Remote Sensing. Remote sensing is a quasi-linear estimation problem. Equation of radiative transfer: ) T B e τ T(z) (z)e τ. τ(z)

Size: px
Start display at page:

Download "Remote Sensing. Remote sensing is a quasi-linear estimation problem. Equation of radiative transfer: ) T B e τ T(z) (z)e τ. τ(z)"

Transcription

1 Remote Sensng Remote sensng s a quas-lnear estmaton problem Equaton of radatve transfer: T B ( K) T B o T(),α() τ() B o () ) T B e τ T() ()e τ o T ( K = + α τ () = τ o = τ() α() d d nepers m - temperature profle ec22.5- D

2 Radaton from Sky-Illumnated Reflectve Surfaces T S T B 2 T G ec reflectvty R = - ε emssvty (specular surface) T ( K = B ) τ o + Re T() α( )e + T() α ()e α() d τ () 4 α() d T() α ()e d for τ >> 4 RT e s sky temperature 2 τ o 3 τ +ε T e o + d G o ground temperature d terms 4 D2

3 Temperature Weghtng Functon W(,f,T) Terms:, 2, 3 4 For τ >> : o ( ) T B (f) T o + T()W,f,T() d Alternatvely, ( ) ( ) T (f) T + T() T () W ',f,t () d Incremental weghtng functon: B o o o ( ()) W',f,T o T = B T() o T () ec Note: we have ~lnear relaton: T B (f ) T() (not Fourer) D3

4 Atmospherc Temperature T() Retrevals from Space α(ω) (sngle P) α o ω pressure P f area # molecules m 2 ω o Therefore α f(p) for P-broadenng trace consttuents o τ() T T() α ()e d for τ >> B o alttudes where ntrnsc & doppler broadenng domnate W(,f) ω ω o pressure domnates ω ω o ± ω o ± 2 ec α() D4

5 Atmospherc Temperature T() Retrevals from Space W(,f) ω ω o ω o ± alttudes where ntrnsc & doppler broadenng domnate pressure domnates ω ω o ± 2 τ() T B T() d()e d for τ α() o >> α(ω) ω ncreasng P τ scale heght ω o ω f W(f,) ec D5

6 Atmospherc Temperature T() Retrevals from Below ω o ω o ± ω o α() d W(f,) α() W( f, ) =α ()e ~decayng exponentals, rate s fastest for ω Temperature profle retrevals n sem-transparent solds or lquds where (/α) >> λ: transparency, If α() constant: frequency dependent o ec W(f,) D6

7 Atmospherc Composton Profles α () α ρ () d B = ρ ρ B + o ρ o () [ ] T () T( )e d T () ( ) W (, f ) d W(,f) f vewed from space ρ Because α() and W(,f) are strong functons of the unknown ρ(), ths retreval problem s qute non-lnear and can be sngular (e.g. f T() = constant). In ths case, good statstcs can be helpful. Incremental weghtng functons defned relatve to a nearly normal ρ() can help lneare the problem. ec D7

8 Optmum near Estmates (near Regresson) Parameter vector estmate ( ) [ ] pˆ = Dd d =,d,..., d N ec determnaton matrx t ( ˆ ) ( ˆ ) Choose D to mnme E p p p p Derve D : D j { t ( ˆ ) ( ˆ ) data vector E p p p p = = ( t t t d D )( ) j = E p Dd p = E 2d j D jd 2d p D j [ ] = [ ] Therefore D E dd E p d j j DE dd = E pd ; C D = E dp = C d t t t t t d TH row of D F

9 Optmum near Estmates (near Regresson) [ ] = [ ] Therefore D E dd E p d j j DE dd = E pd ; C D = E dp = C d t t t t t d The lnear regresson soluton s p ˆ = Dd where D = C d t t E dp ec F2

10 D s east-square-error Optmum f: ) Jontly Gaussan process (physcs + nstrument): () pr r = e 2 Λ ( 2 π ) N2 ( )( t t ) Λ = E r m r m r m r m 2 ( ) Λ ( ) m = E r, where r = r,r 2,...,r N 2) Problem s lnear: data d = Mr + n + d o parameter vector nose (JGRVZM) ec22.5- F3

11 Examples of near Regresson ˆp : p ˆ = [ D D 2] d D slope = D 3 ˆp D regresson plane slope = D 2 D slope = D 2 d d d 2 note change n slope Equvalently: ( E [] ) ( ) ˆp = p + D d d 2 ec22.5- F4

12 Regresson Informaton ) The nstrument alone (va weghtng functons) 2) Uncovered nformaton (to whch the nstrument s blnd, but whch s correlated wth propertes the nstrument does see; D retreves ths too.) 3) Hdden nformaton (nvsble n nstrument and uncorrelated wth vsble nformaton); t s lost. ec G

13 Nature of Instrument-Provded Informaton Assume lnear physcs: d= WT Where d T = = [ 2 N ] le [ T,T,...,T ] data vector,d,d,...,d temperature prof 2 M W = weghtng functon matrx W = th row of W Clam: N If T = a W and nose n =, = ( ) then T ˆ = Dd = T, perfect retreval f W not sngular ec G2

14 Clam: Proof for Contnuous Varables N If T = a W and nose n =, = ( ) then T ˆ = Dd = T, perfect retreval f W not sngular W(h ) = b φ (h) W 2 (h) = b 2 φ (h) + b 22 φ 2 (h) W 3 (h) = b 3 φ (n) + b 32 φ 2 (h) + b 33 φ 3 (h) φ (h) φ j ( h)dh =δ j = j j j et: Where: φ ;b are known a pror ( from phys cs). Then: d = T( h)w ( h)dh ec G3

15 Then: Proof for Contnuous Varables j j W(h ) = b φ (h) N = k j W j(h) = N j = ( ) j t = t t = t = N N N = k b m φ m (h) b jn φn (h) ( dh) = k Q j = m = n = = d = T( h)w ( h)dh If we force T(h) W (h) = b φ (h) + b φ (h) Then: d k W ( h) W ( h)dh d k W W k Q Therefore d = Qk where Q s a known square matrx So let ˆk = Q d = k where Q s non-sngular ec G4

16 Clam: Then: Proof for Contnuous Varables N If T = a W and nose n =, = ( ) then T ˆ = Dd = T, perfect retreval f W not sngular So let ˆk = Q d = k where Q s non-sngular N N T(h) ˆ = k ˆ W (h) = k W (h) = T(h) (exact) Q.E.D. = = ( ) ( ) Equvalently: d T = Wk = W Q = WQ d = Dd ec So: D = WQ = "mn mum nformaton" soluton Whch s exact f T = Wk, n = G5

17 To what s an nstrument blnd? W(h) = b φ (h) W (h) = b φ (h) + b φ (h) An nstrument s blnd to T(h) components outsde the space spanned by φ,φ 2,,φ N or, equvalently, by ts W, W 2,,W n. By defnton, the nstrument s blnd to any φ j W, for all. ec H

18 Statstcal Methods Can Reveal Hdden Components N seen by N nstrument channels In general, T(h) = k W (h) + a φ (h) = N + all hdden components Extreme case: suppose φ (h) always accompaned by N N k W = = Then our present soluton: T(h) ˆ = (h) = a φ (h) Would become: N ( ) φ + φ + a 2 N = 2 shrnks wth decorrelaton ˆT(h) = a + φ φ 2 N+ (h). ec Thus hdden components can be uncovered f correlated wth vsble ones. H2

19 General near Estmate ˆT = β WQ a j j j= N + mnmum nformaton uncovered nformaton = Dd where D = + φ Thus retreval can be drawn only from the space spanned by N φ, φ 2,..., φ N ; β, β 2,..., β N dmensonal ty s N; T ˆ = d D That s, N channels contrbute N orthogonal bass functons to the mnmum-nformaton soluton, plus N more bass functons whch are orthogonal but correlated wth the frst N. = ec H3

20 General near Estmate As N ncreases, the fracton of the hdden space whch s uncovered by statstcs s therefore lkely to ncrease, even as the hdden space shrnks. In general: a pror varance = observed + uncovered + varance lost due to nose and decorrelaton. ec Example: 8 channels of AMSU versus 4 channels of MSU AMSU and MSU are passve mcrowave spectrometers n earth orbt soundng atmospherc temperature profles from above wth ~-km wde weghtng functons peakng at alttudes from 3 to 26 km. Note the larger rato of uncovered/lost power for AMSU. H4

21 Example: 8-Channel AMSU vs 4-Channel MSU MID-ATITUDES (TOTA POWER = 222 K 2, 5 EVES) OBSERVED POWER UNCOVERED POWER OST POWER MSU - 55 INCIDENCE ANGE, AND MSU - ANGE, NADIR AMSU - NADIR AMSU - NADIR 3 km WEIGTHING FUNCTION TROPICS (TOTA POWER = 84 K 2 ) MSU NADIR, AND UNCOVERED OST (WINDOW) AMSU - NADIR ec PERCENT POWER H5

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University GMM Method (Sngle-equaton Pongsa Pornchawsesul Faculty of Economcs Chulalongorn Unversty Stochastc ( Gven that, for some, s random COV(, ε E(( µ ε E( ε µ E( ε E( ε (c Pongsa Pornchawsesul, Faculty of Economcs,

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Lecture 19. Endogenous Regressors and Instrumental Variables

Lecture 19. Endogenous Regressors and Instrumental Variables Lecture 19. Endogenous Regressors and Instrumental Varables In the prevous lecture we consder a regresson model (I omt the subscrpts (1) Y β + D + u = 1 β The problem s that the dummy varable D s endogenous,.e.

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

The retrieval error analysis of atmospheric temperature profile from Satellite Data

The retrieval error analysis of atmospheric temperature profile from Satellite Data The retreval error analyss of atmospherc temperature profle from Satellte Data HUANG Jng 1, QIU Chongjan 1 and MA Gang 1 College of Atmospherc Scences, Lanzhou Unversty, Chna Natonal Satellte Meteorologcal

More information

Review: Fit a line to N data points

Review: Fit a line to N data points Revew: Ft a lne to data ponts Correlated parameters: L y = a x + b Orthogonal parameters: J y = a (x ˆ x + b For ntercept b, set a=0 and fnd b by optmal average: ˆ b = y, Var[ b ˆ ] = For slope a, set

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Production Function Estimation

Production Function Estimation Producton Functon Estmaton Producton functon L: labor nput K: captal nput m: other nput Q = f (L, K, m ) Example, Cobb-Douglas Producton functon Q = AL α K β exp(ɛ ) ln(q ) = ln(a) + αln(l ) + βln(k )

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Explaining the Stein Paradox

Explaining the Stein Paradox Explanng the Sten Paradox Kwong Hu Yung 1999/06/10 Abstract Ths report offers several ratonale for the Sten paradox. Sectons 1 and defnes the multvarate normal mean estmaton problem and ntroduces Sten

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data Lab : TWO-LEVEL NORMAL MODELS wth school chldren popularty data Purpose: Introduce basc two-level models for normally dstrbuted responses usng STATA. In partcular, we dscuss Random ntercept models wthout

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

4. Blackbody Radiation, Boltzmann Statistics, Temperature, and Thermodynamic Equilibrium

4. Blackbody Radiation, Boltzmann Statistics, Temperature, and Thermodynamic Equilibrium 4. Blackbody Radaton, Boltzmann Statstcs, Temperature, and Thermodynamc Equlbrum Blackbody radaton, temperature, and thermodynamc equlbrum gve a tghtly coupled descrpton of systems (atmospheres, volumes,

More information

POWER AND SIZE OF NORMAL DISTRIBUTION AND ITS APPLICATIONS

POWER AND SIZE OF NORMAL DISTRIBUTION AND ITS APPLICATIONS Jurnal Ilmah Matematka dan Penddkan Matematka (JMP) Vol. 9 No., Desember 07, hal. -6 ISSN (Cetak) : 085-456; ISSN (Onlne) : 550-04; https://jmpunsoed.com/ POWER AND SIZE OF NORMAL DISTRIBION AND ITS APPLICATIONS

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10) I. Defnton and Problems Econ7 Appled Econometrcs Topc 9: Heteroskedastcty (Studenmund, Chapter ) We now relax another classcal assumpton. Ths s a problem that arses often wth cross sectons of ndvduals,

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Jacobian mapping between vertical coordinate systems in data assimilation (ITSC-14 RTSP-WG action c)

Jacobian mapping between vertical coordinate systems in data assimilation (ITSC-14 RTSP-WG action c) www.ec.gc.ca Jacoban mappng between vertcal coordnate systems n data assmlaton (ITSC-14 RTSP-WG acton 2.1.1-c) Atmospherc Scence and Technology Drectorate Yves J. Rochon, Lous Garand, D.S. Turner, and

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Multi-dimensional Central Limit Argument

Multi-dimensional Central Limit Argument Mult-dmensonal Central Lmt Argument Outlne t as Consder d random proceses t, t,. Defne the sum process t t t t () t (); t () t are d to (), t () t 0 () t tme () t () t t t As, ( t) becomes a Gaussan random

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne ( ( ( t as ( + ( + + ( ( ( Consder a sequence of ndependent random proceses t, t, dentcal to some ( t. Assume t = 0. Defne the sum process t t t t = ( t = (; t

More information

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5).

STAT 3340 Assignment 1 solutions. 1. Find the equation of the line which passes through the points (1,1) and (4,5). (out of 15 ponts) STAT 3340 Assgnment 1 solutons (10) (10) 1. Fnd the equaton of the lne whch passes through the ponts (1,1) and (4,5). β 1 = (5 1)/(4 1) = 4/3 equaton for the lne s y y 0 = β 1 (x x 0

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information