Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory

Size: px
Start display at page:

Download "Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory"

Transcription

1 Autoted Seleton of Optl Gussn Fts to Artrry Funtons n Eletron Struture Theory CLAUDINE C. TAZARTES, 1 CHRISTOPHER R. ANDERSON, 1 EMILY A. CARTER 2 1 Deprtent of Mthets, Unversty of Clforn, Los Angeles, Clforn Deprtent of Chestry nd Bohestry, Unversty of Clforn, Los Angeles, Clforn, Reeved 13 Noveer 1997; epted 26 Mrh 1998 ABSTRACT: We present ethod of fttng rtrry funtons to lner ontons of Gussns. In prtulr, we dsuss n dptton of Prony s ethod, or seprton of exponentls, whh llows us to utotlly selet pproprte exponents for these Gussns. We then pply ths tehnque to the seleton of delsng sets for pseudospetrl eletron orrelton ethods. We show tht t n suessfully hoose funtons tht generlly prove the ury of pseudospetrl orrelton energes whle redung the sze of the delsng set hosen John Wley & Sons, In. J Coput Che 19: , 1998 Keywords: Gussn fts; Prony s ethod; pseudospetrl ethods; eletron orrelton; lsng error Introduton I n theoretrl hestry nd physs, one frequently enounters proles n whh one wshes to ft funtons to lner ontons of Gussns Že.g., delsng funtons n pseudospetrl ethods, 1 fttng of the densty n den- 2, 3 sty funtonl theory DFT ethods, fttng Correspondene to: E. A. Crter; e-l: e@he.ul.edu Contrt grnt sponsor: Offe of Nvl Reserh produts of ss funtons to uxlry ss sets, 4 5 fttng of pseudopotentls 7.. However, deternng pproprte exponents for these Gussns n e dffult. The de pursued n ths rtle onssts of desgnng utot proedures to selet suh exponents. Our tehnque s sed on Prony s ethod, or the seprton of exponentls; lthough ths ethod s desgned to ft funtons to deyng exponentls, hnge of vrles llows us to nsted do the fttng to Gussns. We frst desre ths ethod n generl ters nd then show ( ) Journl of Coputtonl Chestry, Vol. 19, No. 11, John Wley & Sons, In. CCC / 98 /

2 GAUSSIAN FITS TO ARBITRARY FUNCTIONS how t n e used n spef pplton: fndng delsng funtons n pseudospetrl eletron orrelton ethods. Work y Fresner 8 suggested tht ss funton representtons of the one-eletron wve funtons y e oned wth grd-sed representtons Ž the pseudospetrl ethod.. On grd, the Coulo opertor n e represented s sprse trx; to pply the Coulo opertor, we trnsfor the wve funton to grd Ž physl. spe representton, pply the opertor on the grd, nd then trnsfor k to spetrl Žoeff- ent. spe. Ths pproh redues the slng of the two-eletron ntegrl lultons fro K 4 to roughly K 3, where K s the nuer of ss funtons. The trnsforton fro physl nto spetrl spe produes oponents outsde the orgnl ss set, the so-lled lsng ters The strtegy proposed y Fresner to redue lsng effets s to dd nuer of delsng funtons to the orgnl ss set; the role of these delsng funtons s to opleent the ss set n urtely pturng the ehvor of the funtons ourrng n the lulton to ke ther trnsfortons ore urte. However, t s not ler how est to hoose these delsng funtons. In ths work, we dsuss the developent of systet ens of hoosng pproprte delsng sets nd nuerl pproxtons to the relevnt ntegrls; the de s tht n dequte representton of the oponents outsde the spn of the orgnl ss set wll nze the error nurred n the trnsforton etween grd nd ss funton representtons. We hoose sutle delsng sets y studyng the grd-sed qunttes tht re to e trnsfored k nto spetrl spe nd y fttng the to to-entered, Crtesn Gussns v ethod lled seprton of exponentls. The Gussns resultng fro the ft Ž or, rther, soe verge or suset of the. re used s our delsng sets. In ddton to the developent of the ehns for pkng delsng funtons, we explore the pplton of ths tehnque to eletron orrelton lultons for severl oleules. These oputtons not only llustrte the usefulness of our ethod y ther fvorle oprson to prevously pulshed results, ut lso re rul n gudng the developent of generl thetl proedure tht n e used for other ppltons. Fttng Funton to Gussns The generl nture of the pproxton prole s s follows: Suppose tht we hve rel-vlued funton yž,,.. We would lke to ft y to lner onton of Gussns. If yž,,. hs strong rdl dependene nd wek Ž,. dependene, then t s resonle to onsder fttng y to funtons of the for y Ae. 1 2 Of ourse, ths, dependene y not e known pror, ut t y e sertned through oputtonl tests, s ws done n ref. 11. SEPARATION OF EXPONENTIALS The hllenge s to selet pproprte oeffents A nd exponents. Ths s prole of spetrl estton, nd vrety of ethods exst 12 for fttng dsrete dt to lner ontons x of exponentls e. ŽWe wll dsuss the djustent needed to ft to Gussns e x 2 n lter seton.. One prtulrly sutle tehnque for fttng eqully sped dt ponts to dped exponentls s Prony s ethod. 12 Prony s ethod s known to e senstve to nose, ut euse our dsrete dt re deterned y nuerl evlutons of funtons, the nose level s neglgle, nd Prony s ethod works stsftorly. The de ehnd Prony s ethod s s follows: f Ž dsretzed. funton yž x. looks lke 1 x 2 x x y x Ae A e A e, then, just s lner sus of exponentls stsfy onstnt-oeffent lner dfferentl equtons, y stsfes lner, onstnt-oeffent dfferene equton, nd the re dentfed fro solutons of the dfferene equton yž x. yž x h. yž x h Ž 2. Speflly, suppose tht we re gven set of 2 dt ponts Ž x, y., y yž x., where the x JOURNAL OF COMPUTATIONAL CHEMISTRY 1301

3 TAZARTES, ANDERSON, AND CARTER re equsped y h: x x h 1. 1 We wnt our y vlues to stsfy eq. Ž. 2, nd tkng 1, we n generte syste of lner equtons for the renng : 0y1 1y2 1y y 1, 0y2 1y3 1y 1 y 2,... 0y 1y 1 1y2 1 y 2. We now hve n trx equton for the oeffents, Y y, Ž 3. where Y s the trx of y vlues suh tht YŽ, j. y j 1; nd y re vetors of length, where Ž. nd yž. y. Thus, we o- tn y solvng the trx equton gven n eq. Ž. 3. One we hve the, we n onstrut solutons to the dfferene equton, eq. Ž. 2, y ssung solutons of the for of eq. Ž. 1, tht s, jx jžx h. 0 j 1 j ž / ž / j 1 j 1 jžx h. Aje 0, ž / j 1 1x 1kh Ae 1 e ž k / k 0 A e A e ž / ž k / 2 x 2kh 2 k k 0 A e e x kh Ae e 0. k 0 Ths yelds n th degree polynol equton, where 2 0, e j h j nd,,..., re the roots of eq. Ž These roots n e found usng stndrd egenvlue ethods. 13 These ethods ke use of the ft tht the egenvlues of n trx A re the roots of the hrterst polynol P x det A I, where I s the dentty trx nd det denotes deternnt. Thus, to fnd the roots of the polynol gven n eq. Ž. 4, we use the ft tht the hrterst polynol of the opnon trx, A , s equvlent to eq. Ž. 4. Thus, y fndng the egenvlues of A, we re fndng the roots of eq. Ž. 4. One we hve the j, we n fnd the exponents j trvlly fro 1 lnž. j j. h If we lso wnt to deterne the oeffents A, we n generte lner syste of equtons for the y requrng tht the y e of the for of eq. Ž. 1: Ae 1x 1 A e 2 x 1 A e x 1 y, Ae 1x 2 A e 2 x 2 A e x 2 y, Ae 1x 2 A e 2 x 2 A e x 2 y Note tht ths s n overdeterned syste, EA y, 5 where E s the 2 trx desred y EŽ, j. e x j, A s the vetor of length suh tht A Ž. A, nd y s the vetor of length 2 suh tht y Ž. y.we n solve ths syste n the lest squres sense ether y dretly usng sngulr vlue deoposton on the overdeterned syste or y solvng the norl equtons usng, e.g., Gussn elnton wth pvotng : E T EA E T y. REDUCING SYSTEM SIZE In order to redue the syste sze Žnd hene redue the order of the polynol whose roots we ust fnd., we use the tehnque proposed y Lnzos. 14 We do not use onseutve vlues of y 1302 VOL. 19, NO. 11

4 GAUSSIAN FITS TO ARBITRARY FUNCTIONS n eq. Ž. 3. Insted, we dvde the dt nto groups nd use the su of the ordntes n eh group s our y. For exple, suppose tht we hve 60 dt ponts nd we wnt to use 5 exponentls n our fttng proedure. We n seprte these nto 2 10 groups of 6 vlues eh. The su of the 6 vlues n eh of these 10 groups gves us 10 new vlues, y, whh we n use n eq. Ž. 3. For our dt sets, the lner syste Ž. 3 s not very lrge nd we solve the syste usng Gussn elnton Ž wth pvotng.. For lrger systes, the spel struture of Y Žwth rerrngeent of 15 the rows, t s Toepltz trx. n e exploted nd ore effent solvers re vlle. 13,15 FITTING TO GAUSSIANS Our tsk s to fnd funtons of the for y Ae, j 1 x 2 j j whh re Gussns nsted of dped exponentls. To pply the tehnque desred ove, we sply ft exponentls to the dt Ž t, y., where the t re equsped nd Thus, s requred. y yž x., t x 2. jt jx 2 j j j 1 j 1 y Ae Ae, Applton: Delsng n Pseudospetrl Eletron Correlton Methods We used the fttng proedure desred ove to systetlly selet delsng funtons 9 n pseudospetrl eletron orrelton ethods. A oputtonl oponent of these ethods s to nuerlly evlute the two-eletron ntegrls: Ž. ² j J : j Ž. r Ž. r Ž r. Ž r. j k l HH drdr, 3 3 r r Ž r. Ž r. k l J Ž. r H dr. 3 r r 6 We wll frst desre the pseudospetrl pproxton to two-eletron ntegrls nd how ths pproxton leds to lsng errors. We wll then dsuss how to selet delsng funtons, the purpose of whh s to redue lsng effets. We wll lt our dsusson to tretent of the Coulo opertor J ; the exhnge opertor n e treted slrly. TWO REPRESENTATIONS OF In pseudospetrl ethods, we ke use of two dfferent representtons of the one-eletron ortl. One of the s ss funton representton, K n n 1, Ž 7. where the n re set of known ss funtons. We tke the to e norlzed, to-entered Crtesn Gussns. The other representton we use s physl, or grd-sed representton, frst proposed y Fresner; 8 thus, we ntrodue set of G grd ponts, r, r,...,r 3, 1 2 G nd G K olloton trx R of ss funtons evluted t these grd ponts; tht s, n n RŽ g, n. Ž r.. Ž 8. Then the grd-sed verson of n e wrtten s or n Ž r 1. Ž r 2. Ž r G. g R, 9 where s vetor of oeffents,...,. 1 K PSEUDOSPECTRAL TWO-ELECTRON INTEGRALS AND NEED FOR DEALIASING Ž. ² The two-eletron ntegrl j J : j y e thought of s projeton of the funton J onto the ss set 4 K. Ths ens tht j n n 1 JOURNAL OF COMPUTATIONAL CHEMISTRY 1303

5 TAZARTES, ANDERSON, AND CARTER Ž. the funton r J Ž. j r n e expressed s lner onton of the n, wth soe oeff- ents P, so tht the Žj. nj y e wrtten s follows: K Ž. Ž. Ž. j nj n n 1 r J r P r, K Ž. ² : ² : j nj n n 1 j J P. 10 We would lke to use pseudospetrl pproxtons to the two-eletron ntegrls Ž j.. Thus, we defne n nner produt, ² : w, wth sso- ted weghts w g, g 1,...,G: G ² f y: fž r. yž r. w. w g g g g 1 Pseudospetrl pproxtons to the Ž j. re otned y replng one of the nlytl ntegr- 3 tons over n Ž j. see eq. Ž. 7 wth nuerl pproxton: Ž. ² j J : w j G Ž. r Ž. k l r Ž r. Ž r. g j g wgh dr. 3 r r g 1 We ntrodue the followng notton, Thus, we n wrte f J. j, k, l j Ž j. ² f : ² f :. j, k, l j, k, l g w 11 The suess of the pseudospetrl ethod depends on our lty to opute nuerl nner produts urtely. The fj, k, l re projeted onto the spe spnned y the n, ut they y ontn oponents not n ths spe tht n ontnte the ² f : j, k, l w. These re lled lsng ters. To llustrte tht there s ndeed n ury prole, we show pseudospetrl seond-order Møller Plesset perturton theory Ž MP2. lultons 16 n Tle I for etylene on three dfferent grd szes Žorse, edu, nd fne PSGVB v grds.. Es s the spetrl MP2 orrelton energy e., ll ntegrls re lulted nlytlly., nd Eps s the MP2 orrelton energy lulted usng nuerl pproxtons. We pont out here tht these results were otned usng strght nuerl qudrture s seen TABLE I. Sple Nuerl Qudrture MP2 Clultons on Dfferent Grd Szes for C H G** Bss Sets for C H ( K =40 ) 2 2 ; E = hrtrees s No. Grd E E s Grd Ponts E ( hrtrees) ( hrtrees) ps d ps Corse e-03 Medu e-03 Fne e-04 ( ) See eq. 11 nd Appendx A. Spetrl MP2 orrelton energy. Pseudospetrl MP2 orrelton energy. d ( ) Dfferene n solute vlue etween spetrl nd pseudospetrl MP2 orrelton energes. n eq. Ž 11., s opposed to the ore urte pproh used y Mrtnez nd Crter. 16 See Appendx A for ore detls. We see tht s we refne the grd, the pseudospetrl orrelton energes eoe ore urte; to get to wthn 1 hrtree of the spetrl results, we need to use fne grds where G K 2. However, the pseudospetrl pproxton s dvntgeous only f G K 2. 8 Thus, we ust ke djustents to our nuerl pproxtons so tht we otn suffent ury n the nner produts wthout usng suh fne grds. DEALIASING FUNCTIONS To ddress the proles wth our nner produt rule, let us onsder the physl spe projeton of f J onto 4 K : j, k, l j n n 1 K j, k, l g nj n g n 1 f r P r, K ² : w ² : j, k, l nj n w n 1 f P. To otn ury n the ² f : j, k, l we need to ensure the ury of the ² : n w, ut we lso need to ensure tht ² : w s urte for opo- nents of f 4 j, k, l outsde the spn of n n 1 K. Suppose, then, tht we hve funtons suh tht 4 K 4 L j, k, l Ž n n 1 1. f spn, VOL. 19, NO. 11

6 GAUSSIAN FITS TO ARBITRARY FUNCTIONS Then 18 K ² : f w P ² : j, k, l nj n w n 1 L D ² :. 1 j If ² : nd ² : n w w re urte to wthn soe eptle tolerne, then ² f : j, k, l w wll lso e suffently urte. Thus, our tsk s twofold: we need to fnd funtons Ž lled delsng funtons. tht wll opleent our orgnl ss funtons n y properly pturng the ehvor of the f j, k, l. Then, one we hve the, we ust nze the errors de n oputng ² n : w nd ² : w; to do so, we ust defne nd pose soe onstrnts on ² : w. In the se wy tht spe- lzed qudrture rules re desgned to work for ertn lsses of funtons, we wll redefne our qudrture rule so tht t s urte speflly for the types of nner produts we wnt to opute. In ths rtle we re onerned nly wth the seleton of delsng funtons, nd we turn our ttenton to ths prole n the next seton. A desrpton of the qudrture rule tht we used for ll results presented elow s gven n Appendx A. Choosng Delsng Funtons We now dsuss the tehnque we use to hoose our delsng funtons. As dsussed n the prevous seton, we need to pk delsng funtons tht wll suppleent our orgnl ss funtons n properly pturng the ehvor of the f j, k, l. Thus, we need to pk our so tht the fj, k, l n e well represented y the set of funtons 4 K, 4 L It therefore sees resonle to ft the fj, k, l to set of funtons nd use these s our delsng funtons. Rngnld et l. 1 nd Fresner 9 propose tht the delsng funtons e of the se for s the to ortls Ž.e., to-entered norlzed Crtesn Gussns.. Ths flttes the oputton of ertn neessry nner produts Ž² : n, ² :; see Appendx A. ; lso, s we shll see shortly, n ost ses the fj, k, l funtons tht we re tryng to pture roughly the ehvor of j n the rdl dreton. Thus, to-entered norlzed Crtesn Gussns see lke re- w sonle hoe for the. However, we ust pk exponents for these Gussns. To ths end, we ft the fj, k, l to lner on- tons of Gussns usng the proedure outlned n n erler seton. In ths wy, we n dentfy funtons tht dequtely represent the fj, k, l nd use these funtons Ž or soe suset of the. s our. Theoretlly, we ft only the rdl oponent of the f. Ž j, k, l In tulty, the fj, k, l re not relly seprle, ut we found tht the ngulr oponents hve lttle effet on the overll fttng proedure. 11 In prtulr, n lultons on C 2H 2 nd C 2H 4 tht tested how the ngulr oponents ffeted the MP2 energy, we found vrtons n the optl delsng exponents of up to 11%; ut these resulted n vrtons n the MP2 energy of, n the worst se, 76 hrtree.. Also, for splty, we only ft the f j, k, k, whh seeed to well represent the entre set of f j, k, l. MODEL PROBLEM: HYDROGEN ATOM We enter our hydrogen to nd ts ss funtons Ž we use the 6 31G** sets. t the orgn nd hoose our grd ponts to e of the for r Ž 0, 0, z. g g, where the z g re postve nd ther squres, t g, re evenly sped: t z 2, g g g 0.08 z 4 ohr, h t t 0.27 Ž G 60.. g 1 g We then do the fttng of the f j, k, k. There re fve funtons n the ss set Žtwo s funtons, nd one eh of p, p, p. x y z, ut px py 0 every- where on our grd; thus, there re only three possle hoes for j. There re four possle hoes for Ž kk k euse J s the se for p nd p. x y,sowe re fttng 12 fj, k, k funtons. We found tht fve Gussns usully provdes us wth good ft; n ost ses, usng fewer thn fve Gussns does not gve us n urte enough ft to the f j, k, k, nd usng ore thn fve does not pprely nrese the ury of the ft. Moreover, usng lrge nuers of funtons nreses the syste sze n eqs. Ž. 3 nd Ž. 5 nd nreses the hnes of genertng ll-ondtoned systes. However, n soe nstnes ore thn fve Gussns y e needed to otn resonle fts to the f j, k, k. 11 We lso pont out tht, for gven f j, k, k, usng dfferent nuers of Gussns wll yeld dfferent exponents. JOURNAL OF COMPUTATIONAL CHEMISTRY 1305

7 TAZARTES, ANDERSON, AND CARTER funton, hs exponent 1.1. Thus, when hoosng exponents for s-type funtons, we wll gnore the ns n the rnge; when hoosng exponents for p-type funtons, we wll gnore the ns n the rnge. Ottng those exponents tht re n the se n s ss funtons, we use s our s funtons wth exponents 1.33 nd 2.93 Žwe onsder 4.12 n outler; nludng t or not n our vergng de no dfferene. nd p funtons wth exponents 0.56 nd Note tht for lrger exponents we hoose lrger n wdths Žs the exponents get lrger, the orrespondng Gussns look ore nd ore lke; see Tle II.. FIGURE 1. Exponents for hydrogen to fttng. In the se tht we re urrently dsussng, the hydrogen to, we ft eh fj, k, k to fve Guss- ns, gvng us totl of 60 exponents fro whh to hoose Ž see Fg. 1.. We do not wnt to use ll of these exponents, euse there re ny of the nd ny of the re slr. Thus, we group our exponents nto ns of vryng wdths nd tke verges over eh of these ns to otn exponents for our. Note tht we re relly only fttng to s funtons Ž.e., funtons of the for r e 2.; however, we found t useful to lso nlude Ž r 2 r 2 r p funtons.e., xe, ye, ze 2.. We found tht nludng d-type funtons does not prove our results for orrelton energes of n group oleules. It s lkely tht suh funtons wll e needed for trnston etl ontnng oleules, ut ths s eyond the sope of the present work. We ot fro the seleton proess those exponents tht re lose to exponents lredy n the ss set. For exple, we note 24 vlues n the rnge nd 2 s n s-type funton wth exponent Slrly, there re 22 funtons n the rnge nd 5, p-type ss DEALIASING SETS FOR LARGER SYSTEMS Now suppose tht we wnt to fnd delsng sets for use n oleules ontnng ore thn one type of to. Then we need to ft fj, k, k funtons where the j funton s entered t one nuleus nd the k funton s entered t nother. In Fgures 2 nd 3 we show soe plots of f j, k, k funtons: typl se nd se n whh the shpe of fj, k, k devtes notely fro tht of j, respetvely. In oth ses, j s tght on- trted s-type funton Ž sx ontrted Gussns. fro the 6 31G** hydrogen set. In Fgure 2 the k funtons elong to the 6 31G** hydrogen set, nd n Fgure 3 the k funtons elong to the 6 31G** ron set. Fgure 4 shows j y tself. We n see tht, n ost ses, the fj, k, k roughly follows the ehvor of j, exept n Fgure 3; for k 1 fro the ron ss set Ž ontrted, tght s funton., J kk s lrge nd hs pronouned pek ner the ron enter; t would pper fro these fgures tht ths pek s not opletely elnted y the hydrogen j funton. Thus, euse the fj, k, k usully look roughly lke Crtesn Gussns entered t the j funton s nuleus, we ft the fj, k, k to get orre- spondng to the j ss funtons. For exple, f we wnt for hydrogen n oleule tht lso ontns ron, we use the hydrogen ss funtons s our j funtons nd TABLE II. Sus of Exponents for Hydrogen Ato Fttng No. Exponents Su Averge VOL. 19, NO. 11

8 GAUSSIAN FITS TO ARBITRARY FUNCTIONS FIGURE 2. f : j = 1 on H ( ontrted s funton ) 1, k, k ; k = 1, 2, 3, nd 5 on H. FIGURE 4. 1 s funton ). for hydrogen 6 31G** set ( ontrted the ron funtons s our k funtons. We enter the hydrogen to t Ž 0, 0, 0. nd the ron to on the postve z xs t the desred dstne fro Ž 0, 0, 0.. We then ft the fj, k, k nd pool the result- ng exponents together wth those fro the sngle hydrogen to fttng. We n now verge over the pproprte ns to otn delsng funtons for hydrogen. To get delsng funtons for r- FIGURE 3. f : j = 1 on H ( ontrted s funton ) 1, k, k ; k =1 3, 5 7, 9, 10, nd on C. on, we sply reverse the roles nd postons of the ron nd hydrogen tos n the proedure ove. Soe delsng sets for dfferent ontons of tos re gven n Appendx B. Note tht our delsng sets re opletely deterned y the orgnl ss sets nd re not grd dependent Ž.e., we do not use ny nforton out the grds tht wll eventully e used n the pseudospetrl lultons.. We re urrently nvestgtng how dependent the fttng proess s on our hoe of nterto dstnes. For exple, we would lke to know f the fttng proedure yelds the se exponents for tos X nd Y whether these tos re, sy, 1 or 2 A prt. If the fttng proedure s not ffeted y dstnes etween tos, then we n use the proedure to opute exponents for whhever ontons of tos we lke, therey retng lrry of exponents tht re vlle for use wth ny syste. So, for spef oleule, we sply extrt fro the lrry those exponents tht we need, pool the together s desred n the exple ove, nd run the vergng ode to otn delsng funtons pproprte for tht oleule. If the fttng proedure s ffeted y dstnes etween tos, then we n stll rete the exponent lrry desred ove; however, t wll e ore oplex, euse we wll hve exponents not only for dfferent ontons of tos, ut lso for dfferent dstnes etween tos. Thus, JOURNAL OF COMPUTATIONAL CHEMISTRY 1307

9 TAZARTES, ANDERSON, AND CARTER when we re extrtng exponents fro the lrry nd poolng the together for vergng, we ust ke sure tht we re seletng those exponents ost pproprte to the dstnes wthn our oleule. For ovous resons, ths s less thn desrle. Prelnry tests ndte tht nterto dstnes see to hve lttle pt on the exponents otned, ut ore tests re needed to see f ths s generlly true. In the frst row of Tle III our j funtons re ll hydrogen 6 31G** ss funtons nd our k funtons re ron nd hydrogen 6 31G** ss funtons; we show the verge exponents when the hydrogen nd ron tos re A prt nd when they re A Ž pproxtely twe the prevous dstne. prt. 19 The seond row s slr, wth the j funtons re now on ron nd the k funtons on oth hydrogen nd ron. ŽSee Tle B.II n Appendx B for few pseudospetrl orrelton energes oprng the funtons fro Tle III.. We see tht the results fro the two sets re nerly dentl. Ths ponts to our sets eng trnsferle Ž.e., t does not pper tht we need to run the fttng proedure for ny dfferent nterto dstnes.. TABLE III. Averge Exponents for Hydrogen nd Cron for Dfferent Interto Dstnes. Dstne 1: A Dstne 2: A Hydrogen 0.58, 1.35, 2.77, , 1.27, 2.92, 4.12 Cron 0.56, 1.41, 3.23, , 1.45, 3.11, 8.47 We lso pont out here tht the fnl hoe of exponents n e senstve to our hoe of n szes. We experented wth vrous shees Že.g., ottng ny exponents wthn set tolerne fro ss funton exponent., ut the proedure outlned ove worked est for our purposes. Results We now present pseudospetrl orrelton energes for two dfferent types of lultons, MP2 nd sngle nd doule extton onfgurton nterton Ž SDCI., n Tles IV VI usng the new delsng funton sets gven n Tle B.InAp- pendx B. We opre our pseudospetrl results to orrespondng spetrl lultons, s well s to prevously pulshed pseudospetrl results 16 n whh PSGVB v1.00 delsng sets were used. In ll ses, we use the PSGVB v1.00 grds. The pseudospetrl qunttes were lulted usng odes desred n refs. 10 nd 11. The sets fro Tle B.I used n eh oleule re those tht est orrespond to the onton of tos n tht oleule; for exple, n HCN we used the hydrogen-ron-ntrogen delsng set for hydrogen, the ron-hydrogen-ntrogen delsng set for ron, nd the ntrogen-ronhydrogen set for ntrogen Žsee Appendx B for noenlture explnton.. The sets soetes look very slr Že.g., the ron-hydrogen set does not look pprely dfferent fro the ron-hydrogen-ntrogen set.; susttuton of one set for nother y led to only slghtly less urte pseudospetrl results Žsee Tle B.III n Appendx B., ut ths lso needs to e studed ore refully TABLE IV. Errors n Pseudospetrl MP2 Correlton Energes ( Medu Grds ). Moleule E E E E Prevous Error d,16 s ps s ps HF e e-04 H2O e e-04 HCN e e-04 CH e e CH e e-04 Ethylene oxde e e-03 CH e e-03 Glyne e e-03 Spetrl MP2 orrelton energy ( hrtrees ). Pseudospetrl MP2 orrelton energy ( hrtrees) usng new sets. Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees ). d ( ) 17 Pseudospetrl MP2 orrelton energy error hrtrees usng delsng funton sets due to Rngnld et l VOL. 19, NO. 11

10 GAUSSIAN FITS TO ARBITRARY FUNCTIONS TABLE V. Errors n Pseudospetrl SDCI Totl Energes ( Corse Grds ). Moleule E E E E Prevous Error d,10,11 s ps s ps H2O e e-04 HCN e e-04 CH e e CH e e CH e e-04 Ethylene oxde e e-04 CH e e-04 Glyne e e-05 Spetrl SDCI totl energy ( hrtrees ). Pseudospetrl SDCI totl energy ( hrtrees) usng new sets. Dfferene ( n solute vlue) etween spetrl nd pseudospetrl SDCI totl energes ( hrtrees ). d ( ) 17 Pseudospetrl SDCI totl energy error hrtrees usng delsng funton sets due to Rngnld et l. efore we n sy nythng onlusve out the pt of n to s envronent on our hoe of. These prelnry results, lke those we o tned n studyng the effet of nterto dstnes on the fttng proedure, see to pont to trnsferlty of the. The ode used to do the fttng nd vergng ws orgnlly wrtten n MATLAB, 11 lthough we now lso hve C verson of ths ode. 11 For ore nforton on PSGVB, see ref. 17. The pseudospetrl MP2 lultons n Tle IV were done usng 6 31G** ss sets on the edu grds. It s evdent tht, n ost ses, our results re s urte, or ore urte, thn those prevously otned. Thus, ths new ens of hoosng the does eet ury requreents. Tles V nd VI present pseudospetrl SDCI lultons on orse nd edu grds, respetvely. On orse grds, our results re roughly the se s those prevously pulshed. 10 On edu grds, our SDCI results show etter ury thn those usng the PSGVB Q trx Ždefned n Appendx A. wth delsng sets developed y Rng- 17 nld et l. for self-onsstent feld Ž SCF. lultons. We lso note rked proveent over our own SDCI orse grd results. Our sets were desgned speflly for use wth the 6 31G** ss sets, though the fttng proedure n e used for ny other type of Gussn ss set. In ft, we lso ft the Dunnng Huzng 19, 20 9s5p 3s2 p sets. However, they were not desgned wth ny prtulr grd n nd. We would then hope tht s grd hoes prove, so should the perforne of our Ž s exhted n the oprson of the two sets of SDCI results.. Soe dvntges of usng these new sets re s follows. Frst, n our seleton ethod we tret the TABLE VI. Errors n Pseudospetrl SDCI Totl Energes ( Medu Grds ). Moleule E E E E Prevous Error d s ps s ps H2O e e-04 HCN e e-05 CH e e CH e e CH e e-04 Ethylene oxde e e-05 CH e e-04 Glyne e e-04 Spetrl SDCI totl energy ( hrtrees ). Pseudospetrl SDCI totl energy ( hrtrees) usng new sets. Dfferene ( n solute vlue) etween spetrl nd pseudospetrl SDCI totl energes ( hrtrees ). d ( ) 17 Pseudospetrl SDCI totl energy error hrtrees usng delsng funton sets due to Rngnld et l. JOURNAL OF COMPUTATIONAL CHEMISTRY 1309

11 TAZARTES, ANDERSON, AND CARTER lsng prole expltly: lsng ters pper when we projet the f 4 j, k, l onto the 1 K, nd we ddress ths prole dretly y usng systet proess to deterne pproprte delsng funtons. Seond, our sets re ore opt Ž8 12 delsng funtons per to s opposed to roughly 30 delsng funtons per to n the PSGVB v1.00 sets. nd ontn only s nd p funtons. However, ths y e due to the ft tht t s uh eser to nuerlly estte the uh sller orrelton energes thn the lrge SCF energes tht Fresner s sets were desgned to reprodue. Indeed, whle our sets perfor well for oputng orrelton energes, we fnd tht they do not lwys provde us wth urte SCF energes or wth urte Fok tres for ensung orrelton energy lultons. Even when the SCF energes re eptle Žerrors on the order of 1 hrtree., the resultng pseudospetrl Fok tres do not perfor well n orrelton energy lultons. ŽMP2 lultons, for nstne, frequently do not onverge when these Fok tres re used.. Ths s kn to the oservton y Mrtnez nd Crter 10, 21 tht sller grds n e used n orrelton energy lultons, even though they yeld very poor SCF totl energes when used n SCF lultons. In the se wy we n get wy wth sller nd less oplex delsng sets for orrelton energy lultons thn for SCF lultons. Thus, we envson heper orrelton ethods y usng sller grds nd delsng funton sets thn re eployed for SCF lultons. Sury We dsussed the seprton of exponentls ethod of fttng Ž dsrete. funton to lner ontons of deyng exponentls nd showed how the ethod ould e slghtly ltered nsted to represent funton s lner onton of Gussns. Then we dsussed the pplton of ths ethod to pseudospetrl eletron orrelton energes. In prtulr, we wnted to opute nuerl pproxtons to the two-eletron ntegrls Ž j.. Thus, we defned the funton f j, k, l J, so tht Ž j. ² f : j j, k, l. We ntro- dued nuerl nner produt, ² : w,top- proxte the ² f : e., ² f : ² j, k, l j, k, l f :.. In oputng these nner produts nuer- j, k, l w lly, we re projetng the fj, k, l onto the spe spnned y the orgnl ss set 4 nn 1 K ; however, the fj, k, l y ontn oponents outsde the org- nl ss set. Thus, t sees resonle to ntrodue suppleentry set of funtons, lled delsng funtons, to opleent our ss set to dequtely represent the fj, k, l on the grd. We then explned tht y usng pproprte delsng funtons nd djustng our qudrture rule to e urte for the spef types of nner produts we need Ž see Appendx A., we ould sustntlly prove the ury of pseudospetrl eletron orrelton energes. To deterne pproprte delsng funtons, we ppled the seprton of exponentls tehnque to fttng the funtons tht we wsh to kk represent: the f r r J Ž r. j, k, k g j g g. We used ertn ontons of the Gussns resultng fro the ft s our delsng sets, ddng n hgher ngulr oentu funtons for proved ury. Our proedure hs worked well n oth MP2 nd SDCI lultons. We were le to heve results slr to, or etter thn, those prevously otned wth the PSGVB v1.00 delsng sets. We lso sw n the se of the SDCI lultons tht the perforne of our delsng sets proved onsderly s grds were refned. Thus, we expet tht s grds re proved, our delsng sets should produe ore urte results. Our delsng sets re opt, grd ndependent, nd produe results generlly t ore urte thn those n refs. 10 nd 16; lso, we expltly nd systetlly ddress the ssue of lsng y fttng speflly those funtons tht we seek to represent n grd spe. However, we ust pont out tht the fnl hoe of delsng funton exponents n e senstve to n wdth n our vergng proedure, s well s to the envronent; t y lso e senstve to nternuler dstnes, soethng tht we re urrently nvestgtng. Intl results do not show uh senstvty to nterto dstnes, ut ore testng wll e requred efore we n onlude tht ths s generlly true. Seprton of exponentls n potentlly e ppled to other ethods n quntu hestry s well. For exple, n Vhtrs et l. s uxlry ss set expnson pproh, 4 they propose tht produts of Gussn ss funtons e expnded s lner ontons of Gussns, Ž. Ž. j r r C, Ž 12. j 1310 VOL. 19, NO. 11

12 GAUSSIAN FITS TO ARBITRARY FUNCTIONS where the re ss funtons nd the re Crtesn Gussns Žnot neessrly to entered.. Here, the two-eletron ntegrls ould ulttely e oputed nlytlly y usng the expnsons n eq. Ž 12., ut the expnson tself ould e deterned usng the seprton of exponentls proedure. The resultng ntegrls ould then e used, for nstne, n spetrl eletron orrelton lultons. Another potentl pplton s n DFT. 2, 3 Here, we need to opute qunttes of the for ² 4 3, :, Ž 13. where s the eletron densty. The eletron densty s often ftted to n uxlry ss of Gussns, whh ould e ft y the proedure desred n ths work. Thus, we hope tht n ddton to provng pseudospetrl eletron orrelton ethods, the fttng proedures presented here n e used to enhne other ethods n quntu hestry, s desred n the two exples ove, s well s n other res of sene. Aknowledgents E.A.C. nd C.R.A. re grteful to the Offe of Nvl Reserh for support of ths work. We thnk j Rhrd Fresner for provdng us wth pseudospetrl Hrtree Fok ode. C.C.T. thnks Todd Mrtnez nd Gregg Reynolds for helpful dsussons nd Al Sepehr for runnng soe senstvty tests. Appendx A: Q Opertor Suppose tht we hve set of. We ust djust ² : w so tht ² : w nd ² : n n w re urte: G ² : Ž r. Ž r. w ² :, n w n g g g n g 1 G ² : Ž r. Ž r. w ² :. n w n g g g n g 1 In trx for, T R w R S, Ž A.1. K GG GG Ž K L. K Ž K L. where the letters underneth the tres denote the trx densons. R nd S re extended versons of the olloton trx nd the overlp trx, respetvely. R Ž r. Ž r. Ž r. Ž r. 1 1 K L 1, Ž r. Ž r. Ž r. Ž r. S 1 G K G 1 G L G ² : ² : ² : ² : K L ² : ² : ² : ² : K 1 K K K 1 K L. However, eq. A.1 s usully not stsfed, exept perhps n the se of very sll systes. To solve ths prole, Rngnld et l. 1 nd Fresner 9 ntrodued new opertor, Q to redefne the nner produt: 1 T T Q PS Ž R wr. R w, where S s the Ž K L. Ž K L. overlp trx Ž nludng ll eleents of the for ² :. nd P s the K Ž K L. projeton trx whose top K K seton s the K K dentty trx nd whose renng eleents re ll 0. Thus, the K G trx Q s suh tht QR S. In ths wy, the qudrture rule s fored to e urte for the spef types of nner produts n whh we re nterested. We generte our verson of Q y solvng the followng underdeterned syste for Q: 1 2 Qw R S. K G G Ž K L. K Ž K L. JOURNAL OF COMPUTATIONAL CHEMISTRY 1311

13 TAZARTES, ANDERSON, AND CARTER We fnd Q y solvng the trx equton T 1 2 T T R w Q S, A.2 13, 15 usng sngulr vlue deoposton. We now use ths Q nsted of R T w 1 2 n ll of our nuerl nner produts, so the pseudospetrl two-eletron ntegrls re ² f : j, k, l G w 1 2 g Q, g w g, g J r R g, j. A.3 g 1 To test these dfferent wys of defnng our qudrture rules, we dd seres of MP2 lultons on the PSGVB v1.00 edu grds, usng dfferent opertor A n eh se to defne our nner produt rule: G 1 2 g g 1 j A, g J r w g, g R g, j. In Tle A.1, we see tht when A R T w 1 2 Žths s wht we en y strght nuerl qudrture., Eps s not very urte nd our p- proxton to the ² : e., entres of S. n s poor. By lettng A Q s solved for n eq. Ž A.2. wth no delsng funtons, we prove our ² n : w ut Eps tully worsens. We eleve tht ths s euse the weghts wg used n strght nuerl qudrture re supposed to e pproprte for rod lss of funtons, wheres Q s desgned only to ensure urte overlp ntegrls wthout ny regrd to the projeton of the f j, k, l. However, when A Q wth our new delsng funton set, we otn very urte result n E nd our ² : ps n w re lso urte. Thus, t would pper tht usng oth ondtons on Q s wht helps prove results etter ft to S nd etter jo of pturng the ehvor of fj, k, l on the grd. TABLE A.I. E for C H ( Medu Grds: G = 754, K =40 ). ps 2 2 Opertor A E E E S Aw R 2 1/ 2 ps s ps T 1/ 2 Rw e e-01 Q e e-04 Q, { } e e-04 =1 Pseudospetrl MP2 orrelton energy ( hrtrees ). Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees ). For n N N trx M, M 2 s the squre root of the ( ) T xu n solute vlue egenvlue of MM. Appendx B: Delsng Sets for 6 31G** Bss Sets Tle B.I lsts the pseudospetrl 6 31G** sets for dfferent ontons of tos. The to t whh the re entered s lsted frst, nd ny other tos re pled long the postve z xs t the desred dstne fro the frst to. We ple the long the postve z xs euse the z vrle represents rdl dstne, nd thus we defne t to lwys e postve. For exple, the hydrogen-ron-oxygen set re the entered on the hydrogen to when there re hydrogen, ron, nd oxygen tos n the oleule. Fgure B.1 shows how we postoned these tos durng the fttng proedure. ŽOf ourse, ths s not how they re postoned n the susequent energy lultons.. None of the re ontrted, so we lst no ontrton oeffents. The dstnes etween tos re gven n Angstros. We hose our nterto dstnes to e the se s those used y 10, 16 Mrtnez nd Crter. Tle B.II shows pseudospetrl MP2 orrelton energes usng sets otned fro two seprte fttngs, s desred n n erler seton. In the frst fttng, we set the dstne etween the hydrogen nd ron tos to e A; n the seond fttng, we set the dstne etween the hydrogen nd ron tos to e A. The resultng exponents re shown n Tle III. The results n Tle B.II show tht the two sets yeld slr MP2 energes. ŽNote tht the errors n the thrd olun of Tle B.II re the se s those n the fourth olun of Tle IV.. We note here tht the exponents for gven to s delsng set do vry wth tht to s envronent; however, n ost ses, the exponents do not vry y uh. For exple, the ron exponents n the Cron set re not very dfferent fro those n the Cron-Hydrogen set. In Tle B.III we show soe MP2 energes for dfferent sets. Coned sets refer to those sets whh tke nto ount the to s envronent wthn the oleule for exple, the Ntrogen-Cron-Hydrogen set. Sngle to sets re those n whh only sngle to s used to fnd exponents for exple, the Hydrogen set. Thus the errors n the thrd olun of Tle B.III re the se s those n the fourth olun of Tle IV. Whle further testng wll e needed, the results fro Tles B.II nd B.III do suggest the possl VOL. 19, NO. 11

14 GAUSSIAN FITS TO ARBITRARY FUNCTIONS TABLE B.I. Delsng Sets for 6 31G** Bss Sets. Funton Atos ( Dstnes) Type Exponents Hydrogen s 1.33, 2.93 p 0.56, 2.93 Hydrogen-Cron s 1.35, 2.77 ( H C = A ) p 0.58, 2.77 Hydrogen-Oxygen s 1.39, 3.18 ( H O = A ) p 0.59, 3.18 Hydrogen-Fluorne s 1.40, 2.89 ( H F = 0.91 A ) p 0.52, 2.89 Hydrogen-Cron-Oxygen s 1.38, 3.05 (H C = A, p 0.59, 3.05 H O = A ) Hydrogen-Cron-Ntrogen s 1.33, 3.02 (H C = A, p 0.48, 3.02 H N = A ) H C N O ( H O = A, s 1.35, 3.10 H C = A, p 0.51, 3.10 H N = A ) Cron s 1.46, 3.16, 9.02 p 1.46, 3.16, 9.02 Cron-Hydrogen s 1.41, 3.23, 8.94 ( C O = A ) p 1.41, 3.23, 8.94 Cron-Hydrogen-Oxygen s 1.34, 3.28, 8.70 (C H = A, p 1.34, 3.28, 8.70 C O = A ) Cron-Hydrogen-Ntrogen s 1.43, 3.16, 8.58 (C O = A, p 1.43, 3.16, 8.58 C N = A ) C H N O ( C H = A, s 1.37, 3.23, 8.97 C N = A, p 1.37, 3.23, 8.97 C O = A ) Oxygen-Hydrogen s 2.78, 6.23, ( O H = A ) p 2.78, 6.23, Oxygen-Cron-Hydrogen s 2.88, 6.12, (O C = A, p 2.88, 6.12, O H = A ) Ntrogen s 1.38, 3.67, 9.14 p 1.38, 3.67, 9.14 Ntrogen-Cron-Hydrogen s 1.37, 3.61, (N H = A, p 1.37, 3.61, N C = A ) Fluorne-Hydrogen s 2.92, 7.55, ( F H = 0.91 A ) p 2.92, 7.55, FIGURE B.1. Postons of tos used for fttng proedure ( hydrogen-ron-oxygen set ). TABLE B.II. Errors n Pseudospetrl MP2 Correlton Energes ( Medu Grds) for Dfferent Interto Dstne Delsng Sets. E E E E s ps s ps Moleule E ( Dstne 1 ) ( Dstne 2 ) s CH e e-05 CH e e-04 CH e e-03 Spetrl MP2 orrelton energy ( hrtrees ). Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees) usng Dstne 1 ( H C = A ). Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees) usng Dstne 2 ( H C = A ). TABLE B.III. Errors n Pseudospetrl MP2 Correlton Energes ( Medu Grds) for Dfferent Ato Envronent Delsng Sets. E E E E s ps s ps ( Coned ( Sngle Ato Moleule E Sets) Sets) s CH e e-05 CH e e-04 HCN e e-04 Spetrl MP2 orrelton energy ( hrtrees ). Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees) usng oned sets. Dfferene ( n solute vlue) etween spetrl nd pseudospetrl MP2 orrelton energes ( hrtrees) usng sngle to sets. JOURNAL OF COMPUTATIONAL CHEMISTRY 1313

15 TAZARTES, ANDERSON, AND CARTER ty of onstrutng delsng sets whh do not strongly depend on the envronent of gven to wthn oleule. Referenes 1. M. N. Rngnld, M. Belhdj, nd R. A. Fresner, J. Che. Phys. 93, 3397 Ž B. I. Dunlp, J. W. D. Connolly, nd J. R. Sn, J. Che. Phys. 71, 3396 Ž H. Sle nd R. H. Felton, J. Che. Phys. 62, 1122 Ž O. Vhtrs, J. Allof, nd M. W. Feyeresen, Che. Phys. Lett. 213, 514 Ž A. K. Rppe, T. A. Sedley, nd W. A. Goddrd III, J. Phys. Che. 85, 1662 Ž G. B. Bhelet, D. R. Hnn, nd M. Shluter, Phys. Rev. B, 26, 4199 Ž W. R. Wdt nd P. J. Hy, J. Che. Phys. 82, 284 Ž R. A. Fresner, Che. Phys. Lett. 116, 39 Ž R. A. Fresner, J. Che. Phys. 85, 1462 Ž T. J. Mrtnez, Ph.D. thess, UCLA, C. C. Tzrtes, Ph.D. thess, UCLA, S. L. Mrple, Jr., Dgtl Spetrl Anlyss wth Appltons, Prente Hll, Englewood Clffs, NJ, W. H. Press, S. A. Teukolsky, W. T. Vetterlng, nd B. P. Flnnery, Nuerl Repes n C, Crdge Unversty Press, New York, C. Lnzos, Appled Anlyss, Dover, New York, 1988, p G. Golu nd C. Vn Lon, Mtrx Coputtons, Johns Hopkns Unversty Press, Bltore, MD, T. J. Mrtnez nd E. A. Crter, J. Che. Phys. 100, 3631 Ž M. N. Rngnld, J. M. Lnglos, B. H. Greeley, T. V. Russo, R. P. Muller, B. Mrten, Y. Won, R. E. Donnelly, Jr., W.T. Pollrd, G. H. Mller, W. A. Goddrd III, nd R. A. Fresner, PS-GVB v1.00, Shrodnger, In. New York, T. J. Mrtnez nd E. A. Crter, n Modern Eletron Struture Theory Prt II, vol. 2, D. R. Yrkony, Ed., Advned Seres n Physl Chestry, World Sentf, Sngpore, 1995, p A. Sepehr, C. C. Tzrtes, nd E. A. Crter, unpulshed results. 20. T. H. Dunnng, Jr., J. Che. Phys. 53, 2823 Ž T. J. Mrtnez nd E. A. Crter, J. Che. Phys. 102, 7564 Ž VOL. 19, NO. 11

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

Shuai Dong. Using Math and Science to improve your game

Shuai Dong. Using Math and Science to improve your game Computtonl phscs Shu Dong Usng Mth nd Sene to mprove our gme Appromton of funtons Lner nterpolton Lgrnge nterpolton Newton nterpolton Lner sstem method Lest-squres ppromton Mllkn eperment Wht s nterpolton?

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

A Linear Subspace Learning Approach via Sparse Coding

A Linear Subspace Learning Approach via Sparse Coding A Lner Suspe Lernng Approh v Sprse odng Le Zhng, engfe Zhu, Qnghu Hu nd Dvd Zhng Dept. of oputng, he Hong Kong olytehn Unversty, Hong Kong, hn Hrn Insttute of ehnology, Hrn, hn slhng@op.polyu.edu.hk Astrt

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

6 Random Errors in Chemical Analysis

6 Random Errors in Chemical Analysis 6 Rndom Error n Cheml Anl 6A The ture of Rndom Error 6A- Rndom Error Soure? Fg. 6- Three-dmenonl plot howng olute error n Kjeldhl ntrogen determnton for four dfferent nlt. Anlt Pree Aurte 4 Tle 6- Pole

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

This conversion box can help you convert units of length. b 3 cm = e 11 cm = b 20 mm = cm. e 156 mm = b 500 cm = e cm = b mm = d 500 mm =

This conversion box can help you convert units of length. b 3 cm = e 11 cm = b 20 mm = cm. e 156 mm = b 500 cm = e cm = b mm = d 500 mm = Units of length,, To onvert fro to, ultiply y 10. This onversion ox n help you onvert units of length. To onvert fro to, divide y 10. 100 100 1 000 10 10 1 000 Convert these lengths to illietres: 0 1 2

More information

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES AB INITIO DENSITY UNCTIONAL THEORY OR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES By DENIS BOKHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL O THE UNIVERSITY O LORIDA IN PARTIAL ULILLMENT

More information

ECEN 5807 Lecture 26

ECEN 5807 Lecture 26 ECEN 5807 eture 6 HW 8 due v D Frdy, rh, 0 S eture 8 on Wed rh 0 wll be leture reorded n 0 he week of rh 5-9 Sprng brek, no le ody: Conlude pled-dt odelng of hghfrequeny ndutor dyn n pek urrentode ontrolled

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU Mchne Lernng CSE6740/CS764/ISYE6740 Fll 0 Support Vector Mchnes Le Song Lecture 8 Sept. 3 0 Bsed on sldes fro Erc Xng CMU Redng: Chp. 6&7 C.B ook Outlne Mu rgn clssfcton Constrned optzton Lgrngn dult Kernel

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity Interntonl eserh Journl of Engneerng nd Tehnology (IJET) e-issn: 395-0056 olue: 0 Issue: 09 De-05 www.ret.net p-issn: 395-007 eoetr ouplng of slr ultplets to D=, N= pure supergrvty Polo D S,,3 Adunt Professor,

More information

4.5. QUANTIZED RADIATION FIELD

4.5. QUANTIZED RADIATION FIELD 4-1 4.5. QUANTIZED RADIATION FIELD Baground Our treatent of the vetor potental has drawn on the onohroat plane-wave soluton to the wave-euaton for A. The uantu treatent of lght as a partle desrbes the

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Constructing Free Energy Approximations and GBP Algorithms

Constructing Free Energy Approximations and GBP Algorithms 3710 Advnced Topcs n A ecture 15 Brnslv Kveton kveton@cs.ptt.edu 5802 ennott qure onstructng Free Energy Approxtons nd BP Algorths ontent Why? Belef propgton (BP) Fctor grphs egon-sed free energy pproxtons

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Geometric Correction or Georeferencing

Geometric Correction or Georeferencing Geoetrc Correcton or Georeferencng GEOREFERENCING: fro ge to p Coordntes on erth: (λ, φ) ge: (, ) p: (, ) rel nteger Trnsfortons (nvolvng deforton): erth-to-ge: χ erth-to-p: ψ (crtogrphc proecton) ge-to-p:

More information

8. Computing Eigenvalues in Parallel

8. Computing Eigenvalues in Parallel 8. Coptng Egenles n Prllel x egenector wth egenle λ, ff: x λx, x spd, then there exsts n orthogonl ss of egenectors λ,,,,n Λ or Λ,..., n ), Λ dg λ,..., λ n ) n generl y e coplex ntry nd Λ n pper trnglr

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

PARABOLIC AND ELLIPTIC REFLECTORS

PARABOLIC AND ELLIPTIC REFLECTORS PARABOLIC AND ELLIPTIC REFLECTORS It s well known tht refletng surfes of ether prol or ellpt shpe hve the nterestng propert tht nomng lght rs wth spefed orentton n reflet off of suh surfes to produe undle

More information

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2015. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers Interntonl Journl of Applton or Innovton n Engneerng & Mngement (IJAIEM) Web Ste: www.jem.org Eml: edtor@jem.org Effetveness nd Effeny Anlyss of Prllel Flow nd Counter Flow Het Exngers oopes wr 1, Dr.Govnd

More information

An Axiomatic Approach to Physics. Daniel L. Burnstein

An Axiomatic Approach to Physics. Daniel L. Burnstein An Axot Approh to Physs By Dnel L. Burnsten durnsten@quntugeoetrydyns.o Astrt Quntu-geoetry dyns: theory derved fro nl set of xos tht n desre, expln nd predt the ehvour of dyn systes. Frst, we wll ntrodue

More information

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7 TELOM 3 Tme Vryng Queues Dvd Tpper Assote Professor Grdute Teleommuntons nd Networkng Progrm Unversty of Pttsburgh ldes 7 Tme Vryng Behvor Teletrff typlly hs lrge tme of dy vrtons Men number of lls per

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES. Nicolaie ORASANU 1

REDUCTION OF THE ELEMENTARY BODIES TO SYSTEMS OF MATERIAL POINTS WITH THE SAME INERTIA PROPERTIES. Nicolaie ORASANU 1 U... S. ull., Seres, ol. 7, Iss., ISS - REUTIO OF THE ELEETRY OIES TO SYSTES OF TERIL OITS WITH THE SE IERTI ROERTIES ole ORSU In estă lurre se propun tev odele tete de reduere orpurlor eleentre l sstee

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j p. Supp. 9- Suppleent to Rate of Absorpton and Stulated Esson Here are a ouple of ore detaled dervatons: Let s look a lttle ore arefully at the rate of absorpton w k ndued by an sotrop, broadband lght

More information

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method Aled Mthetcs 3 4 4-9 htt://ddoorg/436/34a3 Pulshed Onlne Jnury 3 (htt://wwwscrorg/ournl/) uercl Soluton of Frehol-Volterr Integrl Equtons y Usng Sclng Functon Interolton Method Yousef Al-Jrrh En-Bng Ln

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov JSM 2013 - Survey Researh Methods Seton Is t MAR or NMAR? Mhal Sverhkov Bureau of Labor Statsts 2 Massahusetts Avenue, NE, Sute 1950, Washngton, DC. 20212, Sverhkov.Mhael@bls.gov Abstrat Most methods that

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

Multireference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion

Multireference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion Multreferene Correlted Wvefunton Clultons nd Reton Flux Anlyses of Methyl Ester Combuston Tsz S. Chwee, Dvd Krsloff, Vtor yeyem, Tng Tn, Mhele Pvone, nd Emly A. Crter Deprtments of Chemstry, Cheml Engneerng,

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem Journal of Engneerng and Appled Senes Volue: Edton: Year: 4 Pages: 7 4 Ultraspheral Integraton Method for Solvng Bea Bendng Boundary Value Proble M El-Kady Matheats Departent Faulty of Sene Helwan UnverstyEgypt

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION Control 4, Unversty of Bath, UK, September 4 FAUL DEECION AND IDENIFICAION BASED ON FULLY-DECOUPLED PARIY EQUAION C. W. Chan, Hua Song, and Hong-Yue Zhang he Unversty of Hong Kong, Hong Kong, Chna, Emal:

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state The alulaton of ternary vapor-lqud syste equlbru by usng P-R equaton of state Y Lu, Janzhong Yn *, Rune Lu, Wenhua Sh and We We Shool of Cheal Engneerng, Dalan Unversty of Tehnology, Dalan 11601, P.R.Chna

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information