Research Article The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order

Size: px
Start display at page:

Download "Research Article The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order"

Transcription

1 Hndw Publhng Corporon Mhemcl Problem n Engneerng Volume 06, Arcle ID 8080, 0 pge hp://dx.do.org/0.55/06/8080 Reerch Arcle The Generl Soluon of Impulve Syem wh Cpuo-Hdmrd Frconl Dervve of Order q C (R(q) (, )) Xnmn Zhng, Xnzhen Zhng, Zuohu Lu, 3 Hu Peng, Tong Shu, nd Shyong Yng School of Elecronc Engneerng, Jung Unvery, Jung, Jngx 33005, Chn School of Chemcl nd Envronmenl Engneerng, Jung Unvery, Jung, Jngx 33005, Chn 3 School of Chemry nd Chemcl Engneerng, Chongqng Unvery, Chongqng , Chn Correpondence hould be ddreed o Xnmn Zhng; z6xm@6.com Receved December 05; Acceped 9 Jnury 06 Acdemc Edor: JoéA. T. Mchdo Copyrgh 06 Xnmn Zhng e l. Th n open cce rcle drbued under he Creve Common Arbuon Lcene, whch perm unrerced ue, drbuon, nd reproducon n ny medum, provded he orgnl wor properly ced. Moved by ome prelmnry wor bou generl oluon of mpulve yem wh frconl dervve, he generlzed mpulve dfferenl equon wh Cpuo-Hdmrd frconl dervve of q C (R(q) (, )) re furher uded by nlyzng he lm ce ( mpule pproch zero) n h pper. The formul of generl oluon re found for he mpulve yem.. Inroducon Hdmrd frconl clculu ey pr of he heory of frconl clculu. The uhor n [ 6] mde n mporn developmen of he frconl clculu whn he frme of Hdmrd frconl dervve. For he generl heory of Hdmrd frconl clculu, one cn ee he monogrph of Klb e l. [7]. Recenly, Jrd e l. mde progre on Hdmrd frconl dervve o preen he defnon of Cpuo- Hdmrdfrconldervven[8]nddevelopedhe fundmenl heorem of h frconl dervve n [8, 9]. Furhermore, mpulve dfferenl equon re ulzed vluble ool o decrbe he dynmc of procee n whch udden, dconnuou ump occur, nd mpulve dfferenl equon wh Cpuo frconl dervve were wdely reerched n [0 6]. Nex, he generl oluon of everl nd of mpulve frconl dfferenl equon hve been found n [7 30], repecvely. Moved by he bove-menoned wor, we wll furher ee he generl oluon of generlzed mpulve yem wh Cpuo-Hdmrd frconl dervve: C-H Dq x () f(, x ()), (, T], (,,...,m), l (l,,...,p), Δx x( ) x( )I (x ( )) C,,,...,m, Δx x ( l l ) x ( l )I l (x ( l )) C, x () x C, x () x C. l,,...,p, Here q C nd R(q) (, ), C-H Dq denoe lef-ded Cpuo-Hdmrd frconl dervve of order q nd > 0, ()

2 Mhemcl Problem n Engneerng f:[,t] C C n ppropre connuou funcon, 0 < < < m < m T,nd 0 < < < p < p T.Herex( ) lm ε 0 x( ε)nd x( )lm ε 0 x( ε)repreen he rgh nd lef lm of u(),repecvely,ndx ( l ) nd x ( l ) hve mlr menng. Le u queue,,..., m,,..., p,t o 0 < < < < Π < Π Tuch h e,..., m,,..., p e Π,,..., Π. () For ech [, ] ( 0,,...,Π),uppoe[, ] [, ] [, ] (here,,...,m)nd[, ] [, ] [, ] (here,,...,p), repecvely. In order o ge he oluon of (), we wll fr conder he followng yem: C-H Dq x () f(, x ()), (3) (, T], (,...,m), l (l,...,p), Δx x( ) x( )I (x ( )) C,,,...,m, Δδx l δx( l ) δx( l )J l (x ( l )) C, l,,...,p, (3b) (3c) x () x C, (3d) δx () x C, where dfferenl operor δ (d/d), δ 0 x() x(). Nex, ome defnon nd concluon re nroduced n Secon, nd he formul of generl oluon wll be gven for ome mpulve dfferenl equon wh Cpuo- Hdmrd frconl dervve n Secon 3.. Prelmnre Defnon (ee [7, p. 0]). Le 0 b be fne or nfne nervl of he hlf-x R.Thelef-dedHdmrd frconl negrl of order α C of funcon φ(x) defned by ( H J α φ) (x) Γ (α) x where Γ( ) he Gmm funcon. (ln x )α φ () d, ( <x<b), Defnon (ee [7, p. 0]). The lef-ded Hdmrd frconl dervve of order α C (R(α) 0)on(, b) defned by ( H D α φ) (x) δn ( H J n α φ) (x) (x d dx ) n x Γ (n α) (ln x )n α φ () d, ( <x<b), (4) (5) where n[r(α)] nd dfferenl operor δ x(d/dx) nd δ 0 y(x) y(x). Lemm 3 (ee [7, p. 4 6]). Le α, β C uch h R(α) > R(β) > 0. For0<<b<,fφ L p (, b) ( p < ), hen H D β H Jα φ H Jα β φ nd H J α H Jβ φ H Jαβ φ. The lef-ded Cpuo-Hdmrd frconl dervve w defned n [8] by C-H Dα φ (x) H D α [φ (x) n 0 δ φ ()! (ln ) ] (x) ; here R(α) 0, n[r(α)], 0<<b<, dfferenl operor δ x(d/dx), δ 0 y(x) y(x),nd φ (x) AC n δ [, b] φ:[, b] C :δ(n ) φ (x) AC[, b], δ x d dx. Theorem 4 (ee [8, p. 4]). Le R(α) 0, n[r(α)], nd φ AC n δ [, b], 0<<b<.Then, C-H Dα φ(x) ex everywhere on [, b] nd () f α N 0, x C-H Dα φ (x) Γ (n α) (b) f αn N 0, In prculr, H J n α δn φ (x), (ln x )n α δ n φ () d (6) (7) (8) C-H Dα φ (x) δn φ (x). (9) C-H D0 φ (x) φ(x). (0) Lemm 5 (ee [8, p. 5]). Le R(α) > 0, n[r(α)] nd φ C[, b].ifr(α) 0or α N,hen C-H Dα ( H Jα φ) (x) φ(x). () Lemm 6 (ee [8, p. 6]). Le φ AC n δ [, b] or le Cn δ [, b] nd α C;hen, n H Jα ( C-H Dα φ) (x) φ(x) δ φ () (ln x! ). () 0

3 Mhemcl Problem n Engneerng 3 Lemm 7 (ee [9, p. 4]). Le w C nd R(w) (0, ),nd le ξ be conn. A funcon u() : [, T] C generl oluon of yem C-H Dw u () g(, u ()), (, T], (,,...,m), Δu u( ) u( )Δ (u ( )) C, u () u, u C, f nd only f u() fe he negrl equon,,...,m, (3) u () u Γ (w) (ln )w g (, u ()) d for (, ], u ξ Δ (u ( )) Γ (w) Δ (u ( )) Γ (w) (ln )w g (, u ()) d [ (ln w ) g (, u ()) d (ln )w d g (, u ()) (4) (ln )w g (, u ()) d ] for (, ],,,...,m provded h he negrl n (4) ex. 3. Mn Reul Frly, le u conder ome lm ce n yem (3), (3b), (3c), nd (3d): lm yem I (x( )) 0,,...,m, J l (x( l )) 0 l,,...,p C-H Dq x () f(, x ()), (, T], (3), (3b), (3c), nd (3d) x () x C, δx () x C, lm yem (3), (3b), (3c), nd (3d) J l (x( l )) 0, l,,...,p C-H Dq x () f(, x ()), (, T], (,...,m), Δx x( ) x( )I (x ( )) C,,,...,m, x () x C, δx () x C, lm yem (3), (3b), (3c), nd (3d) I (x( )) 0,,,...,m C-H Dq x () f(, x ()), (, T], l (l,...,p), Δδx l δx( l ) δx( l )J l (x ( l )) C, l,,...,p, x () x C, δx () x C. (5) (6) (7)

4 4 Mhemcl Problem n Engneerng Thu, () () lm he oluon of yem (3), )) 0,,...,m, J l (x( l )) 0 l,,...,p I (x( (3b), (3c), nd (3d) he oluon of yem (5), lm he oluon of yem (3), (3b), (3c), J l (x( l )) 0, l,,...,p nd (3d) he oluon of yem (6), (8) By Theorem 4, we hve for (, ] (here 0,,,...,m). (9) [ C-H D q x ()] (, ] Γ( q) (ln ) q δ [x ( )δx( ) ln Γ(q) () lm he oluon of yem (3), (3b), (3c), I (x( )) 0,,,...,m nd (3d) he oluon of yem (7). Thu, he defnon of oluon of yem (3), (3b), (3c), nd (3d) preened follow. (ln q η ) f (η, x (η)) dη η ] d (, ] Γ ( q) Γ (q) (ln ) q (0) Defnon 8. Afunconz() : [, T] C d o be oluon of (3), (3b), (3c), nd (3d) f z() x nd δz() x,heequoncondon C-H D q z() f(, z()) for ech [, T]/,,..., Π verfed, he mpulve condon Δz I (z( )) (here,,...,m)ndδδz l J l (z( l )) (here l,,...,p) re fed, he rercon of z( ) o he nervl (, ] (here 0,,,...,Π) connuou, nd he condon () () hold. Nex, defne funcon by x () x( )δx( ) ln (ln )q d f (, x ()), δ [ (ln q η ) f (η, x (η)) dη η ] d (, ] f(, x ()) (, ]. Th men h x() fe (3), nd x() fe (3b) (3d). However, x() doe no fy he condon () (), nd no oluon of yem (3), (3b), (3c), nd (3d). Therefore, x() condered n pproxme oluon o ee he exc oluon of (3), (3b), (3c), nd (3d). Nex, le u prove ome ueful concluon. Lemm 9. Le q C, R(q) (, ), ndξ conn. Syem (6) equvlen o he negrl equon x () x x ln (ln )q f (, x ()) d for (, ], x x ln I (x ( )) ξ I (x ( )) Γ(q) [ (ln )q f (, x ()) d (ln ) q f (, x ()) d (ln )q d f (, x ()) () (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, ], m provded h he negrl n () ex.

5 Mhemcl Problem n Engneerng 5 Proof. Necey. LengI (x( )) 0 (,,...,m)n (6), we hve lm yem (6) I (x( )) 0,,,...,m C-H Dq x () f(, x ()), (, T], x () x C, δx () x C. () Th, lm he oluon of yem (6) I (x( )) 0,,,...,m he oluon of yem (5). (3) In fc, we cn verfy h () fe he condon (3). Nex, ng frconl dervve o () for (, ] (here 0,,,...,m), we ge [ C-H D q x ()] ( (, ] Γ( q) (ln ) q δ x x ln I (x ( )) (ln η ) q f (η, x (η)) dη η ξ I (x ( )) Γ(q) [ (ln q η ) f (η, x (η)) dη η (ln q η ) f (η, x (η)) dη η (ln η ) q f (η, x (η)) dη η ] ln (/ ) (ln q η ) f (η, x (η)) dη d η ) (, ] Γ ( q) Γ (q) (ln ) q δ ( (ln q η ) f (η, x (η)) dη η ) d ξ I (x ( )) [ (ln ) q δ ( (ln q η ) f (η, x (η)) dη η ) d (ln ) q (4) δ ( (ln q η ) f (η, x (η)) dη η ) d ] (, ] f(, x ()) (x ( ξi )) [f (, x ()) f(, x ()) ] f(, x ()) (, ]. (, ] So, () fe he condon of frconl dervve n yem (6). Fnlly, ung () for ech (here,,...,m), we hve x( ) x( )lm x () x( )x x ln I (x ( )) f(, x ()) d ξ I (x ( )) Γ(q) [ (ln ) q (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) (ln q ) f (, x ()) d x x ln I (x ( )) (ln ) q f(, x ()) d ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) (ln q ) f (, x ()) d I (x ( )). (5) I men h () fe he mpulve condon of (6). Hence, () fe ll condon of yem (6). Suffcency (by mhemcl nducon). By Lemm 6, he oluon of (6) fe x () x x ln (ln )q f (, x ()) d for (, ]. (6)

6 6 Mhemcl Problem n Engneerng Ung (6), we obn x( )x( )I (x ( )) x x ln I (x ( )) δx ( )δx( ) x (ln ) q f (, x ()) d, (ln ) q f (, x ()) d. Thu, he pproxme oluon x() gven by x () x( )δx( ) ln Γ(q) (ln )q d f (, x ()) x x ln I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) ] ln (/ ) (ln q ) f (, x ()) d for (, ]. (7) (8) Le e () x() x(), for (, ]. By (6), he exc oluonx() of yem (6) fe lm I (x( )) 0 x () x x ln Th how h e () conneced wh I (x( )) nd lm I (x( )) e (). Thu, we ume e () χ(i (x ( ))) lm e () I (x( )) 0 χ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, ], (3) where funcon χ n undeermned funcon wh χ(0). So, x () x () e () x x ln I (x ( )) (ln )q f (, x ()) d [ (ln )q f (, x ()) d, (9) χ(i (x ( )))] for (, ]. Then, lm e () lm x () x () I (x( )) 0 I (x( )) 0 Γ(q) [ (ln q ) f (, x ()) d Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (3) (ln )q d f (, x ()) (30) (ln )q f (, x ()) d ] ln (/ ) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d. (ln q ) f (, x ()) d for (, ].

7 Mhemcl Problem n Engneerng 7 Leng γ(i (x( ))) χ(i (x( ))),wege Therefore, he pproxme oluon x() provded by x () x x ln I (x ( )) (ln )q f(, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d Ung (33), we obn x( )x( )I (x ( )) x x ln I (x ( )) I (x ( )) f(, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d for (, ]. (ln ) q (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) (ln q ) f (, x ()) d, δx ( )δx( ) x f(, x ()) d γ(i (x ( ))) (ln ) q [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]. (33) (34) x () x( )δx( ) ln (ln )q f(, x ()) d x x ln I (x ( )), Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) ] ln (/ ) (ln q ) f (, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) (ln q ) f (, x ()) d γ(i (x ( ))) ln [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ] for (, 3 ]. (35) Le e () x() x() for (, 3 ].Moreover,by(33),he exc oluon x() of yem (6) fe lm x () x x ln I (x( )) 0 I (x ( )) Γ(q) (ln )q f (, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ())

8 8 Mhemcl Problem n Engneerng (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, 3 ], lm x () x x ln I (x( )) 0 I (x ( )) Γ(q) (ln )q f (, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d lm x () x x ln I (x( )) 0, I (x( )) 0 for (, 3 ], (ln )q lm e () lm x () x () [ I (x( )) 0 I (x( )) 0 γ(i (x ( )))] Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d γ(i (x ( ))) Γ(q) [ (ln ) q (ln )q d f (, x ()) f (, x ()) d (ln )q d f (, x ()) ] ln (/ ) f(, x ()) d for (, 3 ]. (36) (ln q ) f (, x ()) d Then, lm e () lm x () x () [ I (x( )) 0 I (x( )) 0 γ(i (x ( )))] Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, 3 ], lm e () lm x () x () I (x( )) 0, I (x( I (x( )) 0, )) 0 I (x( )) 0 Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, 3 ], for (, 3 ]. (37)

9 Mhemcl Problem n Engneerng 9 By (37), we ge Then, e () [γ(i (x ( ))) γ (I (x ( ))) ] x () x () e () x x ln I (x ( )), Γ(q) [ (ln q ) f (, x ()) d (ln )q f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln q ) f (, x ()) d γ(i (x ( ))) (38) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d (39) Γ(q) [ (ln ) q (ln )q d f (, x ()) f (, x ()) d γ(i (x ( ))) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q d f (, x ()) ] ln (/ ) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d (ln q ) f (, x ()) d for (, 3 ]. for (, 3 ]. Conder he followng lm ce C-HD q x () f(, x ()), (, 3 ],,, lm Δx x( ) x( )I (x ( )) C,,, x () x C, δx () x C. (40) C-HD q x () f(, x ()), (, 3 ], Δx I (x ( )) I (x ( )) x () x C, δx () x C. (4)

10 0 Mhemcl Problem n Engneerng Ung (33) nd (39) for (4) nd (40), repecvely, we hve χ(i (x ( )) I (x ( ))) χ(i (x ( ))) χ (I (x ( ))) for I (x ( )), I (x ( )) C. Therefore, χ(z) ξz z C;hereξ conn. Thu, x () x x ln I (x ( )) Γ(q) (ln )q f (, x ()) d ξi (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d x () x x ln I (x ( )) I (x ( )) Γ(q) [ for (, ], (ln )q f (, x ()) d ξi (x ( )) (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d ξi (x ( )) Γ(q) [ (ln q ) f (, x ()) d (4) (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d Nex, uppoe x () x x ln I (x ( )) Γ(q) (ln )q f (, x ()) d ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d Ung (44), we obn for (, 3 ]. (43) for (, ]. x( )x( )I (x ( )) x x ln I (x ( )) f(, x ()) d ξ I (x ( )) Γ(q) [ (ln ) q (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) (ln q ) f (, x ()) d, (44)

11 Mhemcl Problem n Engneerng δx ( )δx( ) x (ln q ) f (, x ()) d ξ I (x ( )) [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]. (45) Therefore, he pproxme oluon x() preened by x () x( )δx( ) ln Γ(q) (ln )q d f (, x ()) x x ln (ln q ) f (, x ()) d ξ I (x ( )) ln (/ ) [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ] for (, ]. (46) Le e () x() x() for (, ]. In ddon, by (44), he exc oluon x() of yem (6) fe lm x () x x ln I (x( )) 0, (ln )q,,..., I (x ( )) f(, x ()) d for (, ], Γ(q) [ (ln q ) f (, x ()) d lm I (x( )) 0 x () x x ln, I (x ( )) (ln )q d f (, x ()) ]ln (/ ) (ln )q f (, x ()) d (ln q ) f (, x ()) d ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln q ) f (, x ()) d (ln q ) f (, x ()) d ]ln ( / ) ξ, Γ(q) [ I (x ( )) (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, ],,,...,. (47)

12 Mhemcl Problem n Engneerng Then, lm I (x( )) 0,,,..., e () lm I (x( )) 0,,,..., x () x () Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) f(, x ()) d ] ln (/ ) (ln q ) f (, x ()) d lm e () I (x( )) 0 ξ, lm I (x( )) 0 x () x () I (x ( )) (ln )q for (, ], Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ]ln (/ ) (ln q ) f (, x ()) d ξ, I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q d f (, x ()) ] ln (/ ) (ln q ) f (, x ()) d for (, ],,,...,. (48) By (48), we obn e () ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ]ln (/ ) (ln q ) f (, x ()) d ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q d f (, x ()) ] ln (/ ) (ln q ) f (, x ()) d for (, ],,,...,. Thu, we hve x () x () e () x x ln I (x ( )) ξ (ln )q f (, x ()) d I (x ( )) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d for (, ]. Then, he oluon of yem (6) fe (). (49) (50)

13 Mhemcl Problem n Engneerng 3 By he proof of Suffcency nd Necey, yem (6) equvlen o (). The proof compleed. Lemm 0. Le q C, R(q) (, ), ndζ conn. Syem (7) equvlen o he negrl equon x () x x ln (ln )q f (, x ()) d, for (, ], x x ln l J (x ( ζ l J (x ( )) Γ(q) [ [ )) ln (ln )q f (, x ()) d (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) ] f (, x ()) d, for ( l, l ], l p (5) provded h he negrl n (5) ex. Remr. For (7), we hve In fc, we cn verfy h (5) fe he condon (53). Moreover, he pproxme oluon x() of yem (7) defned by lm J (x( )) 0,...,J p(x( p )) 0 yem (7) yem (5). (5) x () x( l )δx( l ) ln l (ln )q d f (, x ()) l (54) for ( l, l ]; Then, lm J (x( )) 0,...,J p(x( p )) 0 he oluon of yem (7) he oluon of yem (5). (53) here x( l ) x( l ) nd δx( l ) δx( l )J l(x( l )), l,,...,p. Due o mlry wh Lemm 9, he proof omed. Corollry. Le q C, R(q) (, ), ndξ conn. Afunconx() : [, T] C generl oluon of he yem (6); hen, δx () x (ln )q f (, x ()) d for (, ], x ξ I (x ( )) [ (ln )q f (, x ()) d (ln ) q f (, x ()) d (ln )q d f (, x ()) (55) (ln )q f (, x ()) d ] for (, ], m provded h he negrl n (55) ex.

14 4 Mhemcl Problem n Engneerng Corollry 3. Le q C, R(q) (, ), ndζ conn. Afunconx() : [, T] C generl oluon of he yem (7); hen, δx () x (ln )q f (, x ()) d for (, ], x l ζ l J (x ( )) J (x ( )) [ [ (ln )q f (, x ()) d (ln q ) f (, x ()) d (ln )q d f (, x ()) (56) (ln )q f (, x ()) d ] ] for ( l, l ], l p provded h he negrl n (56) ex. Remr 4. By Corollre nd 3, hown h wo nd of mpule Δx (,,...,m)nd Δδx l (l,,...,p) hve mlr effec on δx() of yem (5). Lemm 5. Le q C, R(q) (, ), ndξ nd ζ re wo conn. A funcon x() : [, T] C generl oluon of heyem(3),(3b),(3c),nd(3d);hen, δx () x (ln )q f (, x ()) d for (, ], x ξ J (x ( )) I (x ( )) [ (ln )q f (, x ()) d ] ζ J (x ( )) [ [ (ln )q f (, x ()) d (ln ) q f (, x ()) d (ln )q d f (, x ()) (ln q ) f (, x ()) d (ln )q d f (, x ()) (57) (ln )q f (, x ()) d ] ] for (, ], Π provded h he negrl n (57) ex. Proof. Accordng o Corollre nd 3, he oluon of yem (3), (3b), (3c), nd (3d) fy δx () x (ln )q f (, x ()) d, for (, ]. (58)

15 Mhemcl Problem n Engneerng 5 By he defnon of Cpuo-Hdmrd frconl dervve, yem (3), (3b), (3c), nd (3d) fe yem (3), (3b), (3c), nd (3d) C-H Dq (δx ()) f(, x ()), J (, T], (,...,m), l (l,...,p), Δx x( ) x( )I (x ( )) C,,,...,m, Δδx l δx( l ) δx( l )J l (x ( l )) C, l,,...,p, (59) x () x C, δx () x C. Moreover, reonble h mpule Δx (,,...,m) re condered pecl mpule Δδx l (l,,...,p)nyem(59)byremr4.therefore,ung Lemm 7 for yem (59) ( (, ],here,,...,π), we hve δx () x f(, x ()) d ξ I (x ( )) J (x ( )) (ln )q [ (ln q ) f (, x ()) d (ln )q d f (, x ()) f(, x ()) d ] ζ J (x ( )) [ [ (ln )q d f (, x ()) (ln )q (ln q ) f (, x ()) d (ln )q (60) repecvely, we ge ξ ξ(for ll,,..., )ndζ ζ (for ll,,..., )bycorollrend3.thu, δx () x f(, x ()) d ξ J (x ( )) (ln )q I (x ( )) [ (ln )q d f (, x ()) (ln )q f (, x ()) d ] ζ J (x ( )) [ [ (ln )q d f (, x ()) (ln q ) f (, x ()) d (ln q ) f (, x ()) d (6) f(, x ()) d ], ] where ξ (,,..., )ndζ (,,..., )re undeermned conn. Leng J (x( )) 0 (for ll,,..., )ndi (x( )) 0 (for ll,,..., ), (ln )q f (, x ()) d ], ] Th proof compleed. for (, ], Π.

16 6 Mhemcl Problem n Engneerng Theorem 6. Le q C, R(q) (, ), ndξ nd ζ re wo conn. Syem (3), (3b), (3c), nd (3d) equvlen o he negrl equon x () x x ln (ln )q f (, x ()) d for (, ], x x ln I (x ( )) J (x ( )) ln (ln )q f (, x ()) d ξ I (x ( )) Γ(q) [ (ln )q f (, x ()) d ] ln (/ ) ζ J (x ( )) Γ(q) [ [ (ln ) q f (, x ()) d (ln )q d f (, x ()) (ln ) q f (, x ()) d (ln q ) f (, x ()) d (ln )q d f (, x ()) (6) (ln )q f (, x ()) d ] ln (/ ) (ln q ) ] f (, x ()) d for (, ], Π provded h he negrl n (6) ex. Proof. Necey. We cn verfy h (6) fe condon () () by Lemm 9, 0, nd 6. Nex, ng he frconl dervve o (6) for (, ] (here 0,,,...,Π), we ge [ C-H D q x ()] (, ] Γ( q) (ln q η ) δ (x x ln η I (x ( )) J (x ( )) ln η η (ln η )q f (, x ()) d ξ I (x ( )) Γ(q) [ (ln q ) f (, x ()) d η (ln η )q η d f (, x ()) (ln η )q f (, x ()) d ] ln (η/ ) (ln q ) f (, x ()) d ζ J (x ( )) Γ(q) [ [ Γ( q)γ(q) (ln q ) f (, x ()) d η (ln η )q d f (, x ()) (ln η ) q δ η η (ln η )q f (, x ()) d ] ln (η/ ) ] (ln q ) f (, x ()) d ) dη η (, ] (ln η )q f (, x ()) d ξ I (x ( η )) [ (ln η )q η d f (, x ()) (ln η )q f (, x ()) d ]ζ J (x ( )) (63) η [ (ln η )q η d f (, x ()) ζ (ln η )q f (, x ()) d ] dη η (, ] J (x ( )) [f (, x ()) f(, x ()) ] f(, x ()) (, ]. (, ] f (, x ()) ξ I (x ( )) [f (, x ()) f(, x ()) ] So, (6) fe (3).

17 Mhemcl Problem n Engneerng 7 Fnlly, rghforwrd o verfy h (6) fe (3b) nd (3c). So, (6) fe ll condon of yem (3), (3b), (3c), nd (3d). Suffcency. AccordngoLemm9nd0,heoluonof yem (3), (3b), (3c), nd (3d) fy ξ η I (x ( )) [ (ln )q η (ln q ) η f (, x ()) d f (, x ()) d x () x x ln (ln )q f (, x ()) d, for (, ]. (64) η ζ (ln η d )q f (, x ()) η ] J (x ( )) Nex, by Lemm 5, he oluon of yem (3), (3b), (3c), nd (3d) fy δx () x J (x ( )) (ln )q f (, x ()) d ξ I (x ( )) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) [ [ η η (ln q ) d f (, x ()) η (ln η )q η x ln f (, x ()) d (ln η d )q f (, x ()) η ] dηc ] J (x ( )) ln (ln )q (ln )q f (, x ()) d ]ζ J (x ( )) [ [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ], ] Ung (65), we hve for (, ], Π. x () C x η J (x ( )) η η (ln η d )q f (, x ()) η (65) f(, x ()) d ξi (x ( )) ln (ln q ) f (, x ()) d ζj (x ( )) ln ξi (x ( )) Γ(q) (ln q ) f (, x ()) d [ (ln )q d f (, x ()) (ln η )q f (, x ()) d ] ζj (x ( )) Γ(q) [ (ln )q d f (, x ()) (ln )q f (, x ()) d ]. (66)

18 8 Mhemcl Problem n Engneerng Leng J (x( )) 0 (for ll,,...,p)ndi (x( )) 0 (for ll,,...,m)n(66),repecvely,bylemm9 nd 0, we obn Thu, Cx x ln ξi (x ( )) I (x ( )) J (x ( )) (ln q ) f (, x ()) d ln (ln q ) f (, x ()) d ζj (x ( )) ln (ln q ) f (, x ()) d (ln q ) f (, x ()) d. x () x x ln I (x ( )) J (x ( )) ln ξ I (x ( )) (ln )q f (, x ()) d (67) Γ(q) [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) (ln q ) f (, x ()) d ζ J (x ( )) Γ(q) [ [ (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln )q f (, x ()) d ] ln (/ ) ] (ln q ) f (, x ()) d for (, ], Π. (68) So, he oluon of yem (3), (3b), (3c), nd (3d) fy (6). Th proof compleed. Corollry 7. Le q C, R(q) (, ), ndξ nd ζ re wo conn. Syem () equvlen o he negrl equon x () x x ln (ln )q f (, x ()) d for (, ], x x ln I (x ( )) I (x ( ξ I (y ( )) Γ(q) [ (ln )q f (, x ()) d ] ln (/ ) ζ )) ln (ln ) q f (, x ()) d I (x ( )) Γ(q) [ [ (ln )q f (, x ()) d ] ln (/ ) ] (ln )q f (, x ()) d (ln )q d f (, x ()) (ln ) q f (, x ()) d (ln q ) f (, x ()) d (ln )q d f (, x ()) (ln q ) f (, x ()) d for (, ], Π (69) provded h he negrl n (69) ex.

19 Mhemcl Problem n Engneerng 9 Remr 8. Subung x x nd J (x( )) I (x( )) no (6), (69) cn be obned. Nex, le u nlyze he lmed ce of yem (): lm yem () q δ (x ()) f(, x ()), J (, T], (,...,m), l (l,...,p), Δx x( ) x( )I (x ( )) C,,,...,m, Δx x ( l l ) x ( l )I l (x ( l )) C, l,,...,p, x () x C, x () x C. (70) On he oher hnd, by (69), we hve lm q x () x x ln x x ln I (x ( )) I (x ( )) ln ln d f (, x ()), for (, ], ln d f (, x ()) for (, ], Π. (7) I cn be verfed h (7) he oluon of (70), whch ndrecly uppor our concluon. Compeng Inere The uhor declre h hey hve no compeng nere. Acnowledgmen The wor decrbed n h pper fnnclly uppored by he Nonl Nurl Scence Foundon of Chn (Grn no ), he Nurl Scence Foundon of Jngx Provnce (Grn no. 05BAB0703), he Reerch Foundon of Educon Bureu of Jngx Provnce, Chn (Grn no. GJJ4738), nd Jung Unvery Reerch Foundon (Grn no ). Reference [] A. A. Klb, Hdmrd-ype frconl clculu, Journl of he Koren Mhemcl Socey,vol.38,no.6,pp.9 04,00. []P.L.Buzer,A.A.Klb,ndJ.J.Trullo, Compoon of Hdmrd-ype frconl negron operor nd he emgroup propery, Journl of Mhemcl Anly nd Applcon,vol.69,no.,pp ,00. [3]P.L.Buzer,A.A.Klb,ndJ.J.Trullo, Mellnrnform nly nd negron by pr for Hdmrd-ype frconl negrl, Journl of Mhemcl Anly nd Applcon, vol.70,no.,pp. 5,00. [4] M. Klme, Sequenl frconl dfferenl equon wh Hdmrd dervve, Communcon n Nonlner Scence nd Numercl Smulon, vol. 6, no., pp , 0. [5] B.AhmdndS.K.Nouy, AfullyHdmrdypenegrl boundry vlue problem of coupled yem of frconl dfferenl equon, Frconl Clculu nd Appled Anly, vol.7,no.,pp ,04. [6] P.Thrmnu,S.K.Nouy,ndJ.Trboon, Exencend unquene reul for Hdmrd-ype frconl dfferenl equon wh nonlocl frconl negrl boundry condon, Abrc nd Appled Anly, vol. 04, Arcle ID 90054, 9 pge, 04. [7] A. A. Klb, H. H. Srvv, nd J. J. Trullo, Theory nd Applcon of Frconl Dfferenl Equon, Elever, Amerdm, The Neherlnd, 006. [8]F.Jrd,T.Abdelwd,ndD.Blenu, Cpuo-ypemodfcon of he Hdmrd frconl dervve, Advnce n Dfference Equon,vol.0,rcle4,8pge,0. [9]Y.Y.Gmbo,F.Jrd,D.Blenu,ndT.Abdelwd, On Cpuo modfcon of he Hdmrd frconl dervve, Advnce n Dfference Equon,vol.04,rcle0,04. [0] B. Ahmd nd S. Svundrm, Exence reul for nonlner mpulve hybrd boundry vlue problem nvolvng frconl dfferenl equon, Nonlner Anly. Hybrd Syem,vol. 3, no. 3, pp. 5 58, 009.

20 0 Mhemcl Problem n Engneerng [] B. Ahmd nd S. Svundrm, Exence of oluon for mpulve negrl boundry vlue problem of frconl order, Nonlner Anly: Hybrd Syem, vol. 4, no., pp. 34 4, 00. [] B. Ahmd nd G. Wng, A udy of n mpulve four-pon nonlocl boundry vlue problem of nonlner frconl dfferenl equon, Compuer & Mhemc wh Applcon, vol. 6, no. 3, pp , 0. [3] Y. Tn nd Z. B, Exence reul for he hree-pon mpulve boundry vlue problem nvolvng frconl dfferenl equon, Compuer & Mhemc wh Applcon,vol.59, no. 8, pp , 00. [4] J. Co nd H. Chen, Some reul on mpulve boundry vlue problem for frconl dfferenl ncluon, Elecronc Journl of Qulve Theory of Dfferenl Equon,vol.00,no., pp. 4, 00. [5] G. Wng, B. Ahmd, nd L. Zhng, Impulve n-perodc boundry vlue problem for nonlner dfferenl equon of frconl order, Nonlner Anly: Theory, Mehod & Applcon,vol.74,no.3,pp ,0. [6] G. Wng, L. Zhng, nd G. Song, Syem of fr order mpulve funconl dfferenl equon wh devng rgumen nd nonlner boundry condon, Nonlner Anly: Theory, Mehod & Applcon, vol. 74, no. 3, pp , 0. [7] G. Wng, B. Ahmd, nd L. Zhng, Some exence reul for mpulve nonlner frconl dfferenl equon wh mxed boundry condon, Compuer & Mhemc wh Applcon, vol. 6, no. 3, pp , 0. [8] X. Wng, Impulve boundry vlue problem for nonlner dfferenl equon of frconl order, Compuer & Mhemc wh Applcon, vol. 6, no. 5, pp , 0. [9] M. Fecn, Y. Zhou, nd J. R. Wng, On he concep nd exence of oluon for mpulve frconl dfferenl equon, Communcon n Nonlner Scence nd Numercl Smulon,vol.7,no.7,pp ,0. [0] I. Smov nd G. Smov, Sbly nly of mpulve funconl yem of frconl order, Communcon n Nonlner Scence nd Numercl Smulon, vol.9,no.3,pp , 04. [] S. Abb nd M. Benchohr, Impulve hyperbolc funconl dfferenl equon of frconl order wh e-dependen dely, Frconl Clculu nd Appled Anly,vol.3,pp.5 4, 00. [] S. Abb nd M. Benchohr, Upper nd lower oluon mehod for mpulve prl hyperbolc dfferenl equon wh frconl order, Nonlner Anly: Hybrd Syem, vol. 4, no. 3, pp , 00. [3] S. Abb, R. P. Agrwl, nd M. Benchohr, Drboux problem for mpulve prl hyperbolc dfferenl equon of frconl order wh vrble me nd nfne dely, Nonlner Anly: Hybrd Syem,vol.4,no.4,pp.88 89,00. [4] S. Abb, M. Benchohr, nd L. Gòrnewcz, Exence heory for mpulve prl hyperbolc funconl dfferenl equon nvolvng he Cpuo frconl dervve, Scene Mhemce Jponce,vol.7,no.,pp.49 60,00. [5] M. Benchohr nd D. Seb, Impulve prl hyperbolc frconl order dfferenl equon n bnch pce, Journl of Frconl Clculu nd Applcon, vol.,no.4,pp., 0. [6] T. L. Guo nd K. Zhng, Impulve frconl prl dfferenl equon, Appled Mhemc nd Compuon,vol.57, pp ,05. [7] X. Zhng, X. Zhng, nd M. Zhng, On he concep of generl oluon for mpulve dfferenl equon of frconl order q (0,), Appled Mhemc nd Compuon,vol.47,pp. 7 89, 04. [8] X. Zhng, On he concep of generl oluon for mpulve dfferenl equon of frconl-order q (,), Appled Mhemc nd Compuon,vol.68,pp.03 0,05. [9] X. Zhng, The generl oluon of dfferenl equon wh Cpuo-Hdmrd frconl dervve nd mpulve effec, Advnce n Dfference Equon,vol.05,rcle5,05. [30] X. Zhng, P. Agrwl, Z. Lu, nd H. Peng, The generl oluon for mpulve dfferenl equon wh Remnn-Louvlle frconl-order q ε (,), Open Mhemc, vol.3,pp , 05.

21 Advnce n Operon Reerch Hndw Publhng Corporon hp:// Volume 04 Advnce n Decon Scence Hndw Publhng Corporon hp:// Volume 04 Journl of Appled Mhemc Algebr Hndw Publhng Corporon hp:// Hndw Publhng Corporon hp:// Volume 04 Journl of Probbly nd Sc Volume 04 The Scenfc World Journl Hndw Publhng Corporon hp:// Hndw Publhng Corporon hp:// Volume 04 Inernonl Journl of Dfferenl Equon Hndw Publhng Corporon hp:// Volume 04 Volume 04 Subm your mnucrp hp:// Inernonl Journl of Advnce n Combnorc Hndw Publhng Corporon hp:// Mhemcl Phyc Hndw Publhng Corporon hp:// Volume 04 Journl of Complex Anly Hndw Publhng Corporon hp:// Volume 04 Inernonl Journl of Mhemc nd Mhemcl Scence Mhemcl Problem n Engneerng Journl of Mhemc Hndw Publhng Corporon hp:// Volume 04 Hndw Publhng Corporon hp:// Volume 04 Volume 04 Hndw Publhng Corporon hp:// Volume 04 Dcree Mhemc Journl of Volume 04 Hndw Publhng Corporon hp:// Dcree Dynmc n Nure nd Socey Journl of Funcon Spce Hndw Publhng Corporon hp:// Abrc nd Appled Anly Volume 04 Hndw Publhng Corporon hp:// Volume 04 Hndw Publhng Corporon hp:// Volume 04 Inernonl Journl of Journl of Sochc Anly Opmzon Hndw Publhng Corporon hp:// Hndw Publhng Corporon hp:// Volume 04 Volume 04

Research Article Oscillatory Criteria for Higher Order Functional Differential Equations with Damping

Research Article Oscillatory Criteria for Higher Order Functional Differential Equations with Damping Journl of Funcon Spces nd Applcons Volume 2013, Arcle ID 968356, 5 pges hp://dx.do.org/10.1155/2013/968356 Reserch Arcle Oscllory Crer for Hgher Order Funconl Dfferenl Equons wh Dmpng Pegung Wng 1 nd H

More information

THE EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPULSIVE FRACTIONAL Q-DIFFERENCE EQUATIONS

THE EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPULSIVE FRACTIONAL Q-DIFFERENCE EQUATIONS Europen Journl of Mhemcs nd Compuer Scence Vol 4 No, 7 SSN 59-995 THE EXSTENCE OF SOLUTONS FOR A CLASS OF MPULSVE FRACTONAL Q-DFFERENCE EQUATONS Shuyun Wn, Yu Tng, Q GE Deprmen of Mhemcs, Ynbn Unversy,

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

1.B Appendix to Chapter 1

1.B Appendix to Chapter 1 Secon.B.B Append o Chper.B. The Ordnr Clcl Here re led ome mporn concep rom he ordnr clcl. The Dervve Conder ncon o one ndependen vrble. The dervve o dened b d d lm lm.b. where he ncremen n de o n ncremen

More information

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS ScInLhore),7),9-37,4 ISSN 3-536; CODEN: SINTE 8 9 A NEW INTERPRETATION O INTERVAL-VALUED UZZY INTERIOR IDEALS O ORDERED SEMIGROUPS Hdy Ullh Khn, b, Nor Hnz Srmn, Asghr Khn c nd z Muhmmd Khn d Deprmen of

More information

Jordan Journal of Physics

Jordan Journal of Physics Volume, Number, 00. pp. 47-54 RTICLE Jordn Journl of Physcs Frconl Cnoncl Qunzon of he Free Elecromgnec Lgrngn ensy E. K. Jrd, R. S. w b nd J. M. Khlfeh eprmen of Physcs, Unversy of Jordn, 94 mmn, Jordn.

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Research Article Boltzmann s Six-Moment One-Dimensional Nonlinear System Equations with the Maxwell-Auzhan Boundary Conditions

Research Article Boltzmann s Six-Moment One-Dimensional Nonlinear System Equations with the Maxwell-Auzhan Boundary Conditions Hndw Publshng Corporon Journl of Appled Mhemcs Volume 216, Arcle ID 583462, 8 pges hp://dx.do.org/1.1155/216/583462 Reserch Arcle Bolzmnn s Sx-Momen One-Dmensonl Nonlner Sysem Equons wh he Mxwell-Auzhn

More information

NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IMPULSIVE q k INTEGRODIFFERENCE EQUATION

NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IMPULSIVE q k INTEGRODIFFERENCE EQUATION Euroean Journal of ahemac an Comuer Scence Vol No 7 ISSN 59-995 NONLOCAL BOUNDARY VALUE PROBLE FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IPULSIVE - INTEGRODIFFERENCE EQUATION Hao Wang Yuhang Zhang ngyang

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

Introduction. Section 9: HIGHER ORDER TWO DIMENSIONAL SHAPE FUNCTIONS

Introduction. Section 9: HIGHER ORDER TWO DIMENSIONAL SHAPE FUNCTIONS Secon 9: HIGHER ORDER TWO DIMESIO SHPE FUCTIOS Inroducon We ne conder hpe funcon for hgher order eleen. To do h n n orderl fhon we nroduce he concep of re coordne. Conder ere of rngulr eleen depced n he

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

An analytical solution versus half space BEM formulation for acoustic radiation and scattering from a rigid sphere

An analytical solution versus half space BEM formulation for acoustic radiation and scattering from a rigid sphere Journl of Phyc: Conference Sere PAPER OPEN ACCESS An nlycl oluon veru hlf pce forulon for couc rdon nd cerng fro rgd phere To ce h rcle: B. Soenrko nd D. Sedkrun 06 J. Phy.: Conf. Ser. 776 0065 Reled conen

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

Fractional Quantum Field Theory on Multifractals Sets

Fractional Quantum Field Theory on Multifractals Sets Amercn J. of Engneerng nd Appled Scences 4 (): 33-4, 2 ISSN 94-72 2 Scence Publcons Frconl Qunum Feld Theory on Mulfrcls Ses El-Nbuls Ahmd Rm Deprmen of Nucler nd Energy Engneerng, Cheju Nonl Unversy,

More information

The Characterization of Jones Polynomial. for Some Knots

The Characterization of Jones Polynomial. for Some Knots Inernon Mhemc Forum,, 8, no, 9 - The Chrceron of Jones Poynom for Some Knos Mur Cncn Yuuncu Y Ünversy, Fcuy of rs nd Scences Mhemcs Deprmen, 8, n, Turkey m_cencen@yhoocom İsm Yr Non Educon Mnsry, 8, n,

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

To Possibilities of Solution of Differential Equation of Logistic Function

To Possibilities of Solution of Differential Equation of Logistic Function Arnold Dávd, Frnše Peller, Rená Vooroosová To Possbles of Soluon of Dfferenl Equon of Logsc Funcon Arcle Info: Receved 6 My Acceped June UDC 7 Recommended con: Dávd, A., Peller, F., Vooroosová, R. ().

More information

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations Appled Mhemcl Scences, Vol. 6, 1, no. 14, 5147-5159 Power Seres Soluons for Nonlner Sysems of Prl Dfferenl Equons Amen S. Nuser Jordn Unversy of Scence nd Technology P. O. Bo 33, Irbd, 11, Jordn nuser@us.edu.o

More information

Research Article A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet

Research Article A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet Hndaw Publhng Corporaon Inernaonal Journal of Sochac Analy Volume 14 Arcle ID 159519 16 page hp://dx.do.org/1.1155/14/159519 Reearch Arcle A wo-mode Mean-Feld Opmal Swchng Problem for he Full Balance Shee

More information

APPLICATIONS OF THE MELLIN TYPE INTEGRAL TRANSFORM IN THE RANGE (1/a, )

APPLICATIONS OF THE MELLIN TYPE INTEGRAL TRANSFORM IN THE RANGE (1/a, ) In. J. o heml Sene nd Applon Vol. No. Jnury-June 05 ISSN: 30-9888 APPLICATIONS OF THE ELLIN TYPE INTEGRAL TRANSFOR IN THE RANGE / S.. Khrnr R.. Pe J. N. Slunke Deprmen o hem hrhr Ademy o Enneern Alnd-405Pune

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

A Demand System for Input Factors when there are Technological Changes in Production

A Demand System for Input Factors when there are Technological Changes in Production A Demand Syem for Inpu Facor when here are Technologcal Change n Producon Movaon Due o (e.g.) echnologcal change here mgh no be a aonary relaonhp for he co hare of each npu facor. When emang demand yem

More information

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

Method of upper lower solutions for nonlinear system of fractional differential equations and applications Malaya Journal of Maemak, Vol. 6, No. 3, 467-472, 218 hps://do.org/1.26637/mjm63/1 Mehod of upper lower soluons for nonlnear sysem of fraconal dfferenal equaons and applcaons D.B. Dhagude1 *, N.B. Jadhav2

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

Track Properities of Normal Chain

Track Properities of Normal Chain In. J. Conemp. Mah. Scences, Vol. 8, 213, no. 4, 163-171 HIKARI Ld, www.m-har.com rac Propes of Normal Chan L Chen School of Mahemacs and Sascs, Zhengzhou Normal Unversy Zhengzhou Cy, Hennan Provnce, 4544,

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Matrix reconstruction with the local max norm

Matrix reconstruction with the local max norm Marx reconrucon wh he local max norm Rna oygel Deparmen of Sac Sanford Unvery rnafb@anfordedu Nahan Srebro Toyoa Technologcal Inue a Chcago na@cedu Rulan Salakhudnov Dep of Sac and Dep of Compuer Scence

More information

NUMERICAL SOLUTION OF THIN FILM EQUATION IN A CLASS OF DISCONTINUOUS FUNCTIONS

NUMERICAL SOLUTION OF THIN FILM EQUATION IN A CLASS OF DISCONTINUOUS FUNCTIONS Eropen Scenfc Jornl Ags 5 /SPECAL/ eon SSN: 857 788 Prn e - SSN 857-74 NMERCAL SOLON OF HN FLM EQAON N A CLASS OF DSCONNOS FNCONS Bn Snsoysl Assoc Prof Mr Rslov Prof Beyen nversy Deprmen of Memcs n Compng

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Fundamentals of PLLs (I)

Fundamentals of PLLs (I) Phae-Locked Loop Fundamenal of PLL (I) Chng-Yuan Yang Naonal Chung-Hng Unvery Deparmen of Elecrcal Engneerng Why phae-lock? - Jer Supreon - Frequency Synhe T T + 1 - Skew Reducon T + 2 T + 3 PLL fou =

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Pen Tip Position Estimation Using Least Square Sphere Fitting for Customized Attachments of Haptic Device

Pen Tip Position Estimation Using Least Square Sphere Fitting for Customized Attachments of Haptic Device for Cuomed Ahmen of Hp Deve Mno KOEDA nd Mhko KAO Deprmen of Compuer Sene Ful of Informon Sene nd Ar Ok Elero-Communon Unver Kok 30-70, Shjonwe, Ok, 575-0063, JAPA {koed, 0809@oeu.jp} Ar In h pper, mehod

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Heat conduction in a composite sphere - the effect of fractional derivative order on temperature distribution

Heat conduction in a composite sphere - the effect of fractional derivative order on temperature distribution MATEC We of Confeence 57, 88 (8) MMS 7 hp://do.og/.5/mecconf/85788 He conducon n compoe phee - he effec of fconl devve ode on empeue duon Uzul Sedlec,*, Snłw Kul Inue of Mhemc, Czeochow Unvey of Technology,

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault Inernonl Conference on Advnces n Energy nd Envronmenl Scence (ICAEES 5) Elecromgnec Trnsen Smulon of rge Power Trnsformer Inernl Ful Jun u,, Shwu Xo,, Qngsen Sun,c, Huxng Wng,d nd e Yng,e School of Elecrcl

More information

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations Çny Ünvee Fen-Edeby Füle Jounl of A nd Scence Sy : 5 y 6 Chebyhev Polynol Soluon of onlne Fedhol-Vole Inego- Dffeenl Equon Hndn ÇERDİK-YASA nd Ayşegül AKYÜZ-DAŞCIOĞU Abc In h ppe Chebyhev collocon ehod

More information

Laplace Transformation of Linear Time-Varying Systems

Laplace Transformation of Linear Time-Varying Systems Laplace Tranformaon of Lnear Tme-Varyng Syem Shervn Erfan Reearch Cenre for Inegraed Mcroelecronc Elecrcal and Compuer Engneerng Deparmen Unvery of Wndor Wndor, Onaro N9B 3P4, Canada Aug. 4, 9 Oulne of

More information

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment

More information

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA Tn Corn DOSESCU Ph D Dre Cner Chrsn Unversy Buchres Consnn RAISCHI PhD Depren of Mhecs The Buchres Acdey of Econoc Sudes ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES

More information

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Citation Abstract and Applied Analysis, 2013, v. 2013, article no Tile An Opil-Type Inequliy in Time Scle Auhor() Cheung, WS; Li, Q Ciion Arc nd Applied Anlyi, 13, v. 13, ricle no. 53483 Iued De 13 URL hp://hdl.hndle.ne/17/181673 Righ Thi work i licened under Creive

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

More information

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b) Lypunov-type inequlity for the Hdmrd frctionl boundry vlue problem on generl intervl [; b]; ( 6 < b) Zid Ldjl Deprtement of Mthemtic nd Computer Science, ICOSI Lbortory, Univerity of Khenchel, 40000, Algeri.

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

W. B. Vasantha Kandasamy Florentin Smarandache NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS

W. B. Vasantha Kandasamy Florentin Smarandache NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS W. B. Vsnh Kndsmy Florenn Smrndche NEUTROSOPHIC BILINEAR ALGEBRAS AND THEIR GENERALIZATIONS Svensk fyskrkve Sockholm, Sweden 00 Svensk fyskrkve (Swedsh physcs rchve) s publsher regsered wh he Royl Nonl

More information

A Nonlinear ILC Schemes for Nonlinear Dynamic Systems To Improve Convergence Speed

A Nonlinear ILC Schemes for Nonlinear Dynamic Systems To Improve Convergence Speed IJCSI Inernaonal Journal of Compuer Scence Iue, Vol. 9, Iue 3, No, ay ISSN (Onlne): 694-84 www.ijcsi.org 8 A Nonlnear ILC Scheme for Nonlnear Dynamc Syem o Improve Convergence Speed Hoen Babaee, Alreza

More information

BEST PATTERN OF MULTIPLE LINEAR REGRESSION

BEST PATTERN OF MULTIPLE LINEAR REGRESSION ERI COADA GERMAY GEERAL M.R. SEFAIK AIR FORCE ACADEMY ARMED FORCES ACADEMY ROMAIA SLOVAK REPUBLIC IERAIOAL COFERECE of SCIEIFIC PAPER AFASES Brov 6-8 M BES PAER OF MULIPLE LIEAR REGRESSIO Corel GABER PEROLEUM-GAS

More information

Numerical Simulations of Femtosecond Pulse. Propagation in Photonic Crystal Fibers. Comparative Study of the S-SSFM and RK4IP

Numerical Simulations of Femtosecond Pulse. Propagation in Photonic Crystal Fibers. Comparative Study of the S-SSFM and RK4IP Appled Mhemcl Scences Vol. 6 1 no. 117 5841 585 Numercl Smulons of Femosecond Pulse Propgon n Phoonc Crysl Fbers Comprve Sudy of he S-SSFM nd RK4IP Mourd Mhboub Scences Fculy Unversy of Tlemcen BP.119

More information

Lecture 4: Trunking Theory and Grade of Service (GOS)

Lecture 4: Trunking Theory and Grade of Service (GOS) Lecure 4: Trunkng Theory nd Grde of Servce GOS 4.. Mn Problems nd Defnons n Trunkng nd GOS Mn Problems n Subscrber Servce: lmed rdo specrum # of chnnels; mny users. Prncple of Servce: Defnon: Serve user

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex ISRN Applied Mthemtics, Article ID 8958, 4 pges http://dx.doi.org/.55/4/8958 Reserch Article On Hermite-Hdmrd Type Inequlities for Functions Whose Second Derivtives Absolute Vlues Are s-convex Feixing

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions Avilble online t www.tjns.com J. Nonliner Sci. Appl. 8 5, 7 Reserch Article Some ineulities of Hermite-Hdmrd type for n times differentible ρ, m geometriclly convex functions Fiz Zfr,, Humir Klsoom, Nwb

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

SSRG International Journal of Thermal Engineering (SSRG-IJTE) Volume 4 Issue 1 January to April 2018

SSRG International Journal of Thermal Engineering (SSRG-IJTE) Volume 4 Issue 1 January to April 2018 SSRG Inernaonal Journal of Thermal Engneerng (SSRG-IJTE) Volume 4 Iue 1 January o Aprl 18 Opmal Conrol for a Drbued Parameer Syem wh Tme-Delay, Non-Lnear Ung he Numercal Mehod. Applcaon o One- Sded Hea

More information

ELIMINATION OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS

ELIMINATION OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS OPERATIONS RESEARCH AND DECISIONS No. 1 215 DOI: 1.5277/ord1513 Mamoru KANEKO 1 Shuge LIU 1 ELIMINATION OF DOMINATED STRATEGIES AND INESSENTIAL PLAYERS We udy he proce, called he IEDI proce, of eraed elmnaon

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681 Revew: Trnsforons Trnsforons Modelng rnsforons buld cople odels b posonng (rnsforng sple coponens relve o ech oher ewng rnsforons plcng vrul cer n he world rnsforon fro world coordnes o cer coordnes Perspecve

More information

Software Reliability Growth Models Incorporating Fault Dependency with Various Debugging Time Lags

Software Reliability Growth Models Incorporating Fault Dependency with Various Debugging Time Lags Sofwre Relbly Growh Models Incorporng Ful Dependency wh Vrous Debuggng Tme Lgs Chn-Yu Hung 1 Chu-T Ln 1 Sy-Yen Kuo Mchel R. Lyu 3 nd Chun-Chng Sue 4 1 Deprmen of Compuer Scence Nonl Tsng Hu Unversy Hsnchu

More information

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES wwwrresscom/volmes/vol7isse/ijrras_7 df UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOIAL OPERATOR ON DOAINS IN COPLEX PROJECTIVE SPACES D Feng & L Ynl * Scool of emcs nd Pyscs Scence

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

ISSN 075-7 : (7) 0 007 C ( ), E-l: ssolos@glco FPGA LUT FPGA EM : FPGA, LUT, EM,,, () FPGA (feldprogrble ge rrs) [, ] () [], () [] () [5] [6] FPGA LUT (Look-Up-Tbles) EM (Ebedded Meor locks) [7, 8] LUT

More information

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM 3rd Europen Sgnl Processng Conference EUSIPCO OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITM P. O. Amblrd GIPSAlb/CNRS UMR 583 Unversé de Grenoble Grenoble, Frnce. Kdr LIF/CNRS UMR 779 Ax-Mrselle

More information

A Group Key Management Scheme Based on Random Transmission for VANET Liang PANG1, b, Da WEI1, 2, Qi ZHAO3, Jianqi ZHU1, 2, a

A Group Key Management Scheme Based on Random Transmission for VANET Liang PANG1, b, Da WEI1, 2, Qi ZHAO3, Jianqi ZHU1, 2, a 6h Inernonl Conference on Mchnery, Merl, Envronmen, Boechnology nd Compuer (MMEBC 06) A Group ey Mngemen cheme Bed on Rndom rnmon for ANE ng PANG, b, D WEI,, Q ZHAO3, Jn ZHU,, College of Compuer cence

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Survival Probability and Intensity Derived from Credit Default Swaps

Survival Probability and Intensity Derived from Credit Default Swaps Survvl Proly nd Ineny Derved from Cred Deful Swp A Dreced Reerch Projec Sumed o he Fculy of he WORCESER POLYECHNIC INSIUE n prl fulfllmen of he requremen for he Profeonl Degree of Mer of Scence n Fnncl

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Chapter 6. Isoparametric Formulation

Chapter 6. Isoparametric Formulation ME 78 FIIE ELEME MEHOD Chper. Ioprerc Forlon Se fncon h ed o defne he eleen geoer ed o defne he dplceen whn he eleen ode r Eleen Lner geoer Lner dplceen ode Be Eleen Qdrc geoer Qdrc dplceen We gn he e

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Optimal Filtering for Linear Discrete-Time Systems with Single Delayed Measurement

Optimal Filtering for Linear Discrete-Time Systems with Single Delayed Measurement 378 Hong-Guo Inernaonal Zhao, Journal Huan-Shu of Conrol, Zhang, Auomaon, Cheng-Hu an Zhang, Syem, an vol. Xn-Mn 6, no. Song 3, pp. 378-385, June 28 Opmal Flerng for Lnear Dcree-me Syem h Sngle Delaye

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function Turkish Journl o Anlysis nd Numer Theory, 4, Vol., No. 3, 85-89 Aville online h://us.scieu.com/jn//3/6 Science nd Educion Pulishing DOI:.69/jn--3-6 On The Hermie- Hdmrd-Fejér Tye Inegrl Ineuliy or Convex

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information