in a 200.0 ml

More information

CHAPTER 9 SOLUTIONS SHORT QUESTIONS WITH ANSWER Q.1 Binary solution can be homogenous or heterogeneous explain? The solutions which contain two components only are called as binary solution. If binary

More information

Colligative Properties

Colligative Properties Slide 1 Colligative Properties Practical uses of solutions Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solute s ) relative to the

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2013/01

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 12. Physical Properties of Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 12 Physical Properties of Solutions Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry

More information

Colligative Properties

Colligative Properties Colligative Properties! Consider three beakers: " 50.0 g of ice " 50.0 g of ice + 0.15 moles NaCl " 50.0 g of ice + 0.15 moles sugar (sucrose)! What will the freezing temperature of each beaker be? " Beaker

More information

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c)

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c) 47 Chapter Solutions 1. Freezing point of an aqueous solution is ( 0.186) C. Elevation of boiling point of the same solution is K b = 0.512 C,Kf = 1.86 C, find the increase in boiling point. [2002] (a)

More information

DATE: POGIL: Colligative Properties Part 1

DATE: POGIL: Colligative Properties Part 1 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 1 Why? There is a general misconception that adding sodium chloride to cooking water for pasta increases the temperature of the boiling water

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

(name) Place the letter of the correct answer in the place provided. Work must be shown for non-multiple choice problems

(name) Place the letter of the correct answer in the place provided. Work must be shown for non-multiple choice problems (name) Place the letter of the correct answer in the place provided. Work must be shown for non-multiple choice problems 1. According to Raoults Lab the change in the vapor pressure of a solution containing

More information

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy.   Chapter 4 Physical Properties of Solutions General Chemistry CHEM 11 (3+1+) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 4 Physical Properties of Solutions 1 Types of Solutions A solution is a homogenous mixture of 2 or more substances.

More information

Chapter 10: CHM 2045 (Dr. Capps)

Chapter 10: CHM 2045 (Dr. Capps) Phase Diagram Phase diagrams for CO 2 and H 2 O Chapter 13. Solutions and Their Physical Properties Shows pressures and temperatures at which gaseous, liquid, and solid phases can exist. Allows us to predict

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

Chapter 12. Properties of Solutions

Chapter 12. Properties of Solutions Chapter 12. Properties of Solutions What we will learn: Types of solutions Solution process Interactions in solution Types of concentration Concentration units Solubility and temperature Solubility and

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

General Chemistry II, Unit II: Study Guide (part 2)

General Chemistry II, Unit II: Study Guide (part 2) General Chemistry II Unit II Part 2 1 General Chemistry II, Unit II: Study Guide (part 2) CDS Chapter 17: Phase Equilibrium and Intermolecular Forces Introduction o In this chapter, we will develop a model

More information

PSI AP Chemistry Solutions Practice Problems

PSI AP Chemistry Solutions Practice Problems PSI AP Chemistry Solutions Practice Problems Name Solutions: Mixtures, Solubility and Concentration Classwork 1. A student determined that there were 0.032 grams of oxygen gas dissolved in a 200.0 ml sample

More information

Aqueous Solutions (When water is the solvent)

Aqueous Solutions (When water is the solvent) Aqueous Solutions (When water is the solvent) Solvent= the dissolving medium (what the particles are put in ) Solute= dissolved portion (what we put in the solvent to make a solution) Because water is

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Useful Information Provided on Exam 1. Sections Covered on Exam , 10.2, 10.8,

Useful Information Provided on Exam 1. Sections Covered on Exam , 10.2, 10.8, Chem 101B Exam 1 Study Questions Name: Chapters 10(partial), 11 & 12(partial) Review Tuesday 2/7/2017 Due on Exam Thursday 2/9/2017 (Exam 1 date) This is a homework assignment. Please show your work for

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

CH 2: SOLUTIONS

CH 2: SOLUTIONS 1 CH 2: SOLUTIONS 2 SOLUTION, SOLVENT, SOLUTE Solutions are homogeneous mixtures of two or more than two components. i.e. composition and properties are uniform throughout the mixture. Eg: The component

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Solutions Definition and Characteristics

Solutions Definition and Characteristics Solutions Solutions Definition and Characteristics Homogeneous mixtures of two or more substances Appear to be pure substances Transparency Separation by filtration is not possible Uniform distribution

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES

AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES AP CHEMISTRY NOTES 15-1 INTERMOLECULAR FORCES INTERMOLECULAR FORCES In addition to the covalent bonds that exist between atoms in a molecule (H2O for instance), there are also weak attractions between

More information

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures?

Solutions: Multiple Choice Review PSI AP Chemistry. 1. Which of the following would be FALSE regarding mixtures? Solutions: Multiple Choice Review PSI AP Chemistry Name Part A: Mixtures, Solubility, and Concentration 1. Which of the following would be FALSE regarding mixtures? (A) Mixtures do not obey the law of

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

PHYSICAL PROPERTIES OF SOLUTIONS

PHYSICAL PROPERTIES OF SOLUTIONS PHYSICAL PROPERTIES OF SOLUTIONS Do all the exercises in your study guide. PHYSICAL PROPERTIES OF SOLUTIONS A solution is a homogeneous mixture of a solute and a solvent. A solvent is a substance that

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Indian School Muscat

Indian School Muscat Indian School Muscat Chemistry Department Senior Section IIT JEE Solutions 1 What term is associated with the part of a solution that is present in the smallest amount? (A) ionic compound (B) solute (C)

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab Advanced Placement Chemistry Chapters 10 11 Syllabus As you work through each chapter, you should be able to: Chapter 10 Solids and Liquids 1. Differentiate between the various types of intermolecular

More information

Name AP CHEM / / Chapter 11 Outline Properties of Solutions

Name AP CHEM / / Chapter 11 Outline Properties of Solutions Name AP CHEM / / Chapter 11 Outline Properties of Solutions Solution Composition Because a mixture, unlike a chemical compound, has a variable composition, the relative amounts of substances in a solution

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chapter 12 SOLUTIONS These Notes are to SUPPLIMENT the Text, They do

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Solutions: Formation and Properties

Solutions: Formation and Properties New Jersey Center for Teaching and Learning Slide 1 / 48 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An open-tube manometer is used to measure the pressure in a flask. The atmospheric

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

Chapter 11. Properties of Solutions. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 11. Properties of Solutions. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 11 Properties of Solutions Chapter 11 Table of Contents (11.1) (11.2) (11.3) (11.4) (11.5) (11.6) (11.7) (11.8) Solution composition The energies of solution formation Factors affecting solubility

More information

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline

Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties. Chapter Outline Chapter 11: Properties of Solutions - Their Concentrations and Colligative Properties Chapter Outline 11.1 Energy Changes when Substances Dissolve 11.2 Vapor Pressure 11.3 Mixtures of Volatile Substances

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

Colligative Properties

Colligative Properties Colligative Properties Vapor pressures have been defined as the pressure over a liquid in dynamic equilibrium between the liquid and gas phase in a closed system. The vapor pressure of a solution is different

More information

AP Chemistry--Chapter 11: Properties of Solutions

AP Chemistry--Chapter 11: Properties of Solutions AP Chemistry--Chapter 11: Properties of Solutions I. Solution Composition (ways of expressing concentration) 1. Qualitatively, use dilute or concentrated to describe 2. Quantitatively a. Mass Percentage

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

relatively narrow range of temperature and pressure.

relatively narrow range of temperature and pressure. 1) Of solids, liquids, and gases, the least common state of matter is the liquid state. a) Liquids can exist only within a relatively narrow range of temperature and pressure. 2) The kinetic-molecular

More information

Homework 01. Phase Changes and Solutions

Homework 01. Phase Changes and Solutions HW01 - Phase Changes and Solu!ons! This is a preview of the published version of the quiz Started: Jan 16 at 1:pm Quiz Instruc!ons Homework 01 Phase Changes and Solutions Question 1 Given that you have

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces The Chemistry of Water and the Nature of Liquids Chapter 11 CHAPTER OUTLINE 11.2 I. The Structure of Water: An Introduction to Intermolecular Forces II. A Closer Look at Intermolecular lar Forces A. London

More information

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The Solution Process A solution is a homogeneous mixture of solute and solvent. Solutions may be gases, liquids, or solids. Each substance present is a component of the solution.

More information

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation.

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation. 1. What is Vapor Pressure? Vapor Pressure & Raoult s Law This is the pressure above a solid or liquid due to evaporation. 2. Can a solute affect the vapor pressure of a solvent? Yes. 3. What do solutes

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE:

CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE: Chemsitry States of Matter Multiple Choice 017074 CHEMISTRY LTF DIAGNOSTIC TEST STATES OF MATTER TEST CODE: 017074 Directions: Each group of questions below consists of five lettered answers followed by

More information

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions Chapter 13 Solutions Characteristics of a Solution A solution is a homogeneous mixture A solution is composed of a: Solute: the substance in lesser amount Solvent: the substance in greater amount Two liquid

More information

Boiling point temperature. Pressure

Boiling point temperature. Pressure Lecture Notes 2 nd Series: Phase Chemistry Condensation of gases Let s begin by reminding ourselves of what happens when we cool a gas down the kinetic energy of the molecules decreases. Eventually the

More information

10. 2 P R O B L E M S L I Q U I D S A N D G A S E S

10. 2 P R O B L E M S L I Q U I D S A N D G A S E S South Pasadena AP Chemistry Name 10 States of Matter Period Date 10. 2 P R B L E M S L I Q U I D S A N D G A S E S 1. Use the following table to answer these questions. Vapor Pressures of Various Liquids

More information

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. 2. Which type of solid solution will result by mixing two solid components with large difference

More information

Review Topic 8: Phases of Matter and Mixtures

Review Topic 8: Phases of Matter and Mixtures Name: Score: 24 / 24 points (100%) Review Topic 8: Phases of Matter and Mixtures Multiple Choice Identify the choice that best completes the statement or answers the question. C 1. Soda water is a solution

More information

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Chem 1100 Pre-Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the oxidation number of the underlined element in K 2CO 3. a. 1 b. 2 c.

More information

States of matter Part 2

States of matter Part 2 Physical Pharmacy Lecture 2 States of matter Part 2 Assistant Lecturer in Pharmaceutics Overview The Liquid State General properties Liquefaction of gases Vapor pressure of liquids Boiling point The Solid

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. Elemental iodine (I 2 ) is a solid at room temperature. What is the major attractive force that exists among different

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Ch 12 and 13 Practice Problems

Ch 12 and 13 Practice Problems Ch 12 and 13 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Solutions. Solutions. A solution is a homogeneous mixture of two or more components.

Solutions. Solutions. A solution is a homogeneous mixture of two or more components. Lecture 6 Solutions Solutions A solution is a homogeneous mixture of two or more components. The component whose phase is retained يسود) ) when the solution forms is called Solvent. If all components are

More information

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A 1. Consider a balloon filled with 5 L of an ideal gas at 20 C. If the temperature of the balloon is increased by 70 C and the external pressure acting on the

More information

Intermolecular forces Liquids and Solids

Intermolecular forces Liquids and Solids Intermolecular forces Liquids and Solids Chapter objectives Understand the three intermolecular forces in pure liquid in relation to molecular structure/polarity Understand the physical properties of liquids

More information

Chapter 11 Solutions and Colloids 645

Chapter 11 Solutions and Colloids 645 Chapter 11 Solutions and Colloids 645 11.5 Colloids Colloids are mixtures in which one or more substances are dispersed as relatively large solid particles or liquid droplets throughout a solid, liquid,

More information

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm

a) 1.3 x 10 3 atm b) 2.44 atm c) 8.35 atm d) 4.21 x 10-3 atm e) 86.5 atm 1. (6 pts) A sample of gas with a volume of 750 ml exerts a pressure of 756 mm Hg at 30.0 0 C. What pressure (atm) will the sample exert when it is compressed to 250 ml and cooled to -25.0 0 C? a) 1.3

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Section 13.1 The Solution Process Chapter 13 Properties of Solutions SOLVENT - any substance that has other substances dissolved in it (often a liquid) ie. The dissolving medium - often the substance present

More information

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 2 Worksheet #1: States of Matter In this packet we will

More information

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page!1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page!2 Worksheet #1: States of Matter In this packet we will

More information

CHEMISTRY 110 EXAM 3 April 2, 2012 FORM A 1. Which plot depicts the correct relationship between the volume and number of moles of an ideal gas at constant pressure and temperature? 2. The height of the

More information

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2

Solution Formation. Copyright Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 12 2 Solutions Solution Formation A solution is a homogeneous mixture of two or more substances, consisting of ions or molecules. (See Animation: Solution Equilibrium). A colloid, although it also appears to

More information