GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Size: px
Start display at page:

Download "GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING"

Transcription

1 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 226 Summer 28 Quiz #2 July 6, 28 NAME: (FIRST) (LAST) GT username: (e.g., gtxyz23) To avoid losing 3 oints, circle your recitation section: :5 :55am L (Beck) 2:3 2:2m L2 (Beck) 2:35 4:25m L3 (Bhattacharjea) Imortant Notes: Do not unstale the test. Two double-sided age (8.5 ) of hand-written notes ermitted. Calculators are allowed, but no smarthones/wifi/etc. JUSTIFY your reasoning CLEARLY to receive artial credit. Exress all angles as a fraction of. For examle, write. as oosed to 8 or.342 radians. You must write your answer in the sace rovided on the exam aer itself. Only these answers will be graded. Write your answers in the rovided answer boxes. If more sace is needed for scratch work, use the backs of the revious ages. Problem Value Score Earned Total

2 PROB. Su8-Q2.. (a) If x[ n ] = 3d[ n ] + 2d[ n 2 ], and if y[ n ] = x[ n ] * x[ n ] is the convolution of x[ n ] with itself, then find numerical values for the following: y[ ] y[ ] y[ 2 ] y[ 3 ] y[ 4 ] y[ 5 ] (b) The inverse DTFT of X(e j e ) = jŵ e jŵ is x[ n ] =. (Give an equation that is valid for all n.)

3 PROB. Su8-Q2.2. Consider an LTI system defined by the difference equation y[ n ] = x[ n ] + Bx[n ] x[n 2], where B is an unsecified constant that may be different for each art below. (a) If the outut in resonse to the constant signal x[ n ] = -- (for all n) is y[ n ] = (for all n), then 3 B =. (b) If the outut in resonse to the signal x[ n ] = 4cos(n) is y[ n ] = 2cos(n), then B =. (c) If B =.756, and if the outut in resonse to the constant-lus-sinusoidal signal x[ n ] = + cos( n) is the constant signal y[ n ] = C, then it must be that: C =, =

4 PROB. Su8-Q2.3. Consider three LTI filters whose imulse resonses are as follows: sin(.6n) h [ n ] = , n sin(.2n) h 2 [ n ] = d[ n ] , n sin(.4n) h 3 [ n ] = 2cos(.5n) n (a) Indicate what kind of filter each is by writing LPF, BPF, or HPF into each answer box above. (b) Listed below are six different imulse resonses h[ n ], where the symbol * denotes convolution. Match each to its corresonding magnitude resonse jh(e j ) j shown to the right (A to F). Indiciate your answers by writing a letter from fa,... Fg into each answer box. jh(e j ) j A (i) h [ n ] B (ii) h 2 [ n ] C (iii) h 3 [ n ] D (iv) (h [ n ] h 2 [ n ]) * h 3 [ n ] (v) (h [ n ] h 3 [ n ]) * h 2 [ n ] E (vi) (h 2 [ n ] h 3 [ n ]) * h [ n ] F

5 PROB. Su8-Q2.4. Below are a list of LTI filters (labeled A to H) secified in the time domain: either by their imulse resonse h[ n ], their difference equation, or their MATLAB imlementation. Match each filter to its corresonding magnitude resonse shown on the right. Indicate your answers by writing a letter from fa, B,... Hg in each answer box. (A) y[ n ] =.5x[ n ].5x[ n ] (B) y = conv(x,[2/3, /3]); (C) h[ n ] =.5x[ n 5 ] +.5x[ n 6 ] P 99 (D) y[ n ] =. k = (.9)k x[ n k] P 99 (E) y[ n ] =. k = (.9)k x[ n k] P 3 (F) y[ n ] =.25 x[ n k] k= (G) h[ n ] = -- 6 P 5 k= d[ n k] (H) y = conv(x,cos(i*(:5))/6);

6 PROB. Su8-Q2.5. Consider an LTI filter whose real-valued frequency resonse satisfies H(e j ) = j j, for j ^w j <, as illustrated below: H(e j) (a) The DC gain of the filter is. (b) If the inut is the sinusoid x[ n ] = cos(.5n), then the outut at n = 8 will be y[8] =. (c) If the outut of this system in resonse to the inut x[ n ] = cos( n) + cos( (n )) is y[ n ] = cos( n + j), then = j =

7

8 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 226 Summer 28 Quiz #2 July 6, 28 NAME: KEY (FIRST) (LAST) GT username: (e.g., gtxyz23) To avoid losing 3 oints, circle your recitation section: :5 :55am L (Beck) 2:3 2:2m L2 (Beck) 2:35 4:25m L3 (Bhattacharjea) Imortant Notes: Do not unstale the test. Two double-sided age (8.5 ) of hand-written notes ermitted. Calculators are allowed, but no smarthones/wifi/etc. JUSTIFY your reasoning CLEARLY to receive artial credit. Exress all angles as a fraction of. For examle, write. as oosed to 8 or.342 radians. You must write your answer in the sace rovided on the exam aer itself. Only these answers will be graded. Write your answers in the rovided answer boxes. If more sace is needed for scratch work, use the backs of the revious ages. Problem Value Score Earned Total

9 PROB. Su8-Q2.. (a) If x[ n ] = 3d[ n ] + 2d[ n 2 ], and if y[ n ] = x[ n ] * x[ n ] is the convolution of x[ n ] with itself, then find numerical values for the following: y[ ] y[ ] y[ 2 ] y[ 3 ] y[ 4 ] y[ 5 ] x[n] x[]x[n] x[]x[n-] x[2]x[n-2] (b) The inverse DTFT of X(e j e ) = 8jŵ is x[ n ] =. e jŵ (Give an equation that is valid for all n.) (.) n 8 u[ n 8] Simlifies to X(e j ) = e jŵ = e 8j.e jŵ e jŵ From Table, the second factor is the DTFT of (.) n u[ n ]. From Table 2, multilying the DTFT by e 8j delays by 8.

10 PROB. Su8-Q2.2. Consider an LTI system defined by the difference equation y[ n ] = x[ n ] + Bx[n ] x[n 2], where B is an unsecified constant that may be different for each art below. (a) If the outut in resonse to the constant signal x[ n ] = -- (for all n) is y[ n ] = (for all n), then 3 The DC gain is zero ) + B = ) B = 2 2 B =. (b) If the outut in resonse to the signal x[ n ] = 4cos(n) is y[ n ] = 2cos(n), then The gain at is five ) B = 5 ) B = 7 7 B =. (c) If B =.756, and if the outut in resonse to the constant-lus-sinusoidal signal x[ n ] = + cos( n) is the constant signal y[ n ] = C, then it must be that: The frequency resonse of this [, B, ] filter is H(e j ) = + B e j e 2j = e j ( e j + B e j ) = e j (B 2cos( )) The nulled frequency must therefore satisfy 2cos( ) = B ) = cos (B/2) = cos (.756/2) =.7 C =, = Equating the DC gain B 2 to the ratio C/ yields: C/ = B 2 = ) C = 37.56

11 PROB. Su8-Q2.3. Consider three LTI filters whose imulse resonses are as follows: LPF HPF BPF sin(.6n) h [ n ] = , n sin(.2n) h 2 [ n ] = d[ n ] , n sin(.4n) h 3 [ n ] = 2cos(.5n) n (a) Indicate what kind of filter each is by writing LPF, BPF, or HPF into each answer box above. (b) Listed below are six different imulse resonses h[ n ], where the symbol * denotes convolution. Match each to its corresonding magnitude resonse jh(e j ) j shown to the right (A to F). Indiciate your answers by writing a letter from fa,... Fg into each answer box. jh(e j ) j A C (i) h [ n ] B A (ii) h 2 [ n ] C E (iii) h 3 [ n ] D (iv) (h [ n ] h 2 [ n ]) * h 3 [ n ] D F (v) (h [ n ] h 3 [ n ]) * h 2 [ n ] E B (vi) (h 2 [ n ] h 3 [ n ]) * h [ n ] F

12 PROB. Su8-Q2.4. Below are a list of LTI filters (labeled A to H) secified in the time domain: either by their imulse resonse h[ n ], their difference equation, or their MATLAB imlementation. Match each filter to its corresonding magnitude resonse shown on the right. Indicate your answers by writing a letter from fa, B,... Hg in each answer box. (A) y[ n ] =.5x[ n ].5x[ n ]. (B) y = conv(x,[2/3, /3]); (C) h[ n ] =.5x[ n 5 ] +.5x[ n 6 ] P 99 (D) y[ n ] =. k = (.9)k x[ n k] P 99 (E) y[ n ] =. k = (.9)k x[ n k] P 3 (F) y[ n ] =.25 x[ n k] k= (G) h[ n ] = -- 6 P 5 k= d[ n k] D G B C F H A (H) y = conv(x,cos(i*(:5))/6); E

13 PROB. Su8-Q2.5. Consider an LTI filter whose real-valued frequency resonse satisfies H(e j ) = j j, for j ^w j <, as illustrated below: H(e j) (a) The DC gain of the filter is..5 (b) If the inut is the sinusoid x[ n ] = cos(.5n), then the outut at n = 8 will be y[8] =. The freq resonse at the sinusoid frequency H(e j.5 ) =.5, ) y[n] = rcos(.5n + q) =.5cos(.5n) ) y[8] =.5 olar form re jq where r =.5, q = (c) If the outut of this system in resonse to the inut x[ n ] = cos( n) + cos( (n )) is y[ n ] = cos( n + j), then From hasor addition, inut simlifies to Ae jq = + e j ) A = 2cos( /2 ), q = /2 x[ n ] = 2cos( /2)cos( n /2 ). Filter scales by, no hase change ) inut amlitude must be = j = ) 2cos( /2) = ) = 2/3 alternative solution: = j = anything

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 26 Summer 14 Quiz #1 June 11, 14 NAME: (FIRST) (LAST) GT username: (e.g., gtxyz123) Circle your recitation section (otherwise

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 08 Final Exam July 7, 08 NAME: Important Notes: Do not unstaple the test. Closed book and notes, except for three

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 6 Summer 13 Quiz #1 June 1, 13 NAME: (FIRST) (LAST) GT username: (e.g., gtxyz13) Circle your recitation section (otherwise

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #3 DATE: 21-Nov-11 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Mar-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Problem Value Score No/Wrong Rec

Problem Value Score No/Wrong Rec GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Oct-11 COURSE: ECE-225 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #1 ATE: 4-Feb-11 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gtbuzz8) 3 points 3 points 3 points Recitation Section:

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 22-Feb- COURSE: ECE-25 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation Section:

More information

Theory of Parallel Hardware May 11, 2004 Massachusetts Institute of Technology Charles Leiserson, Michael Bender, Bradley Kuszmaul

Theory of Parallel Hardware May 11, 2004 Massachusetts Institute of Technology Charles Leiserson, Michael Bender, Bradley Kuszmaul Theory of Parallel Hardware May 11, 2004 Massachusetts Institute of Technology 6.896 Charles Leiserson, Michael Bender, Bradley Kuszmaul Final Examination Final Examination ffl Do not oen this exam booklet

More information

FINAL EXAM. Problem Value Score

FINAL EXAM. Problem Value Score GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 27-Apr-09 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

FINAL EXAM. Problem Value Score No/Wrong Rec 3

FINAL EXAM. Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 1-May-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA3 Elem. Calculus Fall 07 Exam 07-0-9 Name: Sec.: Do not remove this answer age you will turn in the entire exam. No books or notes may be used. You may use an ACT-aroved calculator during the exam, but

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet Solution 7 August 2015 ECE301 Signals and Systems: Final Exam Cover Sheet Test Duration: 120 minutes Coverage: Chap. 1, 2, 3, 4, 5, 7 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM GEORGIA ISTITUTE OF TECHOLOGY SCHOOL of ELECTRICAL & COMPUTER EGIEERIG FIAL EXAM DATE: 9-APR-5 COURSE: ECE 6A AME: STUDET #: LAST, FIRST points points points Recitation Section: Circle the date & time

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE III Wednesday, August 6, 000 8:0 to :0 a.m., only Notice... Scientific calculators

More information

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet Solution 10 July 2015 ECE301 Signals and Systems: Midterm Cover Sheet Test Duration: 60 minutes Coverage: Chap. 1,2,3,4 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes are not allowed.

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

Filters and Equalizers

Filters and Equalizers Filters and Equalizers By Raymond L. Barrett, Jr., PhD, PE CEO, American Research and Develoment, LLC . Filters and Equalizers Introduction This course will define the notation for roots of olynomial exressions

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Lecture 14: Windowing

Lecture 14: Windowing Lecture 14: Windowing ECE 401: Signal and Image Analysis University of Illinois 3/29/2017 1 DTFT Review 2 Windowing 3 Practical Windows Outline 1 DTFT Review 2 Windowing 3 Practical Windows DTFT Review

More information

QUIZ #2 SOLUTION Version A

QUIZ #2 SOLUTION Version A GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 SOLUTION Version A DATE: 7-MAR-16 SOLUTION Version A COURSE: ECE 226A,B NAME: STUDENT #: LAST, FIRST 2 points 2 points

More information

ECE503: Digital Signal Processing Lecture 5

ECE503: Digital Signal Processing Lecture 5 ECE53: Digital Signal Processing Lecture 5 D. Richard Brown III WPI 3-February-22 WPI D. Richard Brown III 3-February-22 / 32 Lecture 5 Topics. Magnitude and phase characterization of transfer functions

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

AP Calculus Testbank (Chapter 10) (Mr. Surowski)

AP Calculus Testbank (Chapter 10) (Mr. Surowski) AP Calculus Testbank (Chater 1) (Mr. Surowski) Part I. Multile-Choice Questions 1. The grah in the xy-lane reresented by x = 3 sin t and y = cost is (A) a circle (B) an ellise (C) a hyerbola (D) a arabola

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

Principles of Computed Tomography (CT)

Principles of Computed Tomography (CT) Page 298 Princiles of Comuted Tomograhy (CT) The theoretical foundation of CT dates back to Johann Radon, a mathematician from Vienna who derived a method in 1907 for rojecting a 2-D object along arallel

More information

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2)

PROFIT MAXIMIZATION. π = p y Σ n i=1 w i x i (2) PROFIT MAXIMIZATION DEFINITION OF A NEOCLASSICAL FIRM A neoclassical firm is an organization that controls the transformation of inuts (resources it owns or urchases into oututs or roducts (valued roducts

More information

Pulse Propagation in Optical Fibers using the Moment Method

Pulse Propagation in Optical Fibers using the Moment Method Pulse Proagation in Otical Fibers using the Moment Method Bruno Miguel Viçoso Gonçalves das Mercês, Instituto Suerior Técnico Abstract The scoe of this aer is to use the semianalytic technique of the Moment

More information

COMPARISON OF VARIOUS OPTIMIZATION TECHNIQUES FOR DESIGN FIR DIGITAL FILTERS

COMPARISON OF VARIOUS OPTIMIZATION TECHNIQUES FOR DESIGN FIR DIGITAL FILTERS NCCI 1 -National Conference on Comutational Instrumentation CSIO Chandigarh, INDIA, 19- March 1 COMPARISON OF VARIOUS OPIMIZAION ECHNIQUES FOR DESIGN FIR DIGIAL FILERS Amanjeet Panghal 1, Nitin Mittal,Devender

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09-Dec-13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

State Estimation with ARMarkov Models

State Estimation with ARMarkov Models Deartment of Mechanical and Aerosace Engineering Technical Reort No. 3046, October 1998. Princeton University, Princeton, NJ. State Estimation with ARMarkov Models Ryoung K. Lim 1 Columbia University,

More information

ECE 2C, notes set 6: Frequency Response In Systems: First-Order Circuits

ECE 2C, notes set 6: Frequency Response In Systems: First-Order Circuits ECE 2C, notes set 6: Frequency Resonse In Systems: First-Order Circuits Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Goals: Remember (from ECE2AB)

More information

Advanced Calculus I. Part A, for both Section 200 and Section 501

Advanced Calculus I. Part A, for both Section 200 and Section 501 Sring 2 Instructions Please write your solutions on your own aer. These roblems should be treated as essay questions. A roblem that says give an examle requires a suorting exlanation. In all roblems, you

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics 2 (6668/01)

Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics 2 (6668/01) Mark Scheme (Results) Summer 06 Pearson Edexcel GCE in Further Pure Mathematics (6668/0) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

Improved Capacity Bounds for the Binary Energy Harvesting Channel

Improved Capacity Bounds for the Binary Energy Harvesting Channel Imroved Caacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu 1, Omur Ozel 2, Aylin Yener 1, and Sennur Ulukus 2 1 Deartment of Electrical Engineering, The Pennsylvania State University,

More information

MULTIRATE SYSTEMS AND FILTER BANKS

MULTIRATE SYSTEMS AND FILTER BANKS T. Saramäki and R. Bregovi, ultirate Systems and Filter Banks, Chater in ultirate Systems: Design T. Saramäki and R. Bregovi, ultirate Systems and Filter Banks, Chater in ultirate Systems: Design ULTIRATE

More information

DSP IC, Solutions. The pseudo-power entering into the adaptor is: 2 b 2 2 ) (a 2. Simple, but long and tedious simplification, yields p = 0.

DSP IC, Solutions. The pseudo-power entering into the adaptor is: 2 b 2 2 ) (a 2. Simple, but long and tedious simplification, yields p = 0. 5 FINITE WORD LENGTH EFFECTS 5.4 For a two-ort adator we have: b a + α(a a ) b a + α(a a ) α R R R + R The seudo-ower entering into the adator is: R (a b ) + R (a b ) Simle, but long and tedious simlification,

More information

Problem 1. Suppose we calculate the response of an LTI system to an input signal x(n), using the convolution sum:

Problem 1. Suppose we calculate the response of an LTI system to an input signal x(n), using the convolution sum: EE 438 Homework 4. Corrections in Problems 2(a)(iii) and (iv) and Problem 3(c): Sunday, 9/9, 10pm. EW DUE DATE: Monday, Sept 17 at 5pm (you see, that suggestion box does work!) Problem 1. Suppose we calculate

More information

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet EE538 Digital Signal Processing I Session 3 Exam Live: Wed., Sept. 8, 00 Cover Sheet Test Duration: 50 minutes. Coverage: Sessions -0. Open Book but Closed Notes. Calculators not allowed. This test contains

More information

UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: NOVEMBER 2013 COURSE, SUBJECT AND CODE: THEORY OF MACHINES ENME3TMH2 MECHANICAL ENGINEERING

UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: NOVEMBER 2013 COURSE, SUBJECT AND CODE: THEORY OF MACHINES ENME3TMH2 MECHANICAL ENGINEERING UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: NOVEMBER 2013 COURSE, SUBJECT AND CODE: THEORY OF MACHINES ENME3TMH2 DURATION: 3 Hours MARKS: 100 MECHANICAL ENGINEERING Internal Examiner: Dr. R.C. Loubser Indeendent

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant Multivariable Generalized Predictive Scheme for Gas urbine Control in Combined Cycle Power Plant L.X.Niu and X.J.Liu Deartment of Automation North China Electric Power University Beiing, China, 006 e-mail

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

Frequency-Domain Design of Overcomplete. Rational-Dilation Wavelet Transforms

Frequency-Domain Design of Overcomplete. Rational-Dilation Wavelet Transforms Frequency-Domain Design of Overcomlete 1 Rational-Dilation Wavelet Transforms İlker Bayram and Ivan W. Selesnick Polytechnic Institute of New York University Brooklyn, NY 1121 ibayra1@students.oly.edu,

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform C H A P T E R 7 Discrete-Time Fourier Transform In Chapter 3 and Appendix C, we showed that interesting continuous-time waveforms x(t) can be synthesized by summing sinusoids, or complex exponential signals,

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

EXERCISES Practice and Problem Solving

EXERCISES Practice and Problem Solving EXERCISES Practice and Problem Solving For more ractice, see Extra Practice. A Practice by Examle Examles 1 and (ages 71 and 71) Write each measure in. Exress the answer in terms of π and as a decimal

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet Test Duration: 75 minutes Coverage: Chaps 1,2 Open Book but Closed Notes One 85 in x 11 in crib sheet Calculators NOT allowed DO NOT

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

EECS 123 Digital Signal Processing University of California, Berkeley: Fall 2007 Gastpar November 7, Exam 2

EECS 123 Digital Signal Processing University of California, Berkeley: Fall 2007 Gastpar November 7, Exam 2 EECS 3 Digital Signal Processing University of California, Berkeley: Fall 7 Gastpar November 7, 7 Exam Last name First name SID You have hour and 45 minutes to complete this exam. he exam is closed-book

More information

Generation of Linear Models using Simulation Results

Generation of Linear Models using Simulation Results 4. IMACS-Symosium MATHMOD, Wien, 5..003,. 436-443 Generation of Linear Models using Simulation Results Georg Otte, Sven Reitz, Joachim Haase Fraunhofer Institute for Integrated Circuits, Branch Lab Design

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations PINAR KORKMAZ, BILGE E. S. AKGUL and KRISHNA V. PALEM Georgia Institute of

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. NAURAL SCIENCES RIPOS Part IA Wednesday 5 June 2005 9 to 2 MAHEMAICS (2) Before you begin read these instructions carefully: You may submit answers to no more than six questions. All questions carry the

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 2B D. T. Fourier Transform M. Lustig, EECS UC Berkeley Something Fun gotenna http://www.gotenna.com/# Text messaging radio Bluetooth phone interface MURS VHF radio

More information

Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department

Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department Name Teacher (circle): Runge Tracy Verner Class block (circle): A C D F G H Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department This is a 90-minute exam, but you will be allowed

More information

MATH 120 THIRD UNIT TEST

MATH 120 THIRD UNIT TEST MATH 0 THIRD UNIT TEST Friday, April 4, 009. NAME: Circle the recitation Tuesday, Thursday Tuesday, Thursday section you attend MORNING AFTERNOON A B Instructions:. Do not separate the pages of the exam.

More information

EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005

EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005 EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005 UNIVERSITY OF CALIFORNIA BERKELEY LAST Name FIRST Name

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signals & Systems Prof. Mark Fowler Note Set #26 D-T Systems: Transfer Function and Frequency Response / Finding the Transfer Function from Difference Eq. Recall: we found a DT system s freq. resp.

More information

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators S. K. Mallik, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S. N. Singh, Senior Member, IEEE Deartment of Electrical

More information

3.4 Design Methods for Fractional Delay Allpass Filters

3.4 Design Methods for Fractional Delay Allpass Filters Chater 3. Fractional Delay Filters 15 3.4 Design Methods for Fractional Delay Allass Filters Above we have studied the design of FIR filters for fractional delay aroximation. ow we show how recursive or

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017 Name (Last name, First name): MTH 310 Comlex Variables Practice Exam 1 Feb. 10, 017 Exam Instructions: You have 1 hour & 10 minutes to comlete the exam. There are a total of 7 roblems. You must show your

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Iterative Methods for Designing Orthogonal and Biorthogonal Two-channel FIR Filter Banks with Regularities

Iterative Methods for Designing Orthogonal and Biorthogonal Two-channel FIR Filter Banks with Regularities R. Bregović and T. Saramäi, Iterative methods for designing orthogonal and biorthogonal two-channel FIR filter bans with regularities, Proc. Of Int. Worsho on Sectral Transforms and Logic Design for Future

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities EE C28 / ME C34 Lecture Chater 4 Time Resonse Alexandre Bayen Deartment of Electrical Engineering & Comuter Science University of California Berkeley Lecture abstract Toics covered in this resentation

More information

Encircled energy factor in impulse response functions of optical systems with first-order parabolic filters

Encircled energy factor in impulse response functions of optical systems with first-order parabolic filters Available online at www.elagiaresearchlibrary.com Advances in Alied Science Research,, 3 (6):3935-3943 ISSN: 976-86 CODEN (USA): AASRFC Encircled energy factor in imulse resonse functions of otical systems

More information

Optical Fibres - Dispersion Part 1

Optical Fibres - Dispersion Part 1 ECE 455 Lecture 05 1 Otical Fibres - Disersion Part 1 Stavros Iezekiel Deartment of Electrical and Comuter Engineering University of Cyrus HMY 445 Lecture 05 Fall Semester 016 ECE 455 Lecture 05 Otical

More information

Introduction to DSP Time Domain Representation of Signals and Systems

Introduction to DSP Time Domain Representation of Signals and Systems Introduction to DSP Time Domain Representation of Signals and Systems Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407)

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Discrete Time Fourier Transform M. Lustig, EECS UC Berkeley A couple of things Read Ch 2 2.0-2.9 It s OK to use 2nd edition Class webcast in bcourses.berkeley.edu or linked

More information

Contribution of the cosmological constant to the relativistic bending of light revisited

Contribution of the cosmological constant to the relativistic bending of light revisited PHYSICAL REVIEW D 76, 043006 (007) Contribution of the cosmological constant to the relativistic bending of light revisited Wolfgang Rindler and Mustaha Ishak* Deartment of Physics, The University of Texas

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Discrete-Time Signal Processing Fall 2005

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Discrete-Time Signal Processing Fall 2005 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.341 Discrete-Time Signal Processing Fall 2005 FINAL EXAM Friday, December 16, 2005 Walker (50-340) 1:30pm

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning EE 637 Study Solutions - Assignment 3 Topics: Discrete transforms; and D Filters, sampling, and scanning Spring 00 Exam : Problem 3 (sampling Consider a sampling system were the input, s(t = sinc(t, is

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Solutions to ECE 2026 Problem Set #1. 2.5e j0.46

Solutions to ECE 2026 Problem Set #1. 2.5e j0.46 Solutions to ECE 2026 Problem Set #1 PROBLEM 1.1.* Convert the following to polar form: (a) z 3 + 4j 3 2 + 4 2 e jtan 1 ( 4/3) 5e j0.295 3 4j 5e (b) z ---------------- ------------------------ j0.295 3

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

SCHUR S LEMMA AND BEST CONSTANTS IN WEIGHTED NORM INEQUALITIES. Gord Sinnamon The University of Western Ontario. December 27, 2003

SCHUR S LEMMA AND BEST CONSTANTS IN WEIGHTED NORM INEQUALITIES. Gord Sinnamon The University of Western Ontario. December 27, 2003 SCHUR S LEMMA AND BEST CONSTANTS IN WEIGHTED NORM INEQUALITIES Gord Sinnamon The University of Western Ontario December 27, 23 Abstract. Strong forms of Schur s Lemma and its converse are roved for mas

More information

VI. Z Transform and DT System Analysis

VI. Z Transform and DT System Analysis Summer 2008 Signals & Systems S.F. Hsieh VI. Z Transform and DT System Analysis Introduction Why Z transform? a DT counterpart of the Laplace transform in CT. Generalization of DT Fourier transform: z

More information

Solutions - Homework # 3

Solutions - Homework # 3 ECE-34: Signals and Systems Summer 23 PROBLEM One period of the DTFS coefficients is given by: X[] = (/3) 2, 8. Solutions - Homewor # 3 a) What is the fundamental period 'N' of the time-domain signal x[n]?

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information