2016 Wiley. Study Session 2: Ethical and Professional Standards Application

Size: px
Start display at page:

Download "2016 Wiley. Study Session 2: Ethical and Professional Standards Application"

Transcription

1 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton

2 LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton coeffcent and nterpret a scatter plot. Vol, pp 56 6 Two of the most popular methods for examnng how two sets of data are related are scatter plots and correlaton analyss. Scatter Plots A scatter plot s a graph that llustrates the relatonshp between observatons of two data seres n two dmensons. See Example -. Example -: Scatter Plot The followng table lsts average observatons of annual money supply growth and nflaton rates for 6 countres over the perod 99 to. Illustrate the data on a scatter plot and comment on the relatonshp. Country Money Supply Growth Rate (X ) Inflaton Rate (Y ) A B C D E.5.85 F Fgure -: Scatter Plot Inflaton Rate (%) Money Supply Growth Rate (%) Note that each observaton n the scatter plot s represented as a pont, and the ponts are not connected. The scatter plot does not show whch pont relates to whch country; t just plots the observatons of both data seres as pars. The data plotted n Fgure - suggests a farly strong lnear relatonshp wth a postve slope for the countres n our sample over the sample perod. 6 Wley 35

3 Correlaton Analyss Correlaton analyss expresses the relatonshp between two data seres n a sngle number. The correlaton coeffcent measures how closely two data seres are related. More formally, t measures the strength and drecton of the lnear relatonshp between two random varables. The correlaton coeffcent can have a maxmum value of + and a mnmum value of. A correlaton coeffcent greater than means that when one varable ncreases (decreases) the other tends to ncrease (decrease) as well. A correlaton coeffcent less than means that when one varable ncreases (decreases) the other tends to decrease (ncrease). A correlaton coeffcent of ndcates that no lnear relaton exsts between the two varables. Fgures -, -3, and - llustrate the scatter plots for data sets wth dfferent correlatons. Fgure -: Scatter Plot of Varables wth Correlaton of + Varable Y Varable X Analyss: Note that all the ponts on the scatter plot llustratng the relatonshp between the two varables le along a straght lne. The slope (gradent) of the lne equals +.6, whch means that whenever the ndependent varable (X) ncreases by unt, the dependent varable (Y) ncreases by.6 unts. If the slope of the lne (on whch all the data ponts le) were dfferent (from +.6), but postve, the correlaton between the two varables would equal + as long as the ponts le on a straght lne Wley

4 Fgure -3: Scatter Plot of Varables wth Correlaton of Varable Y Varable X Analyss: Note that all the ponts on the scatter plot llustratng the relatonshp between the two varables le along a straght lne. The slope (gradent) of the lne equals.6, whch means that whenever the ndependent varable (X) ncreases by unt, the dependent varable (Y) decreases by.6 unts. If the slope of the lne (on whch all the data ponts le) were dfferent (from.6) but negatve, the correlaton between the two varables would equal as long as all the ponts le on a straght lne. Fgure -: Scatter Plot of Varables wth Correlaton of Varable Y Varable X Analyss: Note that the two varables exhbt no lnear relaton. The value of the ndependent varable (X) tells us nothng about the value of the dependent varable (Y). 6 Wley 37

5 Calculatng and Interpretng the Correlaton Coeffcent In order to calculate the correlaton coeffcent, we frst need to calculate covarance. Covarance s a smlar concept to varance. The dfference les n the fact that varance measures how a random varable vares wth tself, whle covarance measures how a random varable vares wth another random varable. Propertes of Covarance Covarance s symmetrc, that s, Cov(X, Y) = Cov(Y, X). The covarance of X wth tself, Cov(X, X), equals the varance of X, Var(X). Interpretng the Covarance Bascally, covarance measures the nature of the relatonshp between two varables. When the covarance between two varables s negatve, t means that they tend to move n opposte drectons. When the covarance between two varables s postve, t means that they tend to move n the same drecton. The covarance between two varables equals zero f they are not related. Sample covarance s calculated as: Sample covarance = Cov( XY, ) = ( X X)( Y Y)/( n ) n = where: n = sample sze X = th observaton of Varable X X = mean observaton of Varable X Y = th observaton of Varable Y Y = mean observaton of Varable Y The numercal value of sample covarance s not very meanngful as t s presented n terms of unts squared, and can range from negatve nfnty to postve nfnty. To crcumvent these problems, the covarance s standardzed by dvdng t by the product of the standard devatons of the two varables. Ths standardzed measure s known as the sample correlaton coeffcent (denoted by r) and s easy to nterpret as t always les between and +, and has no unt of measurement attached. See Example -. Cov( XY, ) Sample correlatoncoeffcent = r = sxsy 38 6 Wley

6 n X = Sample varance = s = ( X X) /( n ) Sample standard devaton = s X = s X Example -: Calculatng the Correlaton Coeffcent Usng the money supply growth and nflaton data from 99 to for the 6 countres n Example -, calculate the covarance and the correlaton coeffcent. Soluton: Country Money Supply Growth Rate (X ) Inflaton Rate (Y ) Cross Product ( X X)( Y Y) Squared Devatons ( X X) Squared Devatons ( Y Y) A B C D E F Sum Average..78 Covarance.77 Varance Std. Dev (s) Illustratons of Calculatons Covarance = Sum of cross products / n =.3735/5 =.77 Var (X) = Sum of squared devatons from the sample mean / n =.9/5 =.98 Var (Y) = Sum of squared devatons from the sample mean / n =.39/5 =.69 Cov( XY, ).77 Correlatoncoeffcent = r = = =.9573 or 95.73% sxsy (.3373)(.87) The correlaton coeffcent of.9573 suggests that over the perod, a strong lnear relatonshp exsts between the money supply growth rate and the nflaton rate for the countres n the sample. Note that computed correlaton coeffcents are only vald f the means and varances of X and Y, as well as the covarance of X and Y, are fnte and constant. 6 Wley 39

7 LOS 9b: Descrbe lmtatons to correlaton analyss. Vol, pp 6 65 Lmtatons of Correlaton Analyss It s mportant to remember that the correlaton s a measure of lnear assocaton. Two varables can be connected through a very strong nonlnear relaton and stll exhbt low correlaton. For example, the equaton Y = + 3X represents a lnear relatonshp. However, two varables may be perfectly lnked by a nonlnear equaton, for example, Y = (5 + X) but ther correlaton coeffcent may stll be close to. Correlaton may be an unrelable measure when there are outlers n one or both of the seres. Outlers are a small number of observatons that are markedly numercally dfferent from the rest of the observatons n the sample. Analysts must evaluate whether outlers represent relevant nformaton about the assocaton between the varables (news) and therefore, should be ncluded n the analyss, or whether they do not contan nformaton relevant to the analyss (nose) and should be excluded. Correlaton does not mply causaton. Even f two varables exhbt hgh correlaton, t does not mean that certan values of one varable brng about the occurrence of certan values of the other. Correlatons may be spurous n that they may hghlght relatonshps that are msleadng. For example, a study may hghlght a statstcally sgnfcant relatonshp between the number of snowy days n December and stock market performance. Ths relatonshp obvously has no economc explanaton. The term spurous correlaton s used to refer to relatonshps where: Correlaton reflects chance relatonshps n a data set. Correlaton s nduced by a calculaton that mxes the two varables wth a thrd. Correlaton between two varables arses from both the varables beng drectly related to a thrd varable. LOS 9c: Formulate a test of the hypothess that the populaton correlaton coeffcent equals zero and determne whether the hypothess s rejected at a gven level of sgnfcance. Vol, pp Testng the Sgnfcance of the Correlaton Coeffcent Hypothess tests allow us to evaluate whether apparent relatonshps between varables are caused by chance. If the relatonshp s not the result of chance, the parameters of the relatonshp can be used to make predctons about one varable based on the other. Let s go back to Example -, where we calculated that the correlaton coeffcent between the money supply growth rate and nflaton rate was Ths number seems pretty hgh, but s t statstcally dfferent from zero? In order to use the t test, we assume that the two populatons are normally dstrbuted. ρ represents the populaton correlaton. To test whether the correlaton between two varables s sgnfcantly dfferent from zero the hypotheses are structured as follows: H : ρ = H a : ρ Note: Ths would be a two taled t test wth n degrees of freedom. 6 Wley

8 The test statstc s calculated as: r n Test-stat = t = r where: n = Number of observatons r = Sample correlaton The decson rule for the test s that we reject H f t stat > +t crt or f t stat < t crt From the expresson for the test statstc above, notce that the value of sample correlaton, r, requred to reject the null hypothess, decreases as sample sze, n, ncreases: As n ncreases, the degrees of freedom also ncrease, whch results n the absolute crtcal value for the test (t crt ) fallng and the rejecton regon for the hypothess test ncreasng n sze. The absolute value of the numerator (n calculatng the test statstc) ncreases wth hgher values of n, whch results n hgher t values. Ths ncreases the lkelhood of the test statstc exceedng the absolute value of t crt and therefore, ncreases the chances of rejectng the null hypothess. See Example -3. Example -3: Testng the Correlaton between Money Supply Growth and Inflaton Based on the data provded n Example -, we determned that the correlaton coeffcent between money supply growth and nflaton durng the perod 99 to for the sx countres studed was Test the null hypothess that the true populaton correlaton coeffcent equals at the 5% sgnfcant level. Soluton: Test statstc = = Degrees of freedom = 6 = The crtcal t values for a two taled test at the 5% sgnfcance level (.5% n each tal) and degrees of freedom are.776 and Snce the test statstc (6.63) s greater than the upper crtcal value (+.776) we can reject the null hypothess of no correlaton at the 5% sgnfcance level. 6 Wley

9 From the addtonal examples n the CFA Program Currculum (Examples 3- and -) you should understand the takeaways lsted below. If you understand the math behnd the computaton of the test statstc, and the determnaton of the rejecton regon for hypothess tests, you should be able to dgest the followng ponts qute comfortably: All other factors constant, a false null hypothess (H : ρ = ) s more lkely to be rejected as we ncrease the sample sze due to () lower and lower absolute values of t crt and () hgher absolute values of t test stats. The smaller the sze of the sample, the greater the value of sample correlaton requred to reject the null hypothess of zero correlaton (n order to make the value of the test statstc suffcently large so that t exceeds the absolute value of t crt at the gven level of sgnfcance). When the relaton between two varables s very strong, a false null hypothess (H : ρ = ) may be rejected wth a relatvely small sample sze (as r would be suffcently large to push the test statstc beyond the absolute value of t crt ). Note that ths s the case n Example -3. Wth large sample szes, even relatvely small correlaton coeffcents can be sgnfcantly dfferent from zero (as a hgh value of n ncreases the absolute value of the test statstc and reduces the absolute value of the crtcal value for the hypothess test). Uses of Correlaton Analyss Correlaton analyss s used for: Investment analyss (e.g., evaluatng the accuracy of nflaton forecasts n order to apply the forecasts n predctng asset prces). Identfyng approprate benchmarks n the evaluaton of portfolo manager performance. Identfyng approprate avenues for effectve dversfcaton of nvestment portfolos. Evaluatng the approprateness of usng other measures (e.g., net ncome) as proxes for cash flow n fnancal statement analyss. LESSON : LINEAR REGRESSION LOS 9d: Dstngush between the dependent and ndependent varables n a lnear regresson. Vol, pp 76 8 Another way to look at smple lnear regresson s that t ams to explan the varaton n the dependent varable n terms of the varaton n the ndependent varable. Note that varaton refers to the extent that a varable devates from ts mean value. Do not confuse varaton wth varance. Lnear Regresson wth One Independent Varable Lnear regresson s used to summarze the relatonshp between two varables that are lnearly related. It s used to make predctons about a dependent varable, Y (also known as the explaned varable, endogenous varable, and predcted varable) usng an ndependent varable, X (also known as the explanatory varable, exogenous varable, and predctng varable), to test hypotheses regardng the relaton between the two varables, and to evaluate the strength of the relatonshp between them. The dependent varable s the varable whose varaton we are seekng to explan, whle the ndependent varable s the varable that s used to explan the varaton n the dependent varable. 6 Wley

10 The followng lnear regresson model descrbes the relaton between the dependent and the ndependent varables. Regresson modelequaton = Y = b + bx +ε, =,., n where: b and b are the regresson coeffcents. b s the slope coeffcent. b s the ntercept term. ε s the error term that represents the varaton n the dependent varable that s not explaned by the ndependent varable. Based on ths model, the regresson process estmates the lne of best ft for the data n the sample. The regresson lne takes the followng form: Regresson lneequaton = Yˆ = bˆ + bx ˆ, =,..., n Lnear regresson computes the lne of best ft that mnmzes the sum of the squared regresson resduals (the squared vertcal dstances between actual observatons of the dependent varable and the regresson lne). What ths means s that t looks to obtan estmates, ˆb and ˆb, for b and b respectvely, that mnmze the sum of the squared dfferences between the actual values of Y, Y, and the predcted values of Y, Y ˆ, accordng to the regresson equaton ( Y ˆ ˆ ˆ = b + bx ). Therefore, lnear regresson looks to mnmze the expresson: n = [ Y (ˆ b + bx ˆ )] Hats over the symbols for regresson coeffcents ndcate estmated values. Note that t s these estmates that are used to conduct hypothess tests and to make predctons about the dependent varable. where: Y = Actual value of the dependent varable bˆ bˆ + X =Predcted value of dependent varable The sum of the squared dfferences between actual and predcted values of Y s known as the sum of squared errors, or SSE. 6 Wley 3

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Correlation and Regression

Correlation and Regression Correlaton and Regresson otes prepared by Pamela Peterson Drake Index Basc terms and concepts... Smple regresson...5 Multple Regresson...3 Regresson termnology...0 Regresson formulas... Basc terms and

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

STATISTICS QUESTIONS. Step by Step Solutions.

STATISTICS QUESTIONS. Step by Step Solutions. STATISTICS QUESTIONS Step by Step Solutons www.mathcracker.com 9//016 Problem 1: A researcher s nterested n the effects of famly sze on delnquency for a group of offenders and examnes famles wth one to

More information

Scatter Plot x

Scatter Plot x Construct a scatter plot usng excel for the gven data. Determne whether there s a postve lnear correlaton, negatve lnear correlaton, or no lnear correlaton. Complete the table and fnd the correlaton coeffcent

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Chapter 15 - Multiple Regression

Chapter 15 - Multiple Regression Chapter - Multple Regresson Chapter - Multple Regresson Multple Regresson Model The equaton that descrbes how the dependent varable y s related to the ndependent varables x, x,... x p and an error term

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

January Examinations 2015

January Examinations 2015 24/5 Canddates Only January Examnatons 25 DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR STUDENT CANDIDATE NO.. Department Module Code Module Ttle Exam Duraton (n words)

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Sociology 301. Bivariate Regression. Clarification. Regression. Liying Luo Last exam (Exam #4) is on May 17, in class.

Sociology 301. Bivariate Regression. Clarification. Regression. Liying Luo Last exam (Exam #4) is on May 17, in class. Socology 30 Bvarate Regresson Lyng Luo 04.28 Clarfcaton Last exam (Exam #4) s on May 7, n class. No exam n the fnal exam week (May 24). Regresson Regresson Analyss: the procedure for esjmajng and tesjng

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Diagnostics in Poisson Regression. Models - Residual Analysis

Diagnostics in Poisson Regression. Models - Residual Analysis Dagnostcs n Posson Regresson Models - Resdual Analyss 1 Outlne Dagnostcs n Posson Regresson Models - Resdual Analyss Example 3: Recall of Stressful Events contnued 2 Resdual Analyss Resduals represent

More information

Chapter 15 Student Lecture Notes 15-1

Chapter 15 Student Lecture Notes 15-1 Chapter 15 Student Lecture Notes 15-1 Basc Busness Statstcs (9 th Edton) Chapter 15 Multple Regresson Model Buldng 004 Prentce-Hall, Inc. Chap 15-1 Chapter Topcs The Quadratc Regresson Model Usng Transformatons

More information

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2 Chapter 4 Smple Lnear Regresson Page. Introducton to regresson analyss 4- The Regresson Equaton. Lnear Functons 4-4 3. Estmaton and nterpretaton of model parameters 4-6 4. Inference on the model parameters

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

The topics in this section concern with the second course objective. Correlation is a linear relation between two random variables.

The topics in this section concern with the second course objective. Correlation is a linear relation between two random variables. 4.1 Correlaton The topcs n ths secton concern wth the second course objectve. Correlaton s a lnear relaton between two random varables. Note that the term relaton used n ths secton means connecton or relatonshp

More information

Chapter 8 Multivariate Regression Analysis

Chapter 8 Multivariate Regression Analysis Chapter 8 Multvarate Regresson Analyss 8.3 Multple Regresson wth K Independent Varables 8.4 Sgnfcance tests of Parameters Populaton Regresson Model For K ndependent varables, the populaton regresson and

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal 9/3/009 Sstematc Error Illustraton of Bas Sources of Sstematc Errors Instrument Errors Method Errors Personal Prejudce Preconceved noton of true value umber bas Prefer 0/5 Small over large Even over odd

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Activity #13: Simple Linear Regression. actgpa.sav; beer.sav;

Activity #13: Simple Linear Regression. actgpa.sav; beer.sav; ctvty #3: Smple Lnear Regresson Resources: actgpa.sav; beer.sav; http://mathworld.wolfram.com/leastfttng.html In the last actvty, we learned how to quantfy the strength of the lnear relatonshp between

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models

Statistics for Managers Using Microsoft Excel/SPSS Chapter 14 Multiple Regression Models Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 14 Multple Regresson Models 1999 Prentce-Hall, Inc. Chap. 14-1 Chapter Topcs The Multple Regresson Model Contrbuton of Indvdual Independent Varables

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

IV. Modeling a Mean: Simple Linear Regression

IV. Modeling a Mean: Simple Linear Regression IV. Modelng a Mean: Smple Lnear Regresson We have talked about nference for a sngle mean, for comparng two means, and for comparng several means. What f the mean of one varable depends on the value of

More information

The SAS program I used to obtain the analyses for my answers is given below.

The SAS program I used to obtain the analyses for my answers is given below. Homework 1 Answer sheet Page 1 The SAS program I used to obtan the analyses for my answers s gven below. dm'log;clear;output;clear'; *************************************************************; *** EXST7034

More information

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1

Reminder: Nested models. Lecture 9: Interactions, Quadratic terms and Splines. Effect Modification. Model 1 Lecture 9: Interactons, Quadratc terms and Splnes An Manchakul amancha@jhsph.edu 3 Aprl 7 Remnder: Nested models Parent model contans one set of varables Extended model adds one or more new varables to

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II) 3.051J/0.340J 1 Lecture 16 Statstcal Analyss n Bomaterals Research (Part II) C. F Dstrbuton Allows comparson of varablty of behavor between populatons usng test of hypothess: σ x = σ x amed for Brtsh statstcan

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information