Flowering Rush Hand Removal. Lake Minnetonka Pilot Program

Size: px
Start display at page:

Download "Flowering Rush Hand Removal. Lake Minnetonka Pilot Program"

Transcription

1 Flowering Rush Hand Lake Minnetonka Pilot Program Spring 2012 Survey Report Provided For the Minnehaha Creek Watershed District By Waterfront Restoration LLC & Blue Water Science May 31, Waterfront Restoration, LLC Ph: Page 1 of 18

2 Summary: In May 2012, aquatic plant surveys were conducted on all flowering rush (Butomus umbellatus) sites where the invasive species was hand removed by Waterfront Restoration in fall of. Steve McComas (Blue Water Science) performed an independent aquatic plant assessment (Exhibit 1) to enable quantitative comparison to pre-extraction surveys. Also present in this report, Waterfront Restoration LLC performed underwater surveys to acquire GPS-coordinated observations and photographs in a sample of the previously extracted areas. These underwater observations help to provide further detail and an early indication of any submerged flowering rush growth. As detailed in the Completion Report: Flowering Rush Hand, Lake Minnetonka Pilot Program provided to the MCWD in December, there is a broad difference in limnologic characteristics the three test sites where extraction took place in the fall of. All three sites were found to have different substrates, depths, density, available light, boat traffic, and wave action. Such differences appear to influence the wide range of efficacy that is evident in these surveys. An outline of the quantitative and qualitative observations of each test site is provided in this report. Manual extraction was found to be most effective in Smith Bay where there has been a dramatic reduction in the population of flowering rush. Blue Water Science assessments show this reduction to be approximately 98%. These results suggest that a uniquely comprehensive and carefullycontained manual extraction (hand-removal) process may be capable of dramatically outperforming the poor results achieved in previous hand-removal studies. Some such studies may have utilized less comprehensive extraction and containment techniques. The hand-removal was found to be least effective in the Maxwell Channel where the population of flowering rush has returned to approximately the same level as. These results suggest a number of specific factors at play in this site may contribute to lower efficacy of hand-removal in this instance. Among many potential factors, a few are notable. First, the cobble/gravel substrate presents the challenge for technicians of being unable to find, follow, and extract some portions of flowering rush rhizomes. Second, the timing of removal (Oct ) was such that it is possible a large portion of the flowering rush had senesced due to different characteristics in Maxwell bay than Smith bay. Third, lower water levels and warmer temperatures may have promoted root development, leaf sprouting and rapid growth of rhizome fragments. The summary of the Blue Water Science assessments is provided on page 3. All other data from these assessments are present in the appendix. Waterfront Restoration will provide cost estimates and discuss recommendations for removal of flowering rush re-population in all three test sites. These will be provided by June 5 th, Waterfront Restoration, LLC Ph: Page 2 of 18

3 Table 1. Summary of flowering rush stem counts for the flowering rush assessments. Approximate flowering rush stem counts are for a transect parallel to the shoreline in 2 to 3 feet of water. *first number represents stems along the rocky rip-rapped channel. The second number represents the estimated number of stems in the nearshore area of the open lake. Site 1: Heritage Lane, Smith Bay (415 meters along shore) Pre- Sept 29, Oct 31,, Year 1 May 18, 2012 Site 2: Maxwell Bay (176 meters along shore) Pre- Sept 29, flowering rush 18, (channel) 4,000 (shore)* Oct 31, May 18, (channel) 4,800 (shore)* Site 2A: Crystal Bay (124 meters along shore) Pre- Sept 29, Oct 31,, Year 1, May 18, 2012 Site 3: Smiths Bay, Year 1, May 18, 2012 (no pre survey) Waterfront Restoration, LLC Ph: Page 3 of 18

4 Smith Bay- Site 1: In Smith Bay Site 1, flowering rush was found to exist, although in dramatically lower populations. Many of the patches that were removed in no longer exist. Some of the patches in low and medium depth waters were still found to contain some flowering rush, but the density of the invasive plant and the number of stalks was much lower than what was documented in the fall of. It is now rare to find emergent plants at this site. The characteristics of flowering rush growth were most radically changed in Smith Bay in relation to the other test sites. Here, where many large, dense, and highly visible patches were found in, now only a few plants remain in the spring of From Blue Water Science survey results, along with Waterfront Restoration, LLC observations and photographic comparisons, we estimate there has been a 95-98% reduction in flowering rush at this site. Photos: In patches where pre-extraction flowering rush grew at a high-density of stems per square meter, growth has been reduced to 0 to 5 stems per square meter. This reduction is evident in the below photos, now showing bare sediment that was previously infested with FLR. Waterfront Restoration, LLC Ph: Page 4 of 18

5 Smith Bay- Site 3 At Smith Bay Site 3, flowering rush was found to exist, although in much lower concentrations than in. In the fall of six different patches of flowering rush were discovered and removed. In the spring of 2012 only three small patches were found with dramatically lower density, and stem counts per plant. The patches that are growing this year are roughly 1/2 to 1/3 of their original size last year. Where patches currently exist, the plants are more clustered than before. Last year the plants were evenly distributed in high density throughout an entire patch. From the observations and picture comparisons we estimate that there has been a 75-80% reduction in flowering rush at this site. Maxwell Channel Waterfront Restoration, LLC Ph: Page 5 of 18

6 In the Maxwell channel flowering rush was present in the spring of The species was found in relatively all of the areas previously documented in the fall of. It does not appear to have expanded outside of its prior location, however, patches are occurring in the same patterns and sizes as before. These results suggest a number of factors present in this site may contribute to lower efficacy of hand-removal in this instance. First, the cobble/gravel substrate presents removal challenges, as noted in the Completion Report: Flowering Rush Hand, Lake Minnetonka Pilot Program provided to the MCWD in December. Such substrate makes it difficult for technicians to be able to find, follow, and extract some portions of flowering rush rhizomes. This contrasts with Smith Bay, where soft, organic substrate enables one to feel all of a rhizome with one s hands, and thus follow and extract it completely. It is theorized that leaving a small portion of rhizome may allow the flowering rush to grow and re-establish quickly. Another factor that may be involved in the lower efficacy of removal in Maxwell channel is the timing of removal. In August and early September, all of the emergent and submerged growth of flowering rush was visible and healthy. At the time of the pre-extraction surveys by Blue Water Science, it is possible the species had begun to senesce. By the time removal had begun in October, it was evident a significant portion of the flowering rush had senesced or was beginning to do so. Many of the plants that were previously emergent were now submerged below the surface of the water. Many of the plants that were previously submersed were now lying weakened on the lake bottom. This made it more challenging to find all instances of flowering rush and to ascertain if a given submerged plant was flowering rush or a native species. The site was comprehensively searched and all plants discovered were carefully removed. However, it is likely a significant portion of the plants were not discovered because they had senesced. Further, where plants were discovered and rhizomes removed, it is likely some portion of the rhizomes were not able to be removed completely. Especially those rhizomes in the early stages of development and thus small, weak, and difficult to feel with one s hands. A third factor that may be involved in the lower efficacy of removal in Maxwell channel, is the warmer temperatures of drawdown-exposed sediments early this spring, and/or the water/sediment interface at shallow depths. This may have promoted root development, leaf sprouting and rapid growth of rhizome fragments in this channel. Warmer sediment and shallow water column temperatures may have also promoted regrowth from established rhizomes and lead to stand thickening. Strong wave action in the channel from persistent boat wakes may also deposits rhizome fragments along the shoreline. At the time these photos were taken many plant stalks were emergent (reaching above the water level). The stalks in some cases reached 3-6 inches above water level. It has also been reported Waterfront Restoration, LLC Ph: Page 6 of 18

7 that since the photos were taken (mid-may, one to three weeks prior to the writing of this report), the water level has risen significantly and there are no longer any emergent stalks. The flowering rush through the channel is currently seen in many different growth stages. Some plants buried in the rock are as little as a few inches tall. Other plants that have taken root at the end of the channel on the sandy bottom, and may be as large as 2.5 feet tall. From Blue Water Science survey results, along with Waterfront Restoration, LLC observations, and photographic comparisons, we estimate there has been a maximum of 5% reduction of flowering rush at this site. Photos: Underwater and above-water appearance of flowering rush in Maxwell Channel May Waterfront Restoration, LLC Ph: Page 7 of 18

8 Photos continued: Underwater and above-water appearance of flowering rush in Maxwell Channel, May 2012 Waterfront Restoration, LLC Ph: Page 8 of 18

9 Photos continued: Underwater and above-water appearance of flowering rush in Maxwell Channel, May 2012 Waterfront Restoration, LLC Ph: Page 9 of 18

10 Appendix EXHIBIT 1 Flowering rush Summary Tables (Steve McComas) Table 2. Summary of aquatic plant assessments. Numbers indicate the number of occurrences of the aquatic plant species along the transect parallel to the shoreline. Site 1: Heritage Lane, Smith Bay (415 meters along shore) Pre - Sept 29, Oct 31,, Year 1 May 18, 2012 Site 2: Maxwell Bay (176 meters along shore) Pre - Sept 29, Oct 31, May 18, 2012 Site 2A: Crystal Bay (124 meters along shore) Pre - Sept 29, Oct 31,, Year 1, May 18, 2012 Site 3: Smiths Bay, Year 1, May 18, 2012 (no pre survey) White lilies Bladderwort Bushy Chara Claspingleaf Coontail EG Elodea EWM Flatstem Floatingleaf Marsh marigold Naiads Narrowleaf NWM Sago Stringy Water celery Water stargrass Whitestem Waterfront Restoration, LLC Ph: Page 10 of 18

11 Table 3. Aquatic plant assessment of the flowering rush test sites prior to flowering rush removal. Survey conducted on September 29,. Site (GPS Coord) Depth White lilies Bladderwort Bushy Chara Claspingleaf Site 1: Heritage Lane, Smith Bay, Lake Minnetonka Coontail Plants Density for Unshaded Columns (scale 1-5) EG Elodea EWM Flatstem Floatingleaf Flowering rush individual stems flowering rush stems per site Marsh marigold NLPW NWM Sago Water celery stems Water stargrass bunch big patches 22 stems/ 0.1m 2 28 stems/ 0.1m 2 20 stems/ 0.1m 2 continues to , , light stems bunch small patch big patch starts 18 stems/ 0.1 m 2 22 stems/ 0.1 m 2 17 stems/ 0.1 m 2 continues to 400 (20 m) , continues patch ends several small patch Whitestem Waterfront Restoration, LLC Ph: Page 11 of 18

12 downed tree deep patch ends big patch out deep starts 2 1 patch in deeper water couple of patches in deep water patches in toward shore and slightly larger patch in deeper water 13 stems/ 0.1 m 2 25 stems/ 0.1 m 2 23 stems/ 0.1 m 2 patches patches patches in deep water , , big patch ends 2 1 several culvert is the end of area small small Total , Waterfront Restoration, LLC Ph: Page 12 of 18

13 Site 2: Maxwell Bay E N bunch Total Site 2A: Crystal Bay to the end of channel milfoil with density 1-3 to end of channel large patch in nearshore area , / 4, patch Total Waterfront Restoration, LLC Ph: Page 13 of 18

14 Table 4. Aquatic plant assessment of the flowering rush test sites after flowering rush removal. Survey on October 31,. Site (GPS Coord) Depth White lilies Bladderwort Claspingleaf Coontail Site 1: Heritage Lane, Smith Bay, Lake Minnetonka Elodea EWM Plants Density for Unshaded Columns (scale 1-5) Flatstem Floatingleaf flowering rush Marsh marigold Naiads NWM Sago dead downed tree deep patch ends big patch out deep starts big patch ends dead culvert is the end of area 575 not in treatment area Total Water celery Water stargrass Whitestem Waterfront Restoration, LLC Ph: Page 14 of 18

15 Site 2: Maxwell Bay E N E 030 N 250 E 600 N Total Site 2A: Crystal Bay E N E 884 N 064 E 944 N Total Waterfront Restoration, LLC Ph: Page 15 of 18

16 Table 5. Aquatic plant assessment of the flowering rush test sites one growing season after flowering rush was removed in October of. Survey was conducted on May 18, For flowering rush, 1 bunch = 4-8 stems/bunch. Site (GPS Coord) Depth Bushy Chara Claspingleaf Site 1: Heritage Lane, Smith Bay, Lake Minnetonka Coontail EG EWM Flatstem Plant Density for Unshaded Columns (scale 1-5) flowering rush flowering rush stems per site X X X X X X stems stems (4stems/0.1 m 2 ) bunch ft 1 bunch Marsh marigold Narrowleaf pondweed bunch X downed tree 2 X deep patch ends 2 1 bunch (3 feet) bunch big patch out deep starts 2 1 patch 1 m x 1 m bunch big patch ends NWM Sago Stringy pondweed Water celery Water stargrass Whitestem No Plants Waterfront Restoration, LLC Ph: Page 16 of 18

17 culvert is the end of area 575 not in treatment area Total Site 2: Maxwell Bay E N E N N X X X X E 600 N foot deep 25 1 long patch, linear along shoreline 43 milfoil stops at end 12 m x 4 m - 12 stems per 0.1 m 2 mouth of canal open to lake 2 X Total /4, Site 2A: Crystal Bay E N E 880 N 842 E 900 N 832 E 915 N 822 E 940 N 812 E 965 N 802 E 975 N 792 E 990 N X Total ,800 Waterfront Restoration, LLC Ph: Page 17 of 18

18 Site 3: Smiths Bay E N within 2 meters bunch E N within 1 patch 18 1 patch N E 587 N572 E 587 N 576 E 598 N Total Sample Number Table 6. Sediment data for six sites (2-3 feet of water depth) in the nearshore areas along the Smith Bay (Heritage Lane) site. Sediments collected on September 29,. Bulk Density (wt/8.51) Water ph Bray-P Olsen-P NH 4OAc- K LOI OM (%) Zn Fe Cu FL FL FL FL FL FL Mn Ca Mg Boron Pb Ni Cd Cr Fe/Mn Waterfront Restoration, LLC Ph: Page 18 of 18

Northeast Aquatic Research

Northeast Aquatic Research Northeast Aquatic Research 74 Higgins Highway Mansfield Center, CT 06250 860-456 - 3179 Crystal Lake Association Ellington, CT 06029 March 6, 2013 RE: Aquatic Plant Mapping at Crystal Lake in 2012. Dear

More information

Briggs Lake Water Quality Report 2014

Briggs Lake Water Quality Report 2014 Briggs Lake Water Quality Report 2014 Seasonal Report for Briggs Lake Green Oak Township, Livingston Co. T1N, R6E, Sec. 3,4 74 Surface Acres 414 Hadley Street Holly, MI 48442 Main Phone: 248-634-8388 Northern

More information

Lake Vermilion ( ) Aquatic Vegetation Survey

Lake Vermilion ( ) Aquatic Vegetation Survey Lake Vermilion (69-0378 - 00) Aquatic Vegetation Survey 22796 County Highway 6 Detroit Lakes, MN 56501 (218) 846-1465 www.rmbel.info Table of Contents Executive Summary... 3 Introduction... 4 Methods...

More information

PINE LAKE AQUATIC PLANT SURVEY PINE LAKE, HILES WISCONSIN DECEMBER 2016 PO BOX 273 PARK FALLS, WI

PINE LAKE AQUATIC PLANT SURVEY PINE LAKE, HILES WISCONSIN DECEMBER 2016 PO BOX 273 PARK FALLS, WI PINE LAKE AQUATIC PLANT SURVEY PINE LAKE, HILES WISCONSIN DECEMBER 2016 PO BOX 273 PARK FALLS, WI 54552 715.965.3489 TIFFINEY@FLAMBEAUENGINEERING.COM PINE LAKE AQUATIC PLANT SURVEY An aquatic plant survey

More information

Aquatic Vegetation Density Mapping BioBase 2015 Report

Aquatic Vegetation Density Mapping BioBase 2015 Report Aquatic Vegetation Density Mapping BioBase 2015 Report Written by: Sarah Mielke PLSLWD Monitoring Assistant Edited by: Jaime Rockney, Water Resources Specialist June 2016 Contents Introduction... 1 Objectives...

More information

A Community Member s Guide to Aquatic Plants. Emelia Hauck Jacobs Field Lead Plant Taxonomist RMB Environmental Laboratories, Inc.

A Community Member s Guide to Aquatic Plants. Emelia Hauck Jacobs Field Lead Plant Taxonomist RMB Environmental Laboratories, Inc. A Community Member s Guide to Aquatic Plants Emelia Hauck Jacobs Field Lead Plant Taxonomist RMB Environmental Laboratories, Inc. Agenda Importance of aquatic plants How to identify common native aquatic

More information

2017 Aquatic Plant Survey: Silver Lake (WBIC# )

2017 Aquatic Plant Survey: Silver Lake (WBIC# ) Aquatic Plants in Silver Lake; Hennepin County, MN August 07 577 Creekside Lane Osseo, MN 5569 james@freshwatersci.com (65) 6-8696 07 Aquatic Plant Survey: Silver Lake (WBIC# 7-06-00) Surveyed August,

More information

Tenmile Lakes Delta Building Study

Tenmile Lakes Delta Building Study Tenmile Lakes Delta Building Study Since the late 1940 s, Tenmile Lakes has seen a sharp increase in sediment accumulation at the mouths of the tributaries that feed the lake. To monitor this sediment

More information

Aquatic Plants of MESSER POND

Aquatic Plants of MESSER POND Aquatic Plants of MESSER POND State Contact: Amy P. Smagula Limnologist/Exotic Aquatic Plant Program Coordinator 603-271-2248 or Amy.Smagula@des.nh.gov Overview This slideshow includes four sections aimed

More information

Aquatic Plant Community of the Red Cedar Lakes

Aquatic Plant Community of the Red Cedar Lakes 2011, Freshwater Scientific Services, LLC Page 1 of 69. Aquatic Plant Community of the Red Cedar Lakes, July/Aug 2011 www.fixmylake.com 18029 83 rd Avenue North Maple Grove, MN 55311 mail@freshwatersci.com

More information

Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE

Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE 1) Project Overview Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE-2007-1130 December 15, 2014 This is the third year of a five year monitoring program

More information

Aquatic Plants of Eastman Pond, Eastman

Aquatic Plants of Eastman Pond, Eastman Aquatic Plants of Eastman Pond, Eastman State Contact: Amy P. Smagula Limnologist/Exotic Aquatic Plant Program Coordinator 603-271 271-22482248 or asmagula@des.state.nh.us Current status of exotic plant

More information

Determining Treatment Areas For Curlyleaf Pondweed and Eurasian Watermilfoil

Determining Treatment Areas For Curlyleaf Pondweed and Eurasian Watermilfoil Determining Treatment Areas For Curlyleaf Pondweed and Eurasian Watermilfoil (and includes a review of 2 whole lake CLP treatment projects) Steve McComas and Jo Stuckert Blue Water Science November 2010

More information

Aquatic Plant Community of Crooked Lake: 2017 Anoka County, MN (# )

Aquatic Plant Community of Crooked Lake: 2017 Anoka County, MN (# ) Aquatic Plant Survey Crooked Lake (Anoka County, MN) August 07 577 Creekside Lane Osseo, MN 5569 james@freshwatersci.com (65) 6-8696 Aquatic Plant Community of Crooked Lake: 07 Anoka County, MN (#0-008)

More information

Appendix B. The Importance of Aquatic Plants

Appendix B. The Importance of Aquatic Plants Appendix B The Importance of Aquatic Plants The Importance of Aquatic Plants Plant information was gathered from Borman et al. (1997), Eggers and Reed (1997), Fink (1994), Nichols and Vennie (1991), and

More information

Field Guide. To The Aquatic Plants of. Cobbett s Pond. May Improvement Association. Prepared for: Prepared by:

Field Guide. To The Aquatic Plants of. Cobbett s Pond. May Improvement Association. Prepared for: Prepared by: To The Aquatic Plants of Cobbett s Pond May 2010 Prepared for: Cobbett s Pond Improvement Association Prepared by: 289 Great Rd., Acton, MA 01720 (978) 263-9588 This to the Aquatic Plants of Cobbett s

More information

Flowering Rush (Butomus umbellatus) in Flathead Lake and River: An Integrated Invasive Plant Management Project

Flowering Rush (Butomus umbellatus) in Flathead Lake and River: An Integrated Invasive Plant Management Project Flowering Rush (Butomus umbellatus) in Flathead Lake and River: An Integrated Invasive Plant Management Project Mara Johnson, Center for Invasive Plant Management; Peter Rice, University of Montana; Virgil

More information

SURVEY OF SUBMERGED NOXIOUS WEED SPECIES IN LAKE CHELAN WASHINGTON

SURVEY OF SUBMERGED NOXIOUS WEED SPECIES IN LAKE CHELAN WASHINGTON SURVEY OF SUBMERGED NOXOUS WEED SPECES N LAKE CHELAN WASHNGTON 1/26/215 Produced by AquaTechnex Lake Chelan was surveyed by air and by boat in the fall of 214 to locate noxious weeds and assess their overall

More information

Lab 2 The reinvasion of flowering plants into aquatic habitats

Lab 2 The reinvasion of flowering plants into aquatic habitats Lab 2 The reinvasion of flowering plants into aquatic habitats BIOL 3601: PLANT DIVERSITY Lab Goals: To learn about adaptations of aquatic plants in different aquatic zones To learn common aquatic plants

More information

Habitat Monitoring Update Hudson River CAG November 16, 2017

Habitat Monitoring Update Hudson River CAG November 16, 2017 Habitat Monitoring Update Hudson River CAG November 16, 2017 Habitat Reconstruction Overview: Habitats A habitat replacement program is being implemented in an Adaptive Management context to reconstruct

More information

Highland Lake Bathymetric Survey

Highland Lake Bathymetric Survey Highland Lake Bathymetric Survey Final Report, Prepared For: The Town of Highland Lake 612 Lakeshore Drive Oneonta, AL 35121 Prepared By: Tetra Tech 2110 Powers Ferry Road SE Suite 202 Atlanta, GA 30339

More information

Aquatic Plants of Canaan Street Lake, Canaan

Aquatic Plants of Canaan Street Lake, Canaan Aquatic Plants of Canaan Street Lake, Canaan State Contact: Amy P. Smagula Limnologist/Exotic Aquatic Plant Program Coordinator 603-271-2248 or Amy.Smagula@des.nh.gov Current status of exotic plant infestations

More information

Second Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE

Second Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE 1) Project Overview Second Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE-2007-1130 December 13, 2013 This is the second year of a five year monitoring program

More information

Something old, something new:

Something old, something new: Something old, something new: Curly-leaf pondweed and starry stonewort management Mike Verhoeven and Wes Glisson Larkin Lab Response of starry stonewort (Nitellopsis obtusa) to control efforts in Lake

More information

Taunton River Salt Marsh Assessment Results from 2014 season

Taunton River Salt Marsh Assessment Results from 2014 season Taunton River Salt Marsh Assessment Results from 2014 season December, 2014 During the late summer and fall of 2014, Save The Bay evaluated salt marshes in Assonet Bay, Freetown and Broad Cove in Dighton

More information

FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED

FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED Justin R. Beebe, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. jrb308@jaguar1.usouthal.edu. Spring Creek is a tributary

More information

MaxDepth Aquatics, Inc.

MaxDepth Aquatics, Inc. MaxDepth Aquatics, Inc. Bathymetry of Mirror Pond From Newport Bridge to Galveston Bridge Prepared for the City of Bend By Joseph Eilers & Benn Eilers MaxDepth Aquatics, Inc. Bend, OR June 2005 INTRODUCTION

More information

Invasive Aquatic Plant Screening Survey and Mapping Procedures

Invasive Aquatic Plant Screening Survey and Mapping Procedures Invasive Aquatic Plant Screening Survey and Mapping Procedures Overview The primary goal of your mapping survey project is to 1) visually scan as much of the existing aquatic plant habitat as possible,

More information

17-20 November 2007 Incidental Take Monitoring Methodology and Results

17-20 November 2007 Incidental Take Monitoring Methodology and Results Sample Site Selection Protocol 17-20 November 2007 Incidental Take Monitoring Methodology and Results On 16 November 2007, the U.S. Fish and Wildlife Service (USFWS) provided the USACE Mobile District

More information

GLYPHOSATE, IMAZAPYR AND?? HERBICIDES FOR GRASS CONTROL - Greg MacDonald Agronomy Dept. University of Florida

GLYPHOSATE, IMAZAPYR AND?? HERBICIDES FOR GRASS CONTROL - Greg MacDonald Agronomy Dept. University of Florida GLYPHOSATE, IMAZAPYR AND?? HERBICIDES FOR GRASS CONTROL - Greg MacDonald Agronomy Dept. University of Florida TYPES OF GRASSES Perennial or Annual Bunch or Spreading Stolons or Rhizomes Viable Seeds or

More information

Illinois Drought Update, December 1, 2005 DROUGHT RESPONSE TASK FORCE Illinois State Water Survey, Department of Natural Resources

Illinois Drought Update, December 1, 2005 DROUGHT RESPONSE TASK FORCE Illinois State Water Survey, Department of Natural Resources Illinois Drought Update, December 1, 2005 DROUGHT RESPONSE TASK FORCE Illinois State Water Survey, Department of Natural Resources For more drought information please go to http://www.sws.uiuc.edu/. SUMMARY.

More information

Citizen Science Actions AIS Shoreline Survey Blocking Zebra Mussels Ice in, Ice off. Janet Andersen

Citizen Science Actions AIS Shoreline Survey Blocking Zebra Mussels Ice in, Ice off. Janet Andersen Citizen Science Actions AIS Shoreline Survey Blocking Zebra Mussels Ice in, Ice off Janet Andersen Shoreline search for new Aquatic Invasive Plants NYS DEC NYSFOLA Janet Andersen Shoreline Search Topics

More information

A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf

A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf arrangement and number of petals. Pairing morphological

More information

Distribution of Hydrilla and Giant Salvinia in Mississippi in 2005

Distribution of Hydrilla and Giant Salvinia in Mississippi in 2005 An Annual Report to the Mississippi Bureau of Plant Industry for 2005 John D. Madsen, Ryan M. Wersal, and Wilfredo Robles GeoResources Institute and Department of Plant and Soil Science Mississippi State

More information

Crystal Lake Aquatic Plants. Dr. George Knoecklein

Crystal Lake Aquatic Plants. Dr. George Knoecklein Crystal Lake Aquatic Plants Dr. George Knoecklein Things to keep in mind 1. You will not learn it all in one season 2. Start a library of plant keys 3. Begin to get familiar with scientific names 1. In

More information

Arthraxon hispidus Hairy Jointgrass Potentially invasive grass

Arthraxon hispidus Hairy Jointgrass Potentially invasive grass Arthraxon hispidus Hairy Jointgrass Potentially invasive grass Hairs along margins of leaf blades. Heart-shaped bases encircle the sheath. Low-growing creeping annual grass grows up to 1.5. Flowers in

More information

Steven Noble MDEQ - WRD Enbridge Response Unit

Steven Noble MDEQ - WRD Enbridge Response Unit EPA situation report, October 19, 2012 Steven Noble MDEQ - WRD Enbridge Response Unit Brief history of the spill Monitoring Monitoring the impacts Follow the oil The Current Situation A Look at the Future

More information

Sediment Management in the Coastal Bays

Sediment Management in the Coastal Bays Sediment Management in the Coastal Bays Introduction Need for ecosystem view of sediment management in Coastal Bays Island loss and restoration Navigation needs Habitat Trade offs Living Shoreline Requirements

More information

Sedimentation Rate Change in the Winooski River Delta

Sedimentation Rate Change in the Winooski River Delta Sedimentation Rate Change in the Winooski River Delta Chris Ricker and Brian Connelly Abstract Historical air photographs, from 1937 show the Winooski River Delta extended much farther into Lake Champlain

More information

Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2014

Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2014 Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2014 A report to the Pelican River Watershed District Gray Turnage 1 and John D. Madsen 2 1 Geosystems Research

More information

Survey of Eurasian Watermilfoil (Myriophyllum spicatum) in Gloucester Pool, Port Severn, ON, Canada

Survey of Eurasian Watermilfoil (Myriophyllum spicatum) in Gloucester Pool, Port Severn, ON, Canada Survey of Eurasian Watermilfoil (Myriophyllum spicatum) in Gloucester Pool, Port Severn, ON, Canada Prepared for: Gloucester Pool Cottagers Association Prepared by: Milfoil Solution, Inc. A Canadian Subsidiary

More information

Chapter 15.1: Hydrilla

Chapter 15.1: Hydrilla Chapter 15.1: Hydrilla William T. Haller: University of Florida, Gainesville, FL; whaller@ufl.edu Hydrilla verticillata (L.f.) Royle; submersed plant in the Hydrocharitaceae (frog's-bit) family Derived

More information

Aquatic Plant Community in Rice Lake: 2014 Hennepin County, MN (# )

Aquatic Plant Community in Rice Lake: 2014 Hennepin County, MN (# ) www.fixmylake.com 809 8 rd Avenue orth Maple Grove, M 55 mail@freshwatersci.com (65) 6-8696 Aquatic Plant Community in Rice Lake: 0 Hennepin County, M (#7-06) Surveyed July 5, 0 Surveying, Analysis, and

More information

The Invasive Status of Giant Salvinia and Hydrilla in Mississippi

The Invasive Status of Giant Salvinia and Hydrilla in Mississippi Wilfredo Robles, John D. Madsen, Victor L. Maddox and Ryan M. Wersal GeoResources Institute Mississippi State University Box 9952 Starkville, MS 39762 662-325-2311 E-mail: wr40@pss.msstate.edu ABSTRACT

More information

Freshwater Mussel Surveys in Mystic Lake and Middle Pond: (Barnstable, Massachusetts)

Freshwater Mussel Surveys in Mystic Lake and Middle Pond: (Barnstable, Massachusetts) REPORT Freshwater Mussel Surveys in Mystic Lake and Middle Pond: 2007-2017 (Barnstable, Massachusetts) prepared for Town of Barnstable 367 Main Street Hyannis, MA 02601 prepared by biodrawversity Biodrawversity

More information

Relatively little hard substrate occurs naturally in the

Relatively little hard substrate occurs naturally in the CHAPTER FIVE Rock Habitats Relatively little hard substrate occurs naturally in the estuary, owing mainly to the vast quantities of fine sediment that have been deposited by the rivers. Rock habitat is

More information

MAINTENANCE DREDGE BENTHIC ASSESSMENT SUNSET POINT FARM LLC LONG POINT KEY MONROE COUNTY, FLORIDA. Prepared by:

MAINTENANCE DREDGE BENTHIC ASSESSMENT SUNSET POINT FARM LLC LONG POINT KEY MONROE COUNTY, FLORIDA. Prepared by: MAINTENANCE DREDGE BENTHIC ASSESSMENT SUNSET POINT FARM LLC LONG POINT KEY MONROE COUNTY, FLORIDA Prepared by: December 11, 2016 INTRODUCTION The owners of the Sunset Point Farms LLC, located on the northern

More information

Purple Loosestrife Project Biocontrol Sites:

Purple Loosestrife Project Biocontrol Sites: Purple Loosestrife Project Biocontrol Sites: Interim results of a cooperative project between Michigan State University and Michigan Sea Grant Extension Photos, Maps and Layout by Jason K. Potter 2002

More information

Inversion Oxygenation and Bio augmentation Reduces Invasive Eurasian Watermilfoil Growth in Four Michigan Inland Lakes

Inversion Oxygenation and Bio augmentation Reduces Invasive Eurasian Watermilfoil Growth in Four Michigan Inland Lakes Inversion Oxygenation and Bio augmentation Reduces Invasive Eurasian Watermilfoil Growth in Four Michigan Inland Lakes Jennifer L. Jermalowicz-Jones Restorative Lake Sciences Restorative Lake Sciences

More information

SLELO PRISM s Invasive Species Volunteer Surveillance Network Guide for Aquatic Plants

SLELO PRISM s Invasive Species Volunteer Surveillance Network Guide for Aquatic Plants SLELO PRISM s Invasive Species Volunteer Surveillance Network Guide for Aquatic Plants 2018 ST. LAWRENCE EASTERN LAKE ONTARIO PARTNERSHIP FOR REGIONAL INVASIVE SPECIES MANAGEMENT To learn more visit www.sleloinvasvies.org

More information

Table 1: 2012 Aquatic Plant Community Statistics, Fish Lake, Dane County, WI Aquatic Plant Community Statistics 2012

Table 1: 2012 Aquatic Plant Community Statistics, Fish Lake, Dane County, WI Aquatic Plant Community Statistics 2012 APPENDIX A FISH LAKE PLANT STATISTICS (2012) Table 1: 2012 Aquatic Plant Community Statistics, Fish Lake, Dane County, WI Aquatic Plant Community Statistics 2012 Number of sites sampled 474 Number of sites

More information

Redwood City Harbor, California, Navigation Improvement Feasibility Study. Appendix D. Geotechnical Engineering. DRAFT April 2015

Redwood City Harbor, California, Navigation Improvement Feasibility Study. Appendix D. Geotechnical Engineering. DRAFT April 2015 1 Redwood City Harbor, California, Navigation Improvement Feasibility Study Appendix D Geotechnical Engineering DRAFT April 2015 2 Contents 1 Purposes of Report... 3 2 Background... 3 3 References and

More information

Invasive Weed Identification Guide

Invasive Weed Identification Guide Invasive Weed Identification Guide W2O! Weeds Watch Out! Stop Invasive Aquatic Plants Aquatic Plants: The Good & The Bad Our lakes and rivers would seem barren without lush plants along the shore. Plants

More information

Geoduck Floating Nursery Monitoring Plan, Quarterly Reporting

Geoduck Floating Nursery Monitoring Plan, Quarterly Reporting December 23, 2014 Mason County Department of Community Development Attn: Grace Miller, Senior Planner 411 N. Fifth Street PO Box 279 Shelton, WA 98584 Re: Geoduck Floating Nursery Monitoring Plan, Quarterly

More information

Joint Federal Agency Submerged Aquatic Vegetation Survey Guidance for the New England Region Updated August 11, 2016

Joint Federal Agency Submerged Aquatic Vegetation Survey Guidance for the New England Region Updated August 11, 2016 Joint Federal Agency Submerged Aquatic Vegetation Survey Guidance for the New England Region Updated August 11, 2016 FOREWORD This guidance is the result of on-going interagency collaboration between the

More information

Wild Rice Seed Enumeration Report: Upper Clam Lake, Lower Clam Lake, Long Lake, and Clam River Flowage

Wild Rice Seed Enumeration Report: Upper Clam Lake, Lower Clam Lake, Long Lake, and Clam River Flowage www.fixmylake.com 18029 83 rd Avenue North Maple Grove, MN 55311 mail@freshwatersci.com (651) 336-8696 Wild Rice Seed Enumeration Report: 2009-2010 Upper Clam Lake, Lower Clam Lake, Long Lake, and Clam

More information

Invasive Weed Identification Guide

Invasive Weed Identification Guide Invasive Weed Identification Guide W2O! Weeds Watch Out! Stop Invasive Aquatic Plants Aquatic Plants: The Good & The Bad Our lakes and rivers would seem barren without lush plants along the shore. Plants

More information

How does erosion happen?

How does erosion happen? How does erosion happen? By National Geographic, adapted by Newsela staff on 10.03.17 Word Count 682 Level 830L These rock formations, in Bryce Canyon National Park, Utah, are called hoodoos. Although

More information

LAKE SURVEY REPORT. Fisheries Management. DOW Number: Survey ID Date: 07/31/2017. Lake Identification. Lake Location. Legal Descriptions

LAKE SURVEY REPORT. Fisheries Management. DOW Number: Survey ID Date: 07/31/2017. Lake Identification. Lake Location. Legal Descriptions Fisheries Management LAKE SURVEY REPORT Lake Name: Kroon Survey Type: Targeted Survey DOW Number: 13-0013-00 Survey ID Date: 07/31/2017 Lake Identification Alternate Lake Name: N/A Primary Lake Class ID:

More information

Comparison of hybrid and parental watermilfoil growth and phenology in Minnesota. Wesley J. Glisson and Daniel Larkin

Comparison of hybrid and parental watermilfoil growth and phenology in Minnesota. Wesley J. Glisson and Daniel Larkin Comparison of hybrid and parental watermilfoil growth and phenology in Minnesota Wesley J. Glisson and Daniel Larkin Eurasian watermilfoil (EWM) Long history of invasion and management Found in North America

More information

Mapping the River as it Reconnects with Its Delta: Field Studies in Big Mar and Bohemia

Mapping the River as it Reconnects with Its Delta: Field Studies in Big Mar and Bohemia Mapping the River as it Reconnects with Its Delta: Field Studies in Big Mar and Bohemia Ezra Boyd, John Lopez, Andy Baker, Theryn Henkel Lake Pontchartrain Basin Foundation Coastal Sustainability Program

More information

Bishopville Prong Study

Bishopville Prong Study Bathymetric and Sediment Assessment in the Bishopville Prong of St. Martin River Darlene V. Wells, Richard A. Ortt, Jr., and Stephen Van Ryswick Funded by MCBP 2011-2012 Implementation Grant Objectives

More information

Aquatic Plant Survey Methods

Aquatic Plant Survey Methods Aquatic Plant Survey Methods Field Methods Harmony Environmental employed a point intercept method for the macrophyte sampling. The Wisconsin Department of Natural Resources (Wisconsin DNR) generated the

More information

COOPERATIVE LAKES MONITORING PROGRAM TRAINING FOR. Aquatic Plant Identification

COOPERATIVE LAKES MONITORING PROGRAM TRAINING FOR. Aquatic Plant Identification COOPERATIVE LAKES MONITORING PROGRAM TRAINING FOR Aquatic Plant Identification Jo Latimore Michigan State University 517-432-1491 latimor1@msu.edu Erick Elgin Michigan State University Extension 231-928-1053

More information

Natural Shoreline Landscapes on Michigan Inland Lakes

Natural Shoreline Landscapes on Michigan Inland Lakes Natural Shoreline Landscapes on Michigan Inland Lakes Excerpts from Chapters 2 and 3 Photo Photo by Jane by Jane Herbert Herbert Did you know? Twenty-four species of amphibians, 25 species of reptiles,

More information

Great Lakes Update. Volume 193: 2015 January through June Summary. Vol. 193 Great Lakes Update August 2015

Great Lakes Update. Volume 193: 2015 January through June Summary. Vol. 193 Great Lakes Update August 2015 Great Lakes Update Volume 193: 2015 January through June Summary The U.S. Army Corps of Engineers (USACE) monitors the water levels of each of the Great Lakes. This report provides a summary of the Great

More information

Sediment Distribution and Characteristics

Sediment Distribution and Characteristics Sediment Distribution and Characteristics Sediments at the bottom of ponds are a source or sink for nutrients in relation to the water column, contribute to turbidity during storm events, serve as the

More information

2010 Mississippi Survey for Hydrilla and Giant Salvinia

2010 Mississippi Survey for Hydrilla and Giant Salvinia 2010 Mississippi Survey for Hydrilla and Giant Salvinia Giant salvinia in Wedgeworth Creek, Forrest County, MS A Report to the Mississippi Bureau of Plant Industry Michael C. Cox and John D. Madsen and

More information

APPENDIX B. NMFWRI Field Inventory Summary for Three L Canyon, pre-treatment (2008 and 2009) and post-treatment (2013)

APPENDIX B. NMFWRI Field Inventory Summary for Three L Canyon, pre-treatment (2008 and 2009) and post-treatment (2013) SACRAMENTO MOUNTAINS WATERSHED STUDY APPENDIX B NMFWRI Field Inventory Summary for Three L Canyon, pre-treatment (2008 and 2009) and post-treatment (2013) These documents describe efforts and results from

More information

Update on Archaeological Resources Assessment for Phase 1 Dredge Areas

Update on Archaeological Resources Assessment for Phase 1 Dredge Areas Update on Archaeological Resources Assessment for Phase 1 Dredge Areas Prepared by URS Corp for General Electric Presented by John Vetter, USEPA CAG Meeting December 8, 2005 1 Presentation Outline Overview

More information

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL., NO.. () Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities Randall D. Willoughby and Wendy B. Anderson Department of Biology

More information

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Habitat Assessment Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Adapted from a presentation by Jean Unmuth, Water Quality Biologist, WI DNR dnr.wi.gov www.uwex.edu erc.cals.wisc.edu

More information

Sediment and Carp Dynamics in Lake Mendota s Yahara River Estuary

Sediment and Carp Dynamics in Lake Mendota s Yahara River Estuary Sediment and Carp Dynamics in Lake Mendota s Yahara River Estuary Final project report for DNR Lake Planning Grant to Dane County with subcontract to UW Madison; Submitted April 4, 2013 Prof. Chin Wu (Project

More information

Assessment. Assessment

Assessment. Assessment 2001 SPRINGBROOK CREEK RESTORATION - THREE YEAR POST-CONSTRUCTION REVIEW - Presented by Bruce Henderson and Andy Harris 2005 River Restoration Northwest Symposium Skamania Lodge, Washington www.hendersonlandservices.com

More information

NORTHUMBERLAND COUNTY, PA

NORTHUMBERLAND COUNTY, PA QUAKER RUN Stream and Wetland Restoration As-Built Completion Report and First Year Monitoring Data Coal Township NORTHUMBERLAND COUNTY, PA Upstream Before Upstream After Prepared for: COAL TOWNSHIP 805

More information

Evaluation of Chemical Biocides and Algaecides for Controlling Sprouting of Nitellopsis obtusa (Starry Stonewort) Bulbils

Evaluation of Chemical Biocides and Algaecides for Controlling Sprouting of Nitellopsis obtusa (Starry Stonewort) Bulbils Evaluation of Chemical Biocides and Algaecides for Controlling Sprouting of Nitellopsis obtusa (Starry Stonewort) Bulbils John H Rodgers, Jr. and Tyler Geer October 25, 2017 Nitellopsis obtusa Starry Stonewort

More information

Appendix E: Cowardin Classification Coding System

Appendix E: Cowardin Classification Coding System Appendix E: Cowardin Classification Coding System The following summarizes the Cowardin classification coding system and the letters and numbers used to define the USFWS NWI wetland types and subtypes:

More information

Environmental Science: Biomes Test

Environmental Science: Biomes Test Name: Date: Pd. VERSION 1 Environmental Science: Biomes Test 1. Eland are large herbivores with loose skin under the throat and neck. This patch of skin aids in lowering the body temperature when temperatures

More information

DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6.

DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6. DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6. The Eklutna River was divided into study reaches (figure 1) prior to this site visit. Prominent geologic or

More information

LIGHT PENETRATION INTO FRESH WATER.

LIGHT PENETRATION INTO FRESH WATER. LIGHT PENETRATION INTO FRESH WATER. III. SEASONAL VARIATIONS IN THE LIGHT CONDITIONS IN WINDERMERE IN RELATION TO VEGETATION. BY W. H. PEARS ALL AND PHILIP ULLYOTT. {Received 29th May, 1933.) (With Three

More information

BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants Mule Canyon Mine Introduction

BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants Mule Canyon Mine Introduction Mule Canyon Mine BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants Shea Clark Smith /MEG, Inc. P.O. Box 18325 Reno, Nevada 89511 www.sheaclarksmith.com SheaClarkSmith@aol.com Copyright: Shea

More information

West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach)

West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach) West Galveston Bay Regional Sediment Management Plan (An Eco-geomorphologic Approach) Juan Moya, Matthew Mahoney and Mike Smith Restore America s Estuaries Conference Tampa, FL, October 23, 2012 Atkins

More information

Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to

Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to foleyd@plu.edu Figure list 1. Trailer photograph 2. Location map

More information

C. STUDENT FIELD DATA SHEETS

C. STUDENT FIELD DATA SHEETS C. STUDENT FIELD DATA SHEETS Student Name Date Time Stream Location Parameter to find Your Group s Results Units trial trial average Transparency cm Water Temperature Air Temperature Weather N sunny N

More information

APPENDIX A REACH DECRIPTIONS. Quantico Creek Watershed Assessment April 2011

APPENDIX A REACH DECRIPTIONS. Quantico Creek Watershed Assessment April 2011 APPENDIX A REACH DECRIPTIONS Basin 615, South Fork of Quantico Creek - Project Reach Descriptions Reach Name: 615-A Coordinates (NAD 83, Virginia State Plane North): 11796510.57, 6893938.95 to 11801555.79,

More information

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013 APPENDIX E GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2 Introduction Keystone Restoration Ecology (KRE) conducted geomorphological monitoring in

More information

3.7 VISUAL RESOURCES Environmental Setting

3.7 VISUAL RESOURCES Environmental Setting 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 35 36 37 38 39 40 4 3.7 VISUAL RESOURCES This section assesses the effects of the treatment techniques on views from public

More information

Invasive Species Pilot Project: Site Visit Report

Invasive Species Pilot Project: Site Visit Report Invasive Species Pilot Project: Site Visit Report Waterbody: Trout Lake Visit Date: August 16 th, 2018 Preamble: The Federation of Ontario Cottagers Associations (FOCA) is a non-profit, voluntary organization

More information

24. Ocean Basins p

24. Ocean Basins p 24. Ocean Basins p. 350-372 Background The majority of the planet is covered by ocean- about %. So the majority of the Earth s crust is. This crust is hidden from view beneath the water so it is not as

More information

Environmental Science

Environmental Science Environmental Science A Study of Interrelationships Cui Jiansheng Hebei University of Science and Technology CH06 Kinds of Ecosystems and Communities Chapter Objectives After reading this chapter, you

More information

Carbon Sequestration Potential from Coastal Wetlands Restoration Sites

Carbon Sequestration Potential from Coastal Wetlands Restoration Sites Carbon Sequestration Potential from Coastal Wetlands Restoration Sites Insert then choose Picture select your picture. Right click your picture and Send to back. Paul Krause, Alyssa Beach Emily Cooper,

More information

Review of Riparian Function Riparian Management Riparian Monitoring

Review of Riparian Function Riparian Management Riparian Monitoring Review of Riparian Function Riparian Management Riparian Monitoring Water Shed Water Catchment Water catching creek Water shedding creek Properly functioning riparian area Properly Functioning Riparian

More information

Appendix G. Meso-Habitat Surveys. DRAFT Annual Technical Report

Appendix G. Meso-Habitat Surveys. DRAFT Annual Technical Report Appendix G Meso-Habitat Surveys DRAFT Annual Technical Report Draft March 2010 1.0 Introduction 1 2 3 4 5 6 1.0 Introduction The following appendix includes a report provided by the California Department

More information

ARMORED DITCH DEGRADATION AND ISSUES WITH EROSION

ARMORED DITCH DEGRADATION AND ISSUES WITH EROSION ARMORED DITCH DEGRADATION AND ISSUES WITH EROSION Cody Morris, Department of Earth Sciences, University of South Alabama, Mobile AL, 36688. E- mail: csm805@jagmail.southalabama.edu. When armored ditches

More information

Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho

Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho Fate of historic metal releases from the Coeur d Alene mining district Northern Idaho Stephen E. Box US Geological Survey U.S. Metal Production Coeur d'alene, ID Butte, MT Tintic-East Tintic, UT Ag (10

More information

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D Name: 1) The formation of soil is primarily the result of A) stream deposition and runoff B) precipitation and wind erosion C) stream erosion and mass movement D) weathering and biological activity 2)

More information

Assess the Potential for Accumulation of Toxic Trace Elements in Biota near Burton Island Ash Disposal Site Indian River Bay, Delaware

Assess the Potential for Accumulation of Toxic Trace Elements in Biota near Burton Island Ash Disposal Site Indian River Bay, Delaware Assess the Potential for Accumulation of Toxic Trace Elements in Biota near Burton Island Ash Disposal Site Indian River Bay, Delaware Gerhardt Riedel Ph.D. Smithsonian Environmental Research Center Bartholomew

More information

Observations on Surface Water in the Seminary Fen in Spring, Prepared 6/4/13 by Sam Wetterlin; updated 7/28/13

Observations on Surface Water in the Seminary Fen in Spring, Prepared 6/4/13 by Sam Wetterlin; updated 7/28/13 Observations on Surface Water in the Seminary Fen in Spring, 2013 Prepared 6/4/13 by Sam Wetterlin; updated 7/28/13 Ordinarily, a calcareous fen is primarily dependent on upwelling mineral-rich, oxygen-poor

More information

Use of Bioengineering Techniques for Revegetation of Riparian Areas: Colomac Mine Remediation Project, NWT

Use of Bioengineering Techniques for Revegetation of Riparian Areas: Colomac Mine Remediation Project, NWT Use of Bioengineering Techniques for Revegetation of Riparian Areas: Colomac Mine Remediation Project, NWT McPherson, M. 1, Vanderspiegel, R. 2, Breadmore, R. 2, and Hewitt, M. 3 2012 RPIC Federal Contaminated

More information

SEAGRASS COVERAGE TRENDS IN THE INDIAN RIVER LAGOON SYSTEM

SEAGRASS COVERAGE TRENDS IN THE INDIAN RIVER LAGOON SYSTEM Biological Sciences SEAGRASS COVERAGE TRENDS IN THE INDIAN RIVER LAGOON SYSTEM R. W. VIRNSTEIN *,J.S.STEWARD, AND L. J. MORRIS St. Johns River Water Management District, Palatka, FL 32178 ABSTRACT: We

More information