Gyroscope with variable R

Size: px
Start display at page:

Download "Gyroscope with variable R"

Transcription

1 369(1a).wxm 1 / 11 Gyroscope with variable R (%i1) (%o0) kill(all); one 1 Coorinates (%i1) (%o1) t],!() epens([x,y,theta,phi,psi,r,v,t,u,l,phi,omega],t); t,y() t,ò() t,'() t,é() t,r() t,v() t,t() t,u() t,l() t,phi() t [x() Potential energy (%i) (U) U: m*g*(h*cos(theta)+r); gm() hcos() Ò+R 3 Lagrange function (%i3) (T_rot) T_rot: T: 1/*I[1]*(iff(phi,t)^*sin(theta)^+iff(theta,t)^) +1/*I[3]*(iff(phi,t)*cos(theta)+iff(psi,t))^; I 1 t Ò + sin() Ò t ' + I 3 Ò+ t ' cos() t É (%i4) (T_trans) (%i5) (L) T_trans: 1/*m*iff(R+h*cos(theta),t)^; m Ò R h sin() t t Ò L: T_rot+T_trans-U; m Ò R h sin() t I 3 Ò+ t ' cos() t É t Ò + gm() hcos() Ò+R 4 Lagrange equations 4.1 theta equation I 1 + sin() Ò t Ò t ' +

2 369(1a).wxm / 11 (%i6) D1: iff(l, iff(theta,t)); (D1) I 1 t Ò hmsin() R hsin() t Ò Ò t Ò (%i7) E1: expan(ratsimp(iff(d1,t) - iff(l,theta) = 0)); Ò (E1) h msin() t Ò+I 1 mcos() Òsin() t Ò+h Ò t Ò I 1 t ' cos() Òsin() Ò+I 3 t ' cos() Òsin() Ò+I 3 t ' t É sin() Ò g hmsin() Ò tr hmsin() Ò=0 (%i8) E1a: solve(e1, iff(theta,t,)); (E1a) mcos() Òsin() t Ò= (h Ò () I 3 I 1 t ' cos() Ò+I 3 [ t Ò + h msin() Ò +I 1 )] 4. phi equation t ' (%i9) D: iff(l, iff(phi,t)); (D) I 1 t ' sin() Ò +I 3 cos() Ò t É+ g tr hm sin() Ò)/( t ' cos() Ò+ t É (%i10) E: expan(ratsimp)(iff(d,t) - iff(l,phi) = 0); (E)() I 1 I 3 t ' cos() Ò I 3 t É sin() Ò t Ò+I 1 t' sin() Ò +I 3 t' cos() Ò +I 3 té cos() Ò=0 (%i11) Ea: solve(e, iff(phi,t,)); (Ea) [ t '= () I 1 I 3 Ò I 3 t ' cos() t É sin() t Ò+I 3 cos() té Ò ] I 1 sin() Ò +I 3 cos() Ò 4.3 psi equation Ò

3 369(1a).wxm 3 / 11 (%i1) D3: iff(l, iff(psi,t)); (D3) I 3 Ò+ t ' cos() t É (%i13) E3: expan(ratsimp(iff(d3,t) - iff(l,psi) = 0)); (E3) I 3 t ' sin() Ò ' cos() Ò+I 3 t Ò+I 3 (%i14) E3a: solve(e3, iff(psi,t,)); (E3a) [ t É= t ' sin() Ò t Ò t' cos() Ò] 4.4 R equation (%i15) D4: iff(l, iff(r,t)); (D4) m Ò t R hsin() t Ò t (%i16) E4: expan(ratsimp(iff(d4,t) - iff(l,r) = 0)); (E4) hmsin() Ò tò hmcos() (%i17) E4a: solve(e4, iff(r,t,)); (E4a) [ t R=hsin() Ò Ò t Ò+hcos() t Ò +gm+ Ò t Ò g] t É=0 tr m=0 5 Lagrange equations with constants of motion (%i18) kill(l); (%o18) one (%i19) theta_otot: 1/I[1]*sin(theta)*(phi_ot^*cos(theta)*(I[1]-I[3] I 1 I 3 phi_ot cos() Ò I 3 phi_ot psi_ot+ghm sin() Ò (theta_otot) () (%i0) psi_ot: 1/I[3]*(L[psi]-I[3]*phi_ot*cos(theta)); (psi_ot) L É I 3 phi_ot cos() Ò I 3 I 1 (%i1) phi_ot: (L[phi]-L[psi]*cos(theta))/(I[1]*sin(theta)^); (phi_ot) L ' L É cos() Ò I 1 sin() Ò

4 369(1a).wxm 4 / 11 (%i) theta_ot: eta; (theta_ot) Ñ (%i3) R_otot: -g; (R_otot) g (%i4) R_ot: v; (R_ot) v 5.1 right-han sies of Lagrange equations, Hamilton form (%i30) Eq5: theta_otot /*=eta_ot*/; Eq5a: eta /*= theta_ot*/; Eq6: phi_ot; Eq7: psi_ot; Eq8: R_otot; Eq9: v; () I 1 I 3 phi_ot cos() Ò I 3 phi_ot psi_ot+ghm sin() Ò (Eq5) (Eq5a)Ñ L ' L É cos() Ò (Eq6) I 1 sin() Ò L É I 3 phi_ot cos() Ò (Eq7) (Eq8) (Eq9) g v I 3 I 1 (%i31) str: [I[1]=0.5, I[3]=3., L[phi]=.8, L[psi]=, m=10, g=9.81, h=0. (str) [I 1 =0.5,I 3 =3,L ' =0.8,L É =,m=10,g=9.81,h=0.]

5 369(1a).wxm 5 / 11 (%i37) Eq5aA: ev(eq5a, str, eval); Eq5A: ev(eq5, str, eval); Eq6A: ev(eq6, str, eval); Eq7A: ev(eq7, str, eval); Eq8A: ev(eq8, str, eval); Eq9A: ev(eq9, str, eval); (Eq5aA)Ñ (Eq5A).0(.0() 0.8 cos() Ò 10.0() 0.8 cos() Ò cos() Ò (Eq6A) (Eq7A) (Eq8A) 9.81 (Eq9A) v sin() Ò 4.0() 0.8 cos() Ò 6.0() 0.8 cos() Ò cos() Ò sin() Ò sin() Ò +19.6)sin() Ò sin() Ò 6.0() 0.8 cos() Ò cos() Ò sin() Ò 3 (%i38) s: rk([eq5a, Eq5aA, Eq6A, Eq7A, Eq8A, Eq9A], [eta, theta, phi, psi,v,r], [0, %pi/4, %pi/4, 0, 0, 0], [t,0,8,0.01])$ 5. Graphics (%i44) c1: makelist([p[1],p[]],p,s)$ c: makelist([p[1],p[3]],p,s)$ c3: makelist([p[1],p[4]],p,s)$ c4: makelist([p[1],p[5]],p,s)$ c5: makelist([p[1],p[6]],p,s)$ c6: makelist([p[1],p[7]],p,s)$ 5.3 Plot theta, phi, psi

6 369(1a).wxm 6 / 11 (%i45) wxplot([[iscrete, c1], [iscrete, c]], [xlabel, "time"], [legen, "theta_{ot}", "theta"])$ (%t45) (%i46) wxplot([[iscrete, c3], [iscrete, c4]], [xlabel, "time"], [legen, "phi", "psi"])$ (%t46)

7 369(1a).wxm 7 / 11 (%i47) wxplot([[iscrete, c5], [iscrete, c6]], [xlabel, "time"], [legen, "v", "R"])$ (%t47) 5.4 Plot angular velocities (%i48) omega[3]: ratsimp(ev(phi_ot*cos(theta)+psi_ot)); (%o48) L É I 3 (%i49) omega[1]: phi_ot*sin(theta)*sin(psi)+theta_ot*cos(psi); (%o49) sin() É() L ' L É cos() Ò I 1 sin() Ò +Ñcos() É (%i50) omega[]: phi_ot*sin(theta)*cos(psi)-theta_ot*sin(psi); (%o50) cos() É() L ' L É cos() Ò I 1 sin() Ò Ñsin() É

8 369(1a).wxm 8 / 11 (%i53) omeg1: ev(omega[1], str); omeg: ev(omega[], str); omeg3: ev(omega[3], str);.0 sin() É 0.8 cos() Ò (omeg1) (omeg) (omeg3) 3 sin() Ò.0 cos() 0.8 cos() Ò É () sin() Ò +Ñcos() É Ñsin() É (%i54) om1: om: om3: om4: []; (om1) [] (%i55) for i:1 thru length(c1) o ( block([t], str1: [eta=c1[i][], theta=c[i][], phi=c3[i][], psi=c4[i][ t: c1[i][1], om1: appen(om1, [[t, ev(omeg1, str1)]]), om: appen(om, [[t, ev(omeg, str1)]]), om3: appen(om3, [[t, ev(omeg3, str1)]]), om4: appen(om4, [[t, ev(sqrt(omeg1^+omeg^+omeg3^), str1)] /*print(t,om1[i],om[i],om3[i]) */ )); (%o55) one (%i56) kill(y); (%o56) one

9 369(1a).wxm 9 / 11 (%i57) wxplot([[iscrete, om1], [iscrete, om], [iscrete, om3], [iscrete, om4]], [xlabel, "time"], [legen, "omega[1]", "omega[]", "omega[3]", " omega "])$ (%t57) 5.5 Plot space curve of centre of mass (%i58) cl1: makelist([p[1],10,p[3],p[4]],p,s)$ (%i59) cl1[1]; (%o59) [0.11,10, , ]

10 369(1a).wxm 10 / 11 (%i60) transf(cl1) := ( block([i,t,r,theta,phi], cl: [], for i:1 thru length(cl1) o ( [t,r,theta,phi]: cl1[i], x: r*sin(theta)*cos(phi), y: r*sin(theta)*sin(phi), z: r*cos(theta), /*print(t,x,y,z),*/ cl: appen(cl, [[x,y,z]]) ), return(cl))); (%o60) transf() cl1 :=block([i,t,r,ò,'],cl:[],for i thru length() cl1 o ([t,r,ò,']:cl1 i,x:r sin() Òcos() ',y:rsin() Òsin() ', z:rcos() Ò,cl:appen() cl,[[x,y,z]] ),return() cl ) (%i61) cl: transf(cl1); << Ausruck länger, als im Konfigurationsialog erlaubt >> (%i6) cr: points(cl)$ (%i63) wxraw3(line_with=,color=blue, cr)$ 0 errors, 0 warnings (%t63) 5.6 Plot space curve of omega vector

11 369(1a).wxm 11 / 11 (%i64) cl1: makelist([p[1],10,p[3],p[4]],p,s)$ (%i65) cl1[1]; (%o65) [0.11,10, , ] (%i67) cl: []; for i:1 thru length(om1) o ( [x,y,z]: [om1[i][],om[i][],om3[i][]], /*print(t,x,y,z),*/ cl: appen(cl, [[x,y,z]]) ); (cl) [] (%o67) one (%i68) cl[1]; (%o68) [0.0, , 3 ] (%i69) cr: points(cl)$ (%i70) wxraw3(line_with=,color=blue, cr)$ (%t70)

Gyroscope free falling with R

Gyroscope free falling with R 369(1b.wxm 1 / 13 Gyroscope free falling with R (%i1 kill(all; (%o0 one 1 Coorinates (%i1 epens([x,y,theta,phi,psi,r,v,t,u,l,phi,omega],t; (%o1 [x( t,y( t,( t,'( t,( t,r( t,v( t,t( t,u( t,l( t,phi( t,

More information

Milankowitch Cycles. 1 Coordinates. 2 Rotation matrix of Eulerian angles. (%i1) kill(all); (%o0) done

Milankowitch Cycles. 1 Coordinates. 2 Rotation matrix of Eulerian angles. (%i1) kill(all); (%o0) done 369(9-rot.wxm 1 / 1 Milankowitch Cycles (%i1 kill(all; (%o one 1 Coorinates (%i1 epens([x,y,theta,phi,psi,theta_1,t,u,l,r,omega],t; (%o1 [x( t,y( t,( t,'( t,( t, 1 ( t,t( t,u( t,l( t,r( t,!( t ] (%i e_r:

More information

Spinning top - represented by dumbbell

Spinning top - represented by dumbbell Lagange-umbbell.wxm 1 / 10 Spinning top - epesente by umbbell (%i1) kill(all); (%o0) one 1 Cooinates (%i1) epens([x,y,z,x,y,z,theta,phi,theta_1,phi_1,,t,u,l],t); (%o1) [x( t ),y( t ),z( t ),X( t ),Y( t

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E Section 7.: Coulomb s Law Tutorial 1 Practice, page 33 1. Given: q 1 1.00 10 4 C; q 1.00 10 5 C; r.00 m; k 8.99 10 9 N m /C Required: Analysis: Solution: # N m % 8.99 10 9 ( (1.00 10 )4 C )(1.00 10 )5

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

1 Equation set of 7 equations

1 Equation set of 7 equations 380(4).wxm 1 / 8 (%i1) kill(all); (%o0) one (%i1) cross(a,b) := [a[2]*b[3] - a[3]*b[2], a[3]*b[1] - a[1]*b[3], a[1]*b[2] - a[2]*b[1]]; (%o1) cross( a,b ):=[a 2 b 3 a 3 b 2,a 3 b 1 a 1 b 3,a 1 b 2 a 2 b

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1)

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1) PHY 546: Theoretical Dynamics, Fall 05 Assignment # 7, Solutions Graded Problems Problem ψ ψ ψ Θ b (.a) The scattering angle satisfies the relation Θ π ψ, () where ψ is the angle between the direction

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Lecture10: Plasma Physics 1. APPH E6101x Columbia University

Lecture10: Plasma Physics 1. APPH E6101x Columbia University Lecture10: Plasma Physics 1 APPH E6101x Columbia University Last Lecture - Conservation principles in magnetized plasma frozen-in and conservation of particles/flux tubes) - Alfvén waves without plasma

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Сборник 2 fhxn "HeHo, Dolty!" HAL LEONARD D/X/ELAND COMBO PAK 2 Music and Lyric by JERRY HERMÁN Arranged by PAUL SEVERSON CLARNET jy f t / / 6f /* t ü.. r 3 p i

More information

XII-IC (C/F) : 11/12/ (i) m As per question, pulley to be considered as a circular disc. Angular acceleration of the pulley is

XII-IC (C/F) : 11/12/ (i) m As per question, pulley to be considered as a circular disc. Angular acceleration of the pulley is CDE REVISIN NARAYANA I I T / N E E T A C A D E M Y REVISIN TEST - 0 XII-IC (C/F) : //07..... 6. 7. 8. 9. 0........ PHYSICS 6. 7. 8. 9. 0...... 6. 7. 8. 9. 0...... 6. 7. 8. 9. 0...... CHEMISTRY 6. 7. 8.

More information

Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3

Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3 Automatic Control III (Reglerteknik III) fall 20 4. Nonlinear systems, Part 3 (Chapter 4) Hans Norlander Systems and Control Department of Information Technology Uppsala University OSCILLATIONS AND DESCRIBING

More information

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *»

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *» THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION AND A PROOF OF A CONJECTURE OF RAMANUJAN 1 TSENG TUNG CHENG 1. Summary. The Poisson distribution with parameter X is given by (1.1) F(x) = 23 p r where

More information

AP Physics 1 Summer Assignment. Directions: Find the following. Final answers should be in scientific notation. 2.)

AP Physics 1 Summer Assignment. Directions: Find the following. Final answers should be in scientific notation. 2.) AP Physics 1 Summer Assignment DUE THE FOURTH DAY OF SCHOOL- 2018 Purpose: The purpose of this packet is to make sure that we all have a common starting point and understanding of some of the basic concepts

More information

shhgs@wgqqh.com chinapub 2002 7 Bruc Eckl 1000 7 Bruc Eckl 1000 Th gnsis of th computr rvolution was in a machin. Th gnsis of our programming languags thus tnds to look lik that Bruc machin. 10 7 www.wgqqh.com/shhgs/tij.html

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set solutions September 8, 3 e dλ dt Problem : Torque is, for this system,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set Solutions September 17, 5 Problem 1: First, note that λ 1 = L 1 i 1 +

More information

P49361A Pearson Education Ltd.

P49361A Pearson Education Ltd. Instructions Use black ink or ball-point pen. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions. Answer the questions in the spaces provided

More information

t r ès s r â 2s ré t s r té s s s s r é é ér t s 2 ï s t 1 s à r

t r ès s r â 2s ré t s r té s s s s r é é ér t s 2 ï s t 1 s à r P P r t r t tr t r ès s rs té P rr t r r t t é t q s q é s Prés té t s t r r â 2s ré t s r té s s s s r é é ér t s 2 ï s t 1 s à r ès r é r r t ît P rt ré ré t à r P r s q rt s t t r r2 s rtí 3 Pr ss r

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

ON THE GROUP &[X] OF HOMOTOPY EQUIVALENCE MAPS BY WEISHU SHIH 1. Communicated by Deane Montgomery, November 13, 1963

ON THE GROUP &[X] OF HOMOTOPY EQUIVALENCE MAPS BY WEISHU SHIH 1. Communicated by Deane Montgomery, November 13, 1963 ON THE GROUP &[X] OF HOMOTOPY EQUIVALENCE MAPS BY WEISHU SHIH 1 Communicated by Deane Montgomery, November 13, 1963 Let X be a CW-complex; we shall consider the group 2 s[x] formed by the homotopy classes

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 05 XII-IC SPARK Date:

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 05 XII-IC SPARK Date: 1. (A). (C). (B). (B) 5. (A) 6. (B) 7. (B) 8. (A) 9. (A) 1. (D) 11. (C) 1. (B) 1. (A) 1. (D) 15. (B) NARAYANA I I T / P M T A C A D E M Y C o m m o n P r a c t i c e T e s t 5 XII-IC SPARK Date: 9.1.17

More information

Introductory Unit for A Level Physics

Introductory Unit for A Level Physics Introductory Unit for A Level Physics Name: 1 Physics Year 12 Induction Objectives: To give you the skills needed for the successful study of Physics at A level. To help you to identify areas in which

More information

Menta Math (Integers. Grade 8. Set 1. Name,

Menta Math (Integers. Grade 8. Set 1. Name, Menta Math (Integers Grade 8 Set 1 Name, z 19 W? II II 11 11 If It U If It 11 11 If 11 11 11 It It Nt>iCVtt^ t'i '^c!'i t^1 'VOe^t`1 N fill r1 t1 11 II 11 11 11 11^ I1 t1 it I1 11 11 11 11 11 c -4 OD4p6

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Background mathematics Basic mathematical symbols Elementary arithmetic symbols Equals Addition or plus 3 5 Subtraction, minus or less 3 or Multiplication

More information

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2012 ELECTIVE COURSE : MATHEMATICS MTE-10 : NUMERICAL ANALYSIS

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2012 ELECTIVE COURSE : MATHEMATICS MTE-10 : NUMERICAL ANALYSIS No. of Printed Pages : 11 MTE-10 L. BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2012 ELECTIVE COURSE : MATHEMATICS MTE-10 : NUMERICAL ANALYSIS Time : 2 hours Maximum Marks : 50 (Weightage

More information

RESULT DETAILS OF INTERVIEWS HELD AT

RESULT DETAILS OF INTERVIEWS HELD AT ESC Chita Se Mukti F.. 113-A/12/15/8/Ct Sp1t(Rectt.)-Med RESULT Date: 17.9.2 12 DETALS OF TERVEWS HELD AT G ES HOSPTAL, JHLML, DELH O 11.9.212 & 13.9.212 FOR RECRUTMET OF SEOR RESDETS O TEURE BASS FOR

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Fourier Analysis PSY 310 Greg Francis Lecture 08 It s all waves! Representation of information One of the big issues in perception (and cognition in general) is identifying how the brain represents information

More information

5.2 - Euler s Method

5.2 - Euler s Method 5. - Euler s Method Consider solving the initial-value problem for ordinary differential equation: (*) y t f t, y, a t b, y a. Let y t be the unique solution of the initial-value problem. In the previous

More information

A Study on Dental Health Awareness of High School Students

A Study on Dental Health Awareness of High School Students Journal of Dental Hygiene Science Vol. 3, No. 1,. 23~ 31 (2003), 1 Su-Min Yoo and Geum-Sun Ahn 1 Deartment of Dental Hygiene, Dong-u College 1 Deartment of Dental Hygiene, Kyung Bok College In this research,

More information

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February RESMA course Introduction to LISREL Harry Ganzeboom RESMA Data Analysis & Report #4 February 17 2009 LISREL SEM: Simultaneous [Structural] Equations Model: A system of linear equations ( causal model )

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page Questions Example (3.6.) Find a particular solution of the differential equation y 5y + 6y = 2e

More information

Dorian Mazauric. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel

Dorian Mazauric. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel Optimisation discrète dans les réseaux de télécommunication : reconfiguration du routage, routage efficace en énergie, ordonnancement de liens et placement de données Dorian Mazauric To cite this version:

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Fourier Analysis PSY 310 Greg Francis. Lecture 08. Representation of information

Fourier Analysis PSY 310 Greg Francis. Lecture 08. Representation of information Fourier Analysis PSY 310 Greg Francis Lecture 08 It s all waves! Representation of information One of the big issues in perception (and cognition in general) is identifying how the brain represents information

More information

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10)

Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) Networks and Systems Prof V.G K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 10 Fourier Series (10) What we have seen in the previous lectures, is first

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Lecture 19: Calculus of Variations II - Lagrangian

Lecture 19: Calculus of Variations II - Lagrangian Lecture 19: Calculus of Variations II - Lagrangian 1. Key points Lagrangian Euler-Lagrange equation Canonical momentum Variable transformation Maple VariationalCalculus package EulerLagrange 2. Newton's

More information

t t t ér t rs r t ét q s

t t t ér t rs r t ét q s rés té t rs té s é té r t q r r ss r t t t ér t rs r t ét q s s t t t r2 sé t Pr ss r rs té P r s 2 t Pr ss r rs té r t r r ss s Pr ss r rs té P r q r Pr ss r t r t r r t r r Prés t r2 r t 2s Pr ss r rs

More information

(Ws # 5) Worksheet Mechanisms: Key

(Ws # 5) Worksheet Mechanisms: Key (Ws # 5) Worksheet 1.9-1.12 Mechanisms: Key 1. OCl - + H2O HOCl + OH - HOCl + I - HOI + Cl - HOI + OH - H2O + OI - i) The net chemical equation is: OCl - + I - + Cl - +OI - ii) The reaction intermediates

More information

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran R e p u b l f th e P h lp p e D e p rt e t f E d u t R e V, e tr l V y D V N F B H L ty f T b l r Ju ly, D V N M E M R A N D U M N. 0,. L T F E N R H G H H L F F E R N G F R 6 M P L E M E N T A T N T :,

More information

AQA 7407/7408 MEASUREMENTS AND THEIR ERRORS

AQA 7407/7408 MEASUREMENTS AND THEIR ERRORS AQA 7407/7408 MEASUREMENTS AND THEIR ERRORS Year 12 Physics Course Preparation 2018 Name: Textbooks will be available from the school library in September They are AQA A level Physics Publisher: Oxford

More information

MITOCW watch?v=glywlyee8ou

MITOCW watch?v=glywlyee8ou MITOCW watch?v=glywlyee8ou The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A Ήχος α H ris to os s n ș t slă ă ă vi i i i i ți'l Hris to o os di in c ru u uri, în tâm pi i n ți i'l Hris

More information

The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus

The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus Uppsala University Department of Linguistics The distribution of characters, bi- and trigrams in the Uppsala 70 million words Swedish newspaper corpus Bengt Dahlqvist Abstract The paper describes some

More information

Non-Linear Problems. Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl

Non-Linear Problems. Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl Non-Linear Problems Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl (here Y is a matrix). Suppose that the origin is an isolated equilibrium point (that is, there is some circle

More information

^ 4 ^1)<$^ :^t -*^> us: i. ^ v. é-^ f.. ^=2. \ t- "tì. _c^_. !r*^ o r , -UT -B6 T2T. - =s.- ; O- ci. \j-

^ 4 ^1)<$^ :^t -*^> us: i. ^ v. é-^ f.. ^=2. \ t- tì. _c^_. !r*^ o r , -UT -B6 T2T. - =s.- ; O- ci. \j- Q «L j T2T "S = $ W wwwplemlzz cm Lez Pe 4692! "ì c O c 9T UT =2 4 u & S4 4 é B6 j H Fcebk Pl Emlzz egme Yuubegplemlzz Skpe plemlzz 7 424 O S& wwwplemlzz cm Lez Pe 4692 M O ~ x g È «p 2 c & b U L " & K

More information

Matrix of Linear Xformations

Matrix of Linear Xformations Matrix of Linear Xformations Theorem: If "L" is a linear transformation mapping R n into R m, there exists an mxn matrix "A" such that Lx Ax. This matrix is called the Standard Matrix for the Linear Transformation

More information

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination June, 2017

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination June, 2017 No. of Printed Pages : 8 MTE-10 BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination June, 2017 1 E- 27D ELECTIVE COURSE : MATHEMATICS MTE-10 : NUMERICAL ANALYSIS Time : 2 hours Maximum Marks : 50 (Weightage

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

A evaluation proposal for the Wuerth centrifugal pumper by W.D. Bauer,

A evaluation proposal for the Wuerth centrifugal pumper by W.D. Bauer, A evaluation proposal for the Wuerth centrifugal pumper by W.D. Bauer, 2.7.02 1. Introduction In a previous article the author described Wuerth s rotor experiment [1]. The result of the experiment was

More information

AL Physics MC Answers Year:1997 Question Number: 1,2,3,4,5,6,9,12,14,15,16,17,18,19,20,21,24,25,26,27,33,40,41,42, MC(1)

AL Physics MC Answers Year:1997 Question Number: 1,2,3,4,5,6,9,12,14,15,16,17,18,19,20,21,24,25,26,27,33,40,41,42, MC(1) AL Physics MC Answers Year:997 Question Number:,,3,4,5,6,9,,4,5,6,7,8,9,0,,4,5,6,7,33,40,4,4,43 997MC() external force Red force: tension = T (along the same string, tension is unchanged) Blue force =

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

Kinematics of Rotations: A Summary

Kinematics of Rotations: A Summary A Kinematics of Rotations: A Summary The purpose of this appenix is to outline proofs of some results in the realm of kinematics of rotations that were invoke in the preceing chapters. Further etails are

More information

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations: Problems and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 4 The Method of Variation of Parameters Problem 4.1 Solve y

More information

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since

Partial proof: y = ϕ 1 (t) is a solution to y + p(t)y = 0 implies. Thus y = cϕ 1 (t) is a solution to y + p(t)y = 0 since Existence and Uniqueness for LINEAR DEs. Homogeneous: y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = 0 Non-homogeneous: g(t) 0 y (n) + p 1 (t)y (n 1) +...p n 1 (t)y + p n (t)y = g(t) 1st order LINEAR

More information

(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09)

(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09) (Refer Slide Time: 00:55) Power System Dynamics Prof. M. L. Kothari Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 09 Modelling of Synchronous Machine (Contd ) Friends,

More information

Higher Order Linear Equations Lecture 7

Higher Order Linear Equations Lecture 7 Higher Order Linear Equations Lecture 7 Dibyajyoti Deb 7.1. Outline of Lecture General Theory of nth Order Linear Equations. Homogeneous Equations with Constant Coefficients. 7.2. General Theory of nth

More information

Table 1. Solubility of gypsum and anhydrite adopted in this research and the predicted SI values

Table 1. Solubility of gypsum and anhydrite adopted in this research and the predicted SI values Supporting information: Table 1. Solubility of gypsum and anhydrite adopted in this research and the predicted SI values Sample T ID # ( o C) 16, 65, 74 P NaCl CaSO 4 nh 2 O SI System (psi) (mol/kg H 2

More information

6.003 Lab 2. Basic Problems. Nada Amin April 6, (b) Figure 1: Plot of D 2 (e jw )

6.003 Lab 2. Basic Problems. Nada Amin April 6, (b) Figure 1: Plot of D 2 (e jw ) 6.003 Lab 2 Nada Amin namin@mit.edu April 6, 2005 Basic Problems (b) Figure 1: Plot of D 2 (e jw ) 1 Nada Amin (6.003 Lab 1) (4/6/05) 2 Figure 2: Plot of D 9 (e jw ) Nada Amin (6.003 Lab 1) (4/6/05) 3

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED. BSc/MSci EXAMINATION PHY-304 Time Allowed: Physical Dynamics 2 hours 30 minutes Date: 28 th May 2009 Time: 10:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from section

More information

ON A CONVERGENCE THEOREM FOR THE LAGRANGE INTERPOLATION POLYNOMIALS

ON A CONVERGENCE THEOREM FOR THE LAGRANGE INTERPOLATION POLYNOMIALS ON A CONVERGENCE THEOREM FOR THE LAGRANGE INTERPOLATION POLYNOMIALS G. GRÜNWALD The unique polynomial of degree (n 1) assuming the values f(xi),, fipo n ) at the abscissas xi, x 2,, x n, respectively,

More information

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics CH.3. COMPATIBILITY EQUATIONS Multimedia Course on Continuum Mechanics Overview Introduction Lecture 1 Compatibility Conditions Lecture Compatibility Equations of a Potential Vector Field Lecture 3 Compatibility

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C

SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C GENERL NOTTION : SOLUTION OF TRINGLE In tringle BC ngles t vertices re usully denoted by, B, C PGE # sides opposite to these vertices re denoted by, b, c respectively Circumrdius is denoted by R 3 Inrdius

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction 1,3 1,2 1 2 3 r A ptq pxq p0q 0 pxq 1 x P N S i r A ptq r A ÝÑH ptq i i ÝÑH t ptq i N t1 ÝÑ ź H ptq θ1 t 1 0 i `t1 ri ` A r ÝÑ H p0q ra ptq t ra ptq i,j 1 i j t A r ptq i,j 0 I r ś N ˆ N mś ĂA l A Ą m...

More information

V = IR. There are some basic equations that you will have to learn for the exams. These are written down for you at the back of the Physics Guide.

V = IR. There are some basic equations that you will have to learn for the exams. These are written down for you at the back of the Physics Guide. Physics Induction Please look after this booklet ypu will need to hand it in on your return to school in September and will need to get a pass to continue on the AS cours 1 Physics Induction Objectives:

More information

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ Department of Physics University of arylan College Park, arylan PHYSICS 4 Prof. S. J. Gates Fall 5 Final Exam Dec. 6, 5 This is a OPEN book examination. Rea the entire examination before you begin to work.

More information

Math 144 Activity #7 Trigonometric Identities

Math 144 Activity #7 Trigonometric Identities 144 p 1 Math 144 Activity #7 Trigonometric Identities What is a trigonometric identity? Trigonometric identities are equalities that involve trigonometric functions that are true for every single value

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 5 Machine Foundations Lecture - 31 EHS Theory, Vibrational Control Let us start our

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Chapter 6 Answers to Problems

Chapter 6 Answers to Problems Chapter 6 Answers to Problems 6.1 (a) NH 3 C3v E 2C3 3 v 4 1 2 3 0 1 12 0 2 3n = 3A 1 A 2 4E trans = A 1 E rot = A 2 E = 2A 2E = 4 frequencies 3n-6 1 Infrared 4 (2A 1 2E) Raman 4 (2A 1 2E) Polarized 2

More information

I.~ I ./ TT. Figure P6.1: Loops of Problem 6.1.

I.~ I ./ TT. Figure P6.1: Loops of Problem 6.1. CHAPTER 6 249 Chapter 6 Sections 6-1 to 6-6: Faraday's Law and its Applications Problem 6.1 The switch in the bottom loop of Fig. 6-17 (p6.1) is closed at t = 0 and then opened at a later time tl. What

More information