Matrix of Linear Xformations

Size: px
Start display at page:

Download "Matrix of Linear Xformations"

Transcription

1 Matrix of Linear Xformations Theorem: If "L" is a linear transformation mapping R n into R m, there exists an mxn matrix "A" such that Lx Ax. This matrix is called the Standard Matrix for the Linear Transformation "L". x n x k e k k Lx L k n x k e k k n x k Le ( k ) Lx Le ( )Le ( )... L e n ( ) x A L( e )Le ( )... L e n ( ) Example A: Find the image of the vector, u under the transformation, Lx matrix, "A"., x and find the standard Page of 7

2 Lu L A ( L( e )Le ( )) L L The transformation is a pure contraction. Example B: Find the image of the vector, u, under the transformation, Lx and find the standard matrix, "A". x Lu L A ( L( e )Le ( )) L L The transformation is a projection of x onto the x -axis. Page of 7

3 Example C: Find the image of the vector, u, under the transformation, Lx standard matrix, "A". x x and find the Lu L A ( L( e )Le ( )) L L This is a reflection about the line x x. Vectors, u and L(u) Page of 7

4 Example D: Find the image of the vector, u, x under the transformation, Lx and find the standard matrix, "A". x Lu L A ( L( e )Le ( )) L L Vectors, u and L(u) The transformation is a rotation CCWof 9 degrees of x. Page 4 of 7

5 Example E: Find the image of the vector, u, under the transformation, Lx standard matrix, "A". and find the x x Lu L A ( L( e )Le ( )) L L Vectors, u and L(u) The transformation is a rotation CW of 9 degrees of x. Page of 7

6 Example : "L" is a vertical shear transformation that maps e into e e but leaves the vector e unchanged. Find the Standard Matrix of "L". e e Le ( ) A [L( e ),L( e )] Le Let us see how the unit square depicted below is transformed under "L". x x Page 6 of 7

7 Examine transformation of the 4 vertices. Here is the picture of that vertical shear transformation of the unit square. x x Example : "L" is a horizontal shear transformation that maps e into e e + but leaves the vector e unchanged. Find the Standard Matrix of "L". Page 7 of 7

8 e e Le ( ) + Le A [L( e ),L( e )] Let us see how the unit square depicted below is transformed under "L". x x Page 8 of 7

9 Examine transformation of the 4 vertices x x Page 9 of 7

10 Example 4: "L" rotates points about the origin thru " φ " radians CCW. Find the Standard Matrix of "L". Rotate e about the origin CCW an angle " φ". The length of the new vector is "", just like e, but its components are different. Since this new vector is a unit vector that makes an angle "φ" with the positive x cos( φ) -axis, this must be that vector: Le ( ) cos φ sin φ sin φ Rotate e about the origin CCW an angle " φ". The length of the new vector is "", just like e, but its components are different. Since this new vector is a π unit vector that makes an angle "φ + " with the positive x -axis, this must be that vector:. cos φ sin φ + + π π. Page of 7

11 cos φ + π cos π sin π cos φ sin φ sin φ sin φ Te ( ) + π cos π sin π sin φ + cos φ cos φ sin φ cos φ A [T( e ),T( e )] cos φ sin φ sin φ cos φ Let us see how the unit square depicted below is π transformed under "T" for φ. 4 x x Page of 7

12 A cos π 4 sin π 4 sin π 4 cos π 4 Examine transformation of the 4 vertices. Page of 7

13 x x Now we examine Linear Transformations from a Standard Matrix perspective. Recall the definitions for onto and one-to-one transformations. Definition: A mapping L: R n --->R m is said to be onto R m if each vector "b" in R m is the image of at least one vector "x" in R n. Definition: A mapping L: R n --->R m is said to be one-to-one if each vector "b" in R m is the image of at most one vector "x" in R n. Page of 7

14 Example : Determine if the transformation Lx x + x from R 4 into R 4 is onto, one-to-one, x + x x + x 4 both, or neither. A L( e )Le ( )Le ( )Le 4 ( ) This matrix has only pivots, and not 4. Therefore, the equation: Ax b has more than just the trivial solution, x. Accordingly, "L" is NOT one-to-one. Note that the matrix, "A", has 4 columns and only pivots. Its column vectors can not span R 4. Accordingly, "L" does not map R 4 onto R 4 and thus can NOT be onto. This mapping "T" is thus neither one-to-one nor onto. We proved the following theorem earlier, but it is worthy of repeating. Page 4 of 7

15 Theorem: Let L: R n --->R m be a Linear Transformation. Then "L" is one-to-one if and only if the equation Lx has only the trivial solution x. Let u v and both be in R n. If "L" is one-to-one, then Lu ( v) Lu Lv. Accordingly, L( x) has only the trivial solution. If Tl( x) has only the trivial solution, then Lu ( v) Lu Lv implies u v and thus that the vectors are not distinct. Otherwise, Lu Lv and thus "L" must be one-to-one. But this theorem is new, Theorem: Let L: R n --->R m be a Linear transformation and let "A" be the Standard Matrix for "L", then "L" maps R n onto R m if and only if the columns of "A" span R m ; "L" is one-to-one if and only if the columns of "A" are Linearly Independent. If the columns of "A" span R m, then the equation Ax b has at least one solution x in R n for every b in R m and thus "L" is onto. Page of 7

16 If "L" is onto, then every x in R n has an image b in R m which implies that the equation Ax b is consistent for every b in R m and thus the columns of "A" must span R m. If the columns of "A" are Linearly Independent, then m nand every "b" in R m can be represented as a unique linear combination of the columns of "A" and so distinct vectors in R n have distinct images in R m. Thus, "L" is one-to-one, If "L" is one-to-one, then distinct vectors "x" in R n produce distinct vectors "b" in R m under "L". Accordingly, Ax b has a unique solution for each "b". This in turn requires that the columns of "A" be linearly independent. Page 6 of 7

17 Example 6:Determine if the transformation x + x + 7x Lx x + x from R 4 into R 4 is onto, x one-to-one, both, or neither. A L( e )Le ( )Le ( ) 7 The columns of "A" span R ; therefore, the mapping is onto. The columns of "A" are linearly independent; therefore, the mapping is also one-to-one. Page 7 of 7

Matrix of Linear Xformations

Matrix of Linear Xformations Matrix of Linear Xformations Theorem: If "L" is a linear transformation mapping R n into R m, there exists an mxn matrix "A" such that Lx Ax. This matrix is called the Standard Matrix for the Linear Transformation

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.9 THE MATRIX OF A LINEAR TRANSFORMATION THE MATRIX OF A LINEAR TRANSFORMATION Theorem 10: Let T: R n R m be a linear transformation. Then there exists a unique matrix

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. est Review-Linear Algebra Name MULIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Solve the system of equations ) 7x + 7 + x + + 9x + + 9 9 (-,, ) (, -,

More information

Fact: Every matrix transformation is a linear transformation, and vice versa.

Fact: Every matrix transformation is a linear transformation, and vice versa. Linear Transformations Definition: A transformation (or mapping) T is linear if: (i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ; (ii) T (cu) = ct (u) for all scalars c and all u in the

More information

Sept. 3, 2013 Math 3312 sec 003 Fall 2013

Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Section 1.8: Intro to Linear Transformations Recall that the product Ax is a linear combination of the columns of A turns out to be a vector. If the columns of

More information

Linear transformations

Linear transformations Linear Algebra with Computer Science Application February 5, 208 Review. Review: linear combinations Given vectors v, v 2,..., v p in R n and scalars c, c 2,..., c p, the vector w defined by w = c v +

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Linear Algebra (wi1403lr) Lecture no.4

Linear Algebra (wi1403lr) Lecture no.4 Linear Algebra (wi1403lr) Lecture no.4 EWI / DIAM / Numerical Analysis group Matthias Möller 29/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 29/04/2014 1 / 28 Review of lecture no.3 1.5 Solution Sets

More information

Section 1.8/1.9. Linear Transformations

Section 1.8/1.9. Linear Transformations Section 1.8/1.9 Linear Transformations Motivation Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a function of x. Many functions in real life the linear

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 13 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 13 1 / 8 The coordinate vector space R n We already used vectors in n dimensions

More information

Span & Linear Independence (Pop Quiz)

Span & Linear Independence (Pop Quiz) Span & Linear Independence (Pop Quiz). Consider the following vectors: v = 2, v 2 = 4 5, v 3 = 3 2, v 4 = Is the set of vectors S = {v, v 2, v 3, v 4 } linearly independent? Solution: Notice that the number

More information

Linear Independence Reading: Lay 1.7

Linear Independence Reading: Lay 1.7 Linear Independence Reading: Lay 17 September 11, 213 In this section, we discuss the concept of linear dependence and independence I am going to introduce the definitions and then work some examples and

More information

Math 54 Homework 3 Solutions 9/

Math 54 Homework 3 Solutions 9/ Math 54 Homework 3 Solutions 9/4.8.8.2 0 0 3 3 0 0 3 6 2 9 3 0 0 3 0 0 3 a a/3 0 0 3 b b/3. c c/3 0 0 3.8.8 The number of rows of a matrix is the size (dimension) of the space it maps to; the number of

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math 221 Open Book Exam 1 Open Notes 3 Sept, 24 Calculators Permitted Show all work (except #4) 1 2 3 4 2 1. (25 pts) Given A 1 2 1, b 2 and c 4. 1 a) (7 pts) Bring matrix A to echelon form.

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Announcements Monday, September 25

Announcements Monday, September 25 Announcements Monday, September 25 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due Friday

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp MTHSC 3 Section 4.3 Linear Independence in Vector Spaces; Bases Definition Let V be a vector space and let { v. v 2,..., v p } V. If the only solution to the equation x v + x 2 v 2 + + x p v p = is the

More information

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by:

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by: Page 1 This is a 60 min Quiz. Please make sure you put your name on the top right hand corner of each sheet. Remember the Honors Code will be enforced! You may use your book. NO HELP FROM ANYONE. Problem

More information

VECTOR SPACES & SUBSPACES

VECTOR SPACES & SUBSPACES VECTOR SPACES & SUBSPACES Definition: The real Vector Space " V " is the set of all entities called "vectors" with real entries that satisfy two closure properties and obey a set of eight rules. If "x"

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions 1. (5 pts) From Ch. 1.10 in Apostol: Problems 1,3,5,7,9. Also, when appropriate exhibit a basis for S. Solution. (1.10.1) Yes, S is a subspace of V 3 with basis {(0, 0, 1), (0, 1, 0)} and dimension 2.

More information

Check that your exam contains 20 multiple-choice questions, numbered sequentially.

Check that your exam contains 20 multiple-choice questions, numbered sequentially. MATH 22 MAKEUP EXAMINATION Fall 26 VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra Linear Equations in Linear Algebra.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v,, v p } in n is said to be linearly independent if the vector equation x x x 2 2 p

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1 Linear Independence Linear Algebra MATH 76 Linear Algebra LI or LD Chapter, Section 7 / Linear Combinations and Span Suppose s, s,..., s p are scalars and v, v,..., v p are vectors (all in the same space

More information

Linear Algebra MATH20F Midterm 1

Linear Algebra MATH20F Midterm 1 University of California San Diego NAME TA: Linear Algebra Wednesday, October st, 9 :am - :5am No aids are allowed Be sure to write all row operations used Remember that you can often check your answers

More information

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1 MATH4: Linear Algebra Exam # solutions 6//5 Page Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the

More information

Section 2.2: The Inverse of a Matrix

Section 2.2: The Inverse of a Matrix Section 22: The Inverse of a Matrix Recall that a linear equation ax b, where a and b are scalars and a 0, has the unique solution x a 1 b, where a 1 is the reciprocal of a From this result, it is natural

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

(c)

(c) 1. Find the reduced echelon form of the matrix 1 1 5 1 8 5. 1 1 1 (a) 3 1 3 0 1 3 1 (b) 0 0 1 (c) 3 0 0 1 0 (d) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (e) 1 0 5 0 0 1 3 0 0 0 0 Solution. 1 1 1 1 1 1 1 1

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 9: Characterizations of Invertible Matrices Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Announcements Review for Exam 1

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

6. Linear Transformations.

6. Linear Transformations. 6. Linear Transformations 6.1. Matrices as Transformations A Review of Functions domain codomain range x y preimage image http://en.wikipedia.org/wiki/codomain 6.1. Matrices as Transformations A Review

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Problem Point Value Points

Problem Point Value Points Math 70 TUFTS UNIVERSITY October 12, 2015 Linear Algebra Department of Mathematics Sections 1 and 2 Exam I Instructions: No notes or books are allowed. All calculators, cell phones, or other electronic

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

This lesson should help you work on section 1.9 in the third edition or Section 1.8 in the second updated edition.

This lesson should help you work on section 1.9 in the third edition or Section 1.8 in the second updated edition. Lesson : his lesson should help you work on section.9 in the third edition or Section.8 in the second updated edition. In the last section, we saw many examples of linear transformations with definition

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

The Four Fundamental Subspaces

The Four Fundamental Subspaces The Four Fundamental Subspaces Introduction Each m n matrix has, associated with it, four subspaces, two in R m and two in R n To understand their relationships is one of the most basic questions in linear

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form 0 Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Linear Independence MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Given a set of vectors {v 1, v 2,..., v r } and another vector v span{v 1, v 2,...,

More information

Final Examination 201-NYC-05 December and b =

Final Examination 201-NYC-05 December and b = . (5 points) Given A [ 6 5 8 [ and b (a) Express the general solution of Ax b in parametric vector form. (b) Given that is a particular solution to Ax d, express the general solution to Ax d in parametric

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Math 3C Lecture 25. John Douglas Moore

Math 3C Lecture 25. John Douglas Moore Math 3C Lecture 25 John Douglas Moore June 1, 2009 Let V be a vector space. A basis for V is a collection of vectors {v 1,..., v k } such that 1. V = Span{v 1,..., v k }, and 2. {v 1,..., v k } are linearly

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

Week #4: Midterm 1 Review

Week #4: Midterm 1 Review Week #4: Midterm Review April 5, NAMES: TARDIS : http://math.ucsb.edu/ kgracekennedy/spring 4A.html Week : Introduction to Systems of Linear Equations Problem.. What row operations are allowed and why?...

More information

Math 2940: Prelim 1 Practice Solutions

Math 2940: Prelim 1 Practice Solutions Math 294: Prelim Practice Solutions x. Find all solutions x = x 2 x 3 to the following system of equations: x 4 2x + 4x 2 + 2x 3 + 2x 4 = 6 x + 2x 2 + x 3 + x 4 = 3 3x 6x 2 + x 3 + 5x 4 = 5 Write your

More information

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 =

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 = This is a typical assignment, but you may not be familiar with the material. You should also be aware that many schools only give two exams, but also collect homework which is usually worth a small part

More information

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2.

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2. Math 258 Name: Final Exam Instructor: May 7, 2 Section: Calculators are NOT allowed. Do not remove this answer page you will return the whole exam. You will be allowed 2 hours to do the test. You may leave

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.3 Linearly Independent Sets; Bases Math 233 Linear Algebra 4.3 Linearly Independent Sets; Bases Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Announcements Wednesday, September 27

Announcements Wednesday, September 27 Announcements Wednesday, September 27 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due

More information

Math 220 Some Exam 1 Practice Problems Fall 2017

Math 220 Some Exam 1 Practice Problems Fall 2017 Math Some Exam Practice Problems Fall 7 Note that this is not a sample exam. This is much longer than your exam will be. However, the ideas and question types represented here (along with your homework)

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

Homework 2 Solutions

Homework 2 Solutions Math 312, Spring 2014 Jerry L. Kazdan Homework 2 s 1. [Bretscher, Sec. 1.2 #44] The sketch represents a maze of one-way streets in a city. The trac volume through certain blocks during an hour has been

More information

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018 Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

More information

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28 Sections 1.5, 1.7 Ma 322 Spring 217 Ma 322 Jan 24-28 Summary ˆ Text: Solution Sets of Linear Systems (1.5),Linear Independence (1.7) ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Announcements Wednesday, October 04

Announcements Wednesday, October 04 Announcements Wednesday, October 04 Please fill out the mid-semester survey under Quizzes on Canvas. WeBWorK 1.8, 1.9 are due today at 11:59pm. The quiz on Friday covers 1.7, 1.8, and 1.9. My office is

More information

Abstract Vector Spaces and Concrete Examples

Abstract Vector Spaces and Concrete Examples LECTURE 18 Abstract Vector Spaces and Concrete Examples Our discussion of linear algebra so far has been devoted to discussing the relations between systems of linear equations, matrices, and vectors.

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Quizzes for Math 304

Quizzes for Math 304 Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced row-echelon form of A; c) What are the pivot

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm APPM 2360 Exam 2 Solutions Wednesday, March 9, 206, 7:00pm 8:30pm ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5)

More information

which arises when we compute the orthogonal projection of a vector y in a subspace with an orthogonal basis. Hence assume that P y = A ij = x j, x i

which arises when we compute the orthogonal projection of a vector y in a subspace with an orthogonal basis. Hence assume that P y = A ij = x j, x i MODULE 6 Topics: Gram-Schmidt orthogonalization process We begin by observing that if the vectors {x j } N are mutually orthogonal in an inner product space V then they are necessarily linearly independent.

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

1.4 Linear Transformation I

1.4 Linear Transformation I .4. LINEAR TRANSFORMATION I.4 Linear Transformation I MATH 9 FALL 99 PRELIM # 5 9FA9PQ5.tex.4. a) Consider the vector transformation y f(x) from V to V such that if y (y ; y ); x (x ; x ); y (x + x ) p

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Linear Transformations: Kernel, Range, 1-1, Onto

Linear Transformations: Kernel, Range, 1-1, Onto Linear Transformations: Kernel, Range, 1-1, Onto Linear Algebra Josh Engwer TTU 09 November 2015 Josh Engwer (TTU) Linear Transformations: Kernel, Range, 1-1, Onto 09 November 2015 1 / 13 Kernel of a Linear

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

MATH2210 Notebook 3 Spring 2018

MATH2210 Notebook 3 Spring 2018 MATH2210 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH2210 Notebook 3 3 3.1 Vector Spaces and Subspaces.................................

More information

Math 242 fall 2008 notes on problem session for week of This is a short overview of problems that we covered.

Math 242 fall 2008 notes on problem session for week of This is a short overview of problems that we covered. Math 242 fall 28 notes on problem session for week of 9-3-8 This is a short overview of problems that we covered.. For each of the following sets ask the following: Does it span R 3? Is it linearly independent?

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs Advanced Mathematical Programming IE417 Lecture 24 Dr. Ted Ralphs IE417 Lecture 24 1 Reading for This Lecture Sections 11.2-11.2 IE417 Lecture 24 2 The Linear Complementarity Problem Given M R p p and

More information

KEY. Math 343 Midterm 2 Instructor: Scott Glasgow Sections: 1, 6 and 8 Dates: October 26 th and 27 th, 2005

KEY. Math 343 Midterm 2 Instructor: Scott Glasgow Sections: 1, 6 and 8 Dates: October 26 th and 27 th, 2005 KEY Math 4 Midterm Instructor: Scott Glasgow Sections:, 6 and 8 Dates: October 6 th and 7 th, 005 Instructions: You will be doced points for irrelevant developments as well as patently wrong ones So organize

More information