ELEN 4810 Midterm Exam

Size: px
Start display at page:

Download "ELEN 4810 Midterm Exam"

Transcription

1 ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise your hand if you need additional scratch paper. The last page of the exam contains a table of common Discrete Time Fourier Transform pairs. There are a total of 4 questions. Good luck! Name: Uni:

2 1. Systems in Time and Frequency Domain. Consider a causal LTI system defined by the following block diagram: Notation. Above, the symbol denotes multiplication by a scalar α: if the input is w[n], the output is αw[n]. The symbol denotes a delay by one sample: if the input is w[n], the output is w[n 1]. Please answer the following questions about this system. (a) What is the impulse response h[n]? (b) For what choices of (α, β) is the system stable? (c) For any (α, β) such that the system is stable, what is the frequency response H(e jω ) of the system? (d) What is the output y[n] when the input is the oscillatory signal x[n] = ( 1) n? (1)

3 Answer to Problem 1: (a) The system can be represented by the difference equation y[n] = x[n] + αβy[n 2]. (2) In particular, if the input is x[n] = δ[n], then the output h[n] is zero for n < 0. h[0] = 1. For n > 0, x[n] = 0, and so h[n] = αβh[n 2]. Continuing, we have (αβ) n/2 n 0, n even, h[n] = (3) 0 else. (b) The system is stable if and only if αβ < 1, since h[n] = n=0 n 0, even αβ n/2 = αβ l = l=0 1 1 αβ αβ < 1 + else. (4) (c) The frequency response is H(e jω ) = = n 0, even (αβ) n/2 e jωn = ( αβe 2jω ) l l=0 1. (6) 1 αβe 2jω (5) (d) Here, the input is the complex exponential x[n] = e jπn. The output is y[n] = H(e jπ )e jπn = 1 1 αβ ( 1)n. (7)

4 2. Modulation and Sampling. Consider a system which performs the following operations to sample and then reconstruct a continuous-time signal w(t): (i) Obtain samples w d [n] = w(nt ), with sampling period T. (ii) Form an impulse train y s (t) = n= w d[n]δ(t nt ), (iii) Pass y s (t) through a filter with frequency response H(jΩ), to produce a continuous-time output y(t). We denote this entire operation by y = SRw}. Consider a continuous time signal x(t) with Fourier transform X(jΩ) shown below: (a) Suppose we choose the reconstruction filter H(jΩ) as T Ω < π/t H(jΩ) = 0 Ω π/t (8) and set y = SRx}. What is the largest sampling period T for which y(t) = x(t)? (b) Can we increase the sampling period by choosing a different filter H(jΩ)? What is the largest sampling period we can achieve? (c) Now suppose we modulate the input and output with complex exponentials, by setting x(t) = x(t)e jω1t, ỹ = SR x}, and y(t) = ỹ(t)e jω2t. Suppose we again fix T Ω < π/t H(jΩ) = (9) 0 Ω π/t We are free to choose Ω 1 and Ω 2, in order to achieve the largest possible sampling period T, while ensuring that y(t) = x(t). How should we choose Ω 1 and Ω 2?

5 Answer to Problem 2: (a) By the Nyquist criterion, the minimum sampling rate is Ω s = 2 3Ω 0 = 6Ω 0. The largest sampling period is T = 2π/Ω s = π/3ω 0. (b) Yes. If we choose a bandpass filter satisfying T 2Ω 0 < Ω < 3Ω 0 H(jΩ) = 0 else (10) we can increase the sampling period. In particular, if we set Ω s = Ω 0, the Fourier transform of x s (t) = x(t) k δ(t kt ) is as below: There is no aliasing, and the bandpass filter H(jΩ) correctly picks out the component corresponding to X(jΩ). Thus, we can increase the sampling period to T = 2π/Ω s = 2π/Ω 0. (c) Yes. If x(t) = x(t)e jω1t, using the fact that multiplication in time corresponds to convolution in frequency, we obtain X(jΩ) = X(j(Ω Ω 1 )). In particular, if we choose Ω 1 = 2.5Ω 0, then x is bandlimited, with bandlimit Ω 0 /2. We can exactly reconstruct x from samples taken with sampling rate at least 2 Ω 0 /2 = Ω 0. This corresponds to sampling period 2π/Ω 0. Setting Ω 2 = 2.5Ω 0 moves the frequency content of the reconstructed signal back to the interval [2Ω 0, 3Ω 0 ].

6 3. Discrete Fourier Transform. Consider two length L signals x 1 [n] and x 2 [n]: Let N L be an integer, and x i [n] 0, n = 0, 1,..., L 1, x i [n] = 0, n < 0, n L. i = 1, 2, where 1 and 2 are nonnegative integers. ( V i [k] = exp j 2πk ) i, (11) N Notation. In what follows, D denotes a delay by samples: D x[n] = x[n ]. denotes linear convolution between two sequences. Please answer the following questions about this system. (a) Suppose we wish to compute D 1 x 1 D 2 x 2, i.e., we want y[n] = (D 1 x 1 D 2 x 2 ) [n] n = 0,..., M, (12) where M is the largest integer m for which (D 1 x 1 D 2 x 2 ) [m] 0. What is the smallest N for which this occurs? State your answer in terms of L, 1 and 2. (b) Now suppose we are allowed to reorder the samples of the output y[n], to create a new output ȳ[n]. I.e., we can choose some mapping n (n) and set ȳ[n] = y[n (n)]. What is the smallest N we can achieve?

7 Answer to Problem 3: Write Write = By the cyclic shift property of the DFT, w[n] = DFT 1 N X 1[k]X 2 [k]}. (13) y[n] = w[ n mod N ]. (14) (a) The smallest N is N = 2L Provided N 2L 1, w = x 1 x 2. As long as N 2L 1+, the cyclic shift (14) by does not cause the nonzero entries of w to wrap around, and so it is equivalent to a linear shift by. (b) The smallest N is 2L 1. As long as N is at least as large as the length 2L 1 of x 1 x 2, w[n] = x 1 x 2. y[n] consists of a cyclically shifted version of w[n]. By reordering the samples of y[n], we can obtain D 1 x 1 D 2 x 2 = D x 1 x 2 }.

8 4. A system with upsampling. Consider the following system, in which an input x[n] is upsampled by a factor of 4, that is x[n/4], if n/4 Z, x 4 [n] = (15) 0, otherwise. The resulting signal is filtered first by a linear time invariant system with frequency response A(e jω ), and then by a linear time invariant system with impulse response h[n] = δ[n 1], and then the resulting signal is downsampled by a factor of 4 to produce the output y[n]: Please answer the following questions about this system. (a) Under what conditions on A(e jω ) is the overall system S LTI? Please make your conditions as broad as possible for full credit. (b) Under the conditions you derived in part (a), what is the overall frequency response H S (e jω ) of the system S? (c) Suppose we make the specific choice A(e jω ) = What is the impulse response h S [n] of the overall system S? 4 ω < π 4 0 π 4 ω π. (16) (d) How would your answer to (c) change if we replace h[n] with δ[n 8]?

9 Answer to Problem 4: (a)-(b) Notice that X 4 (e jω ) = X(e j4ω ), and so, if we write v[n] for the output of the delay (i.e., the signal that is downsampled to produce y[n]), we have We have Y (e jω ) = 1 4 V (e jω ) = e jω A(e jω )X(e j4ω ). (17) 3 e j(ω 2πl)/4 A(e j(ω 2πl)/4 )X(e j(ω 2πl) ) (18) l=0 = X(e jω ) 1 3 e j(ω 2πl)/4 A(e j(ω 2πl)/4 ) 4 l=0 }} H S (e jω ) In the final line, we have used the fact that X(e jω ) is 2π-periodic. Because the system acts by multiplication in the frequency domain, it is always linear and time-invariant. [[A note on grading: a common answer is to choose A(e jω ) = 0 for π 4 < ω π to suppress aliasing. This answer is correct, in the sense that it is sufficient for the system to be LTI. However, it is not the broadest possible. This answer received almost all of the credit (1.5 pts / 2 pts for part (a)). With this answer, the overall frequency response becomes simpler: H S (e jω ) = 1 4 e jω/4 A(e jω/4 ). This answer received full credit (2 pts / 2 pts) for part (b). The most common mistake in (a)-(b) was not accounting for downsampling in H S (e jω ), e.g., writing H S = e jω. This is not correct.]] (c) The overall frequency response is H S (e jω ) = e jω/4. Taking the inverse DTFT, we obtain (19) h S [n] = 1 π e jω(n 1/4) dω (20) 2π π = = 1 2πj(n 1/4) ( e jπ(n 1/4) e jπ(n 1/4)) (21) sin(π(n 1/4). (22) π(n 1/4) (d) We have h S [n] = δ[n 2].

10 Scratch paper:

11 Scratch paper:

12 Discrete-Time Fourier Transform Pairs:.

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 7th, 2017 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam. ECE 35 Spring - Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam - Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination ECE 30 Division, all 2006 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Discrete-Time Signal Processing Fall 2005

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Discrete-Time Signal Processing Fall 2005 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.341 Discrete-Time Signal Processing Fall 2005 FINAL EXAM Friday, December 16, 2005 Walker (50-340) 1:30pm

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions: ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

Lecture 3 January 23

Lecture 3 January 23 EE 123: Digital Signal Processing Spring 2007 Lecture 3 January 23 Lecturer: Prof. Anant Sahai Scribe: Dominic Antonelli 3.1 Outline These notes cover the following topics: Eigenvectors and Eigenvalues

More information

Q1 Q2 Q3 Q4 Q5 Total

Q1 Q2 Q3 Q4 Q5 Total EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #1 February 29, 2016, 2:10-4:00pm Instructions: There are five questions

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 3, all 2007 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions:

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions: University of Waterloo Department of Electrical and Computer Engineering ECE 4 Digital Signal Processing Midterm Exam, Spring 00 June 0th, 00, 5:0-6:50 PM Instructor: Dr. Oleg Michailovich Student s name:

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

Digital Signal Processing. Midterm 2 Solutions

Digital Signal Processing. Midterm 2 Solutions EE 123 University of California, Berkeley Anant Sahai arch 15, 2007 Digital Signal Processing Instructions idterm 2 Solutions Total time allowed for the exam is 80 minutes Please write your name and SID

More information

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet ECE58 Final Exam Fall 7 Digital Signal Processing I December 7 Cover Sheet Test Duration: hours. Open Book but Closed Notes. Three double-sided 8.5 x crib sheets allowed This test contains five problems.

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet NAME: NAME EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, 2017 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1)

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1) 4.1 Introduction Two cases of mixed signals to be studied in this chapter: 1. Periodic and nonperiodic signals 2. Continuous- and discrete-time signals Other descriptions: Refer to pp. 341-342, textbook.

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

ECE 301 Fall 2011 Division 1 Homework 5 Solutions

ECE 301 Fall 2011 Division 1 Homework 5 Solutions ECE 301 Fall 2011 ivision 1 Homework 5 Solutions Reading: Sections 2.4, 3.1, and 3.2 in the textbook. Problem 1. Suppose system S is initially at rest and satisfies the following input-output difference

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet Solution 7 August 2015 ECE301 Signals and Systems: Final Exam Cover Sheet Test Duration: 120 minutes Coverage: Chap. 1, 2, 3, 4, 5, 7 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

LAST Name FOURIER FIRST Name Jean Baptiste Joseph Lab Time 365/24/7

LAST Name FOURIER FIRST Name Jean Baptiste Joseph Lab Time 365/24/7 EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Sol. Department of Electrical Engineering and Computer Sciences 13 December 2005 UNIVERSITY OF CALIFORNIA BERKELEY LAST Name FOURIER

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING GEORGIA INSIUE OF ECHNOLOGY SCHOOL of ELECRICAL and COMPUER ENGINEERING ECE 6250 Spring 207 Problem Set # his assignment is due at the beginning of class on Wednesday, January 25 Assigned: 6-Jan-7 Due

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

Lecture 13: Discrete Time Fourier Transform (DTFT)

Lecture 13: Discrete Time Fourier Transform (DTFT) Lecture 13: Discrete Time Fourier Transform (DTFT) ECE 401: Signal and Image Analysis University of Illinois 3/9/2017 1 Sampled Systems Review 2 DTFT and Convolution 3 Inverse DTFT 4 Ideal Lowpass Filter

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09-Dec-13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet NAME: December Digital Signal Processing I Final Exam Fall Cover Sheet Test Duration: minutes. Open Book but Closed Notes. Three 8.5 x crib sheets allowed Calculators NOT allowed. This test contains four

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems.

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems. EE 637 Final May 4, Spring 200 Name: Instructions: This is a 20 minute exam containing five problems. Each problem is worth 20 points for a total score of 00 points You may only use your brain and a pencil

More information

6.003: Signals and Systems. Sampling and Quantization

6.003: Signals and Systems. Sampling and Quantization 6.003: Signals and Systems Sampling and Quantization December 1, 2009 Last Time: Sampling and Reconstruction Uniform sampling (sampling interval T ): x[n] = x(nt ) t n Impulse reconstruction: x p (t) =

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

EEE4001F EXAM DIGITAL SIGNAL PROCESSING. University of Cape Town Department of Electrical Engineering PART A. June hours.

EEE4001F EXAM DIGITAL SIGNAL PROCESSING. University of Cape Town Department of Electrical Engineering PART A. June hours. EEE400F EXAM DIGITAL SIGNAL PROCESSING PART A Basic digital signal processing theory.. A sequencex[n] has a zero-phase DTFT X(e jω ) given below: X(e jω ) University of Cape Town Department of Electrical

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. Lecture 10 Digital Signal Processing Chapter 7 Discrete Fourier transform DFT Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 016 Department of Electrical and Information Technology Lund University

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

Problem Value Score No/Wrong Rec

Problem Value Score No/Wrong Rec GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Oct-11 COURSE: ECE-225 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

8 The Discrete Fourier Transform (DFT)

8 The Discrete Fourier Transform (DFT) 8 The Discrete Fourier Transform (DFT) ² Discrete-Time Fourier Transform and Z-transform are de ned over in niteduration sequence. Both transforms are functions of continuous variables (ω and z). For nite-duration

More information

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)] ECE30 Summer II, 2006 Exam, Blue Version July 2, 2006 Name: Solution Score: 00/00 You must show all of your work for full credit. Calculators may NOT be used.. (5 points) x(t) = tu(t ) + ( t)u(t 2) u(t

More information

EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005

EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005 EECS 20N: Structure and Interpretation of Signals and Systems Final Exam Department of Electrical Engineering and Computer Sciences 13 December 2005 UNIVERSITY OF CALIFORNIA BERKELEY LAST Name FIRST Name

More information

EECS 20. Midterm No. 2 Practice Problems Solution, November 10, 2004.

EECS 20. Midterm No. 2 Practice Problems Solution, November 10, 2004. EECS. Midterm No. Practice Problems Solution, November, 4.. When the inputs to a time-invariant system are: n, x (n) = δ(n ) x (n) = δ(n +), where δ is the Kronecker delta the corresponding outputs are

More information

Solutions. Number of Problems: 10

Solutions. Number of Problems: 10 Final Exam February 9th, 2 Signals & Systems (5-575-) Prof. R. D Andrea Solutions Exam Duration: 5 minutes Number of Problems: Permitted aids: One double-sided A4 sheet. Questions can be answered in English

More information

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.11: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 21 QUESTION BOOKLET

More information

Fourier Representations of Signals & LTI Systems

Fourier Representations of Signals & LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n] 2. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

EE 438 Essential Definitions and Relations

EE 438 Essential Definitions and Relations May 2004 EE 438 Essential Definitions and Relations CT Metrics. Energy E x = x(t) 2 dt 2. Power P x = lim T 2T T / 2 T / 2 x(t) 2 dt 3. root mean squared value x rms = P x 4. Area A x = x(t) dt 5. Average

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information