Winter 2017 Ma 1b Analytical Problem Set 2 Solutions

Size: px
Start display at page:

Download "Winter 2017 Ma 1b Analytical Problem Set 2 Solutions"

Transcription

1 1. (5 pts) From Ch in Apostol: Problems 1,3,5,7,9. Also, when appropriate exhibit a basis for S. Solution. (1.10.1) Yes, S is a subspace of V 3 with basis {(0, 0, 1), (0, 1, 0)} and dimension 2. x 1 = 0 and x 2 = 0 so x 1 + x 2 = 0 and (x 1, y 1, z 1 ) + (x 2, y 2, z 2 ) = (x 1 + x 2, y 1 + y 2, z 1 + z 2 ) S, and S is closed under vector addition. For any a R and (x 1, y 1, z 1 ) S we have x 1 = 0 so ax 1 = 0 and a(x 1, y 1, z 1 ) = (ax 1, ay 1, az 1 ) S and S is closed under scalar multiplication. Thus S is a subspace of V 3. {(0, 0, 1), (0, 1, 0)} is independent in S because for any a, b R, a(0, 0, 1) + b(0, 1, 0) = (0, 0, 0) gives us (0, b, a) = (0, 0, 0) and a = b = 0. L({(0, 0, 1), (0, 1, 0)}) = S because for any (x, y, z) S, x = 0 so (x, y, z) = (0, y, z) = y(0, 1, 0) + z(0, 0, 1). Thus {(0, 0, 1), (0, 1, 0)} is a basis of S, and S has dimension 2. (1.10.3) Yes, S is a subspace of V 3 with basis {( 1, 0, 1), ( 1, 1, 0)} and dimension 2. x 1 + y 1 + z 1 = 0 and x 2 + y 2 + z 2 = 0 so (x 1 + x 2 ) + (y 1 + y 2 ) + (z 1 + z 2 ) = (x 1 + y 1 + z 1 ) + (x 2 + y 2 + z 2 ) = 0 and (x 1, y 1, z 1 ) + (x 2, y 2, z 2 ) = (x 1 + x 2, y 1 + y 2, z 1 + z 2 ) S, and S is closed under vector addition. For any a R and (x 1, y 1, z 1 ) S we have x 1 + y 1 + z 1 = 0 so ax 1 + ay 1 + az 1 = 0 and a(x 1, y 1, z 1 ) = (ax 1, ay 1, az 1 ) S and S is closed under scalar multiplication. Thus S is a subspace of V 3. {( 1, 0, 1), ( 1, 1, 0)} is independent in S because for any a, b R, a( 1, 0, 1) + b( 1, 1, 0) = (0, 0, 0) gives us ( a b, b, a) = (0, 0, 0) and a = b = 0. L({( 1, 0, 1), ( 1, 1, 0)}) = S because for any (x, y, z) S, x + y + z = 0 so (x, y, z) = ( y z, y, z) = y( 1, 1, 0) + z( 1, 0, 1). Thus {( 1, 0, 1), ( 1, 1, 0)} is a basis of S, and S has dimension 2. (1.10.5) Yes, S is a subspace of V 3 with basis {(1, 1, 1)} and dimension 1. x 1 = y 1 = z 1 and x 2 = y 2 = z 2 so x 1 + x 2 = y 1 + y 2 = z 1 + z 2 and (x 1, y 1, z 1 ) + (x 2, y 2, z 2 ) = (x 1 + x 2, y 1 + y 2, z 1 + z 2 ) S, and S is closed under vector addition. For any a R and (x 1, y 1, z 1 ) S we have x 1 = y 1 = z 1 so ax 1 = ay 1 = az 1 and a(x 1, y 1, z 1 ) = (ax 1, ay 1, az 1 ) S and S is closed under scalar multiplication. Thus S is a subspace of V 3. {(1, 1, 1)} is independent in S because for any a R, a(1, 1, 1) = (0, 0, 0) gives us (a, a, a) = (0, 0, 0) and a = 0. L({(1, 1, 1)}) = S because for any (x, y, z) S, x = y = z so (x, y, z) = (x, x, x) = x(1, 1, 1). Thus {(1, 1, 1)} is a basis of S, and S has dimension 1. (1.10.7) No, S is not a subspace of V 3 since (1, 1, 0), (1, 1, 0) S but (1, 1, 0) + (1, 1, 0) = (2, 0, 0) S. (1.10.9) Yes, S is a subspace of V 3 with basis {(1, 2, 3)} and dimension 1. y 1 = 2x 1, z 1 = 3x 1, y 2 = 2x 2, and z 2 = 3x 2, so y 1 + y 2 = 2(x 1 + x 2 ), z 1 + z 2 = 3(x 1 + x 2 ), and (x 1, y 1, z 1 )+(x 2, y 2, z 2 ) = (x 1 +x 2, y 1 +y 2, z 1 +z 2 ) S, and S is closed under vector addition. 1

2 For any a R and (x 1, y 1, z 1 ) S we have y 1 = 2x 1 and z 1 = 3x 1 so ay 1 = 2ax 1, az 1 = 3ax 1, and a(x 1, y 1, z 1 ) = (ax 1, ay 1, az 1 ) S and S is closed under scalar multiplication. Thus S is a subspace of V 3. {(1, 2, 3)} is independent in S because for any a R, a(1, 2, 3) = (0, 0, 0) gives us (a, 2a, 3a) = (0, 0, 0) and a = 0. L({(1, 2, 3)}) = S because for any (x, y, z) S, y = 2x and z = 3x, so (x, y, z) = (x, 2x, 3x) = x(1, 2, 3). Thus {(1, 2, 3)} is a basis of S, and S has dimension (8 pts) From Ch in Apostol: Problem 24. Solution. (a) We adapt the proof of Theorem 1.7(a). Let B = {x 1,..., x k } be any independent set of elements in S. If L(B) = S, then B is a basis for S. If not, then there is some element y in S which is not in L(B). Adjoin this element to B and consider the new set B = {x 1,..., x k, y}. If this set were dependent there would be scalars c 1,..., c k+1 not all zero such that k c i x i + c k+1 y = O. Since the x 1,..., x k are independent, we would not have c k+1 = 0 or else c 1 = = c k = 0 by the linear independence of x 1,..., x k, contrary to our assumption that B is dependent. Thus we would have c k+1 0 and could solve this equation for y and find that y L(B), contradicting our assumption that y is not in L(B). Therefore, the set B is independent but contains k + 1 elements. If L(B ) = S, then B is a basis of S. If L(B ) S, we can argue with B as we did with B, getting a new set B which contains k + 2 elements and is independent. We can repeat the process until we arrive at a basis in a total of dim V k steps or less, or else we eventually obtain an independent set with dim V + 1 elements, contradicting Theorem 1.5. This basis will be finite and have at most dim V elements, so S is finite dimensional and dim S dim V. (b) The if part holds trivially by substitution. The only if part follows from applying Theorem 1.7(b) to the basis for S constructed in part (a). The basis for S is a basis for V, so taking the span gives us S = V. (c) Apply Theorem 1.7(a). (d) Consider the example V = V 2 and S = R {0} V 2. {(1, 1), (1, 1)} is a basis for V which contains no basis for S because (1, 1), (1, 1) S and is not a basis for S since S contains nonzero elements. 3. Let V be a vector space and U, W subspaces of V. Prove that if U W = {0} then dim L(U, W ) = dim U + dim W. (Do not appeal to a more general result for dim L(U, W )). Solution. If U or W is infinite dimensional then suppose for the sake of contradiction that L(U, W ) is finite dimensional. Since U and W are subspaces of L(U, W ) that implies that U and W are finite dimensional by part (a) of the previous problem, so we get a contradiction. Thus we get L(U, W ) infinite dimensional. It remains to consider the case where U and W are both finite dimensional. Let S = {x 1,..., x n } be a basis for U and T = {y 1,..., y m } be a basis for W. A finite linear combination of elements of U or W is a finite linear combination of elements of S T because 2

3 we can rewrite each element of U as a finite linear combination of elements of S, rewrite each element of W as a finite linear combination of elements of T, and distribute to get a finite linear combination of elements of S T. Thus, L(U, W ) L(S, T ). Since S T U W, it follows that L(U, W ) L(S, T ) and hence L(U, W ) = L(S, T ) (ie. S T spans L(U, W )). S T is linearly independent by the following argument. Suppose a i x i + b j y j = 0. Then and since U W = {0} we have a i x i = b j y j, a i x i = b j y j = 0. Since S is linearly independent and T is linearly independent, we get a i = 0 for all 1 i n and b j = 0 for all 1 j m. Therefore, S T is linearly independent. S T spans L(U, W ) and is linearly independent so S T is a basis of L(U, W ) and dim L(U, W ) = S T = S + T = dim U + dim W. 4. (4 pts) From Ch in Apostol: Problems Determine whether T is linear. Solution. (2.4.11) Yes, T is linear. Proof. In V 2, vector addition and scalar multiplication are defined in terms of rectangular coordinates, so it is necessary to describe what T does to points given in rectangular coordinates. (r, θ) is (x, y) = (r cos θ, r sin θ) in rectangular coordinates, and (r, θ + ϕ) is (r cos(θ + ϕ), r sin(θ + ϕ)) = (r(cos θ cos ϕ sin θ sin ϕ), r(sin θ cos ϕ + cos θ sin ϕ)) = (r cos θ cos ϕ r sin θ sin ϕ, r sin θ cos ϕ + r cos θ sin ϕ) = (x cos ϕ y sin ϕ, y cos ϕ + x sin ϕ), so T (x, y) = (x cos ϕ y sin ϕ, y cos ϕ + x sin ϕ). Suppose (x 1, y 1 ), (x 2, y 2 ) V 2. Then T ((x 1, y 1 ) + (x 2, y 2 )) = T (x 1 + x 2, y 1 + y 2 ) = ((x 1 + x 2 ) cos ϕ (y 1 + y 2 ) sin ϕ, (y 1 + y 2 ) cos ϕ + (x 1 + x 2 ) sin ϕ) = (x 1 cos ϕ y 1 sin ϕ, y 1 cos ϕ + x 1 sin ϕ) + (x 2 cos ϕ y 2 sin ϕ, y 2 cos ϕ + x 2 sin ϕ) 3

4 so T preserves vector addition. Suppose a R and (x 1, y 1 ) V 2. We have T (a(x 1, y 1 )) = T (ax 1, ay 1 ) = (ax 1 cos ϕ ay 1 sin ϕ, ay 1 cos ϕ + ax 1 sin ϕ) = a(x 1 cos ϕ y 1 sin ϕ, y 1 cos ϕ + x 1 sin ϕ) = at (x 1, y 1 ) (2.4.12) Yes, T is linear. Proof. T maps a point with polar coordinates (r, θ) onto the point with polar coordinates (r, ϕ θ), where ϕ is the angle of elevation of the fixed line. In V 2, vector addition and scalar multiplication are defined in terms of rectangular coordinates, so it is necessary to describe what T does to points given in rectangular coordinates. (r, θ) is (x, y) = (r cos θ, r sin θ) in rectangular coordinates, and (r, ϕ θ) is (r cos(ϕ θ), r sin(ϕ θ)) = (r(cos ϕ cos θ + sin ϕ sin θ), r(sin ϕ cos θ cos ϕ sin θ)) = (r cos θ cos ϕ + r sin θ sin ϕ, r cos θ sin ϕ r sin θ cos ϕ) = (x cos ϕ + y sin ϕ, x sin ϕ y cos ϕ), so T (x, y) = (x cos ϕ + y sin ϕ, x sin ϕ y cos ϕ). Suppose (x 1, y 1 ), (x 2, y 2 ) V 2. Then T ((x 1, y 1 ) + (x 2, y 2 )) = T (x 1 + x 2, y 1 + y 2 ) = ((x 1 + x 2 ) cos ϕ + (y 1 + y 2 ) sin ϕ, (x 1 + x 2 ) sin ϕ (y 1 + y 2 ) cos ϕ) = (x 1 cos ϕ + y 1 sin ϕ, x 1 sin ϕ y 1 cos ϕ) + (x 2 cos ϕ + y 2 sin ϕ, x 2 sin ϕ y 2 cos ϕ) so T preserves vector addition. Suppose a R and (x 1, y 1 ) V 2. We have T (a(x 1, y 1 )) = T (ax 1, ay 1 ) = (ax 1 cos ϕ + ay 1 sin ϕ, ax 1 sin ϕ ay 1 cos ϕ) = a(x 1 cos ϕ + y 1 sin ϕ, x 1 sin ϕ y 1 cos ϕ) = at (x 1, y 1 ) (2.4.13) No, T is not linear. T ((0, 1)) + T ((1, 0)) = (1, 1) + (1, 1) = (2, 2) (1, 1) = T (1, 1) = T ((0, 1) + (1, 0)) so T does not preserve vector addition. (2.4.14) Yes, T is linear. 4

5 Proof. In V 2, vector addition and scalar multiplication are defined in terms of rectangular coordinates, so it is necessary to describe what T does to points given in rectangular coordinates. (r, θ) is (x, y) = (r cos θ, r sin θ) in rectangular coordinates, and (2r, θ) is (2r cos θ, 2r sin θ) = (2x, 2y) so T (x, y) = (2x, 2y). Suppose (x 1, y 1 ), (x 2, y 2 ) V 2. Then T ((x 1, y 1 ) + (x 2, y 2 )) = T (x 1 + x 2, y 1 + y 2 ) = (2(x 1 + x 2 ), 2(y 1 + y 2 )) = (2x 1 + 2x 2, 2y 1 + 2y 2 ) = (2x 1, 2y 1 ) + (2x 2, 2y 2 ) so T preserves vector addition. Suppose a R and (x 1, y 1 ) V 2. Then T (a(x 1, y 1 )) = T (ax 1, ay 1 ) = (2ax 1, 2ay 1 ) = a(2x 1, 2y 1 ) = at (x 1, y 1 ) 5

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

19. Basis and Dimension

19. Basis and Dimension 9. Basis and Dimension In the last Section we established the notion of a linearly independent set of vectors in a vector space V and of a set of vectors that span V. We saw that any set of vectors that

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

Motion in Three Dimensions

Motion in Three Dimensions Motion in Three Dimensions We ve learned about the relationship between position, velocity and acceleration in one dimension Now we need to extend those ideas to the three-dimensional world In the 1-D

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 =

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 = This is a typical assignment, but you may not be familiar with the material. You should also be aware that many schools only give two exams, but also collect homework which is usually worth a small part

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Math 102, Winter 2009, Homework 7

Math 102, Winter 2009, Homework 7 Math 2, Winter 29, Homework 7 () Find the standard matrix of the linear transformation T : R 3 R 3 obtained by reflection through the plane x + z = followed by a rotation about the positive x-axes by 6

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17.

MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17. MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17. Sec. 1.5, #2(e). Determine whether the following sets are linearly dependent

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Matrix Transformation (2A) Young Won Lim 11/9/12

Matrix Transformation (2A) Young Won Lim 11/9/12 Matrix (A Copyright (c 01 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published

More information

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0.

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0. Chapter Find all x such that A x : Chapter, so that x x ker(a) { } Find all x such that A x ; note that all x in R satisfy the equation, so that ker(a) R span( e, e ) 5 Find all x such that A x 5 ; x x

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

NOTES (1) FOR MATH 375, FALL 2012

NOTES (1) FOR MATH 375, FALL 2012 NOTES 1) FOR MATH 375, FALL 2012 1 Vector Spaces 11 Axioms Linear algebra grows out of the problem of solving simultaneous systems of linear equations such as 3x + 2y = 5, 111) x 3y = 9, or 2x + 3y z =

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

A. Correct! These are the corresponding rectangular coordinates.

A. Correct! These are the corresponding rectangular coordinates. Precalculus - Problem Drill 20: Polar Coordinates No. 1 of 10 1. Find the rectangular coordinates given the point (0, π) in polar (A) (0, 0) (B) (2, 0) (C) (0, 2) (D) (2, 2) (E) (0, -2) A. Correct! These

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Fact: Every matrix transformation is a linear transformation, and vice versa.

Fact: Every matrix transformation is a linear transformation, and vice versa. Linear Transformations Definition: A transformation (or mapping) T is linear if: (i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ; (ii) T (cu) = ct (u) for all scalars c and all u in the

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

LINEAR ALGEBRA: THEORY. Version: August 12,

LINEAR ALGEBRA: THEORY. Version: August 12, LINEAR ALGEBRA: THEORY. Version: August 12, 2000 13 2 Basic concepts We will assume that the following concepts are known: Vector, column vector, row vector, transpose. Recall that x is a column vector,

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

The Jordan Canonical Form

The Jordan Canonical Form The Jordan Canonical Form The Jordan canonical form describes the structure of an arbitrary linear transformation on a finite-dimensional vector space over an algebraically closed field. Here we develop

More information

Inverses of Square Matrices

Inverses of Square Matrices Inverses of Square Matrices A. Havens Department of Mathematics University of Massachusetts, Amherst February 23-26, 2018 Outline 1 Defining Inverses Inverses for Products and Functions Defining Inverse

More information

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0 Kernel and range Definition: The kernel (or null-space) of A is ker A { v V : A v = 0 ( U)}. Theorem 5.3. ker A is a subspace of V. (In particular, it always contains 0 V.) Definition: A is one-to-one

More information

Lecture 6: Corrections; Dimension; Linear maps

Lecture 6: Corrections; Dimension; Linear maps Lecture 6: Corrections; Dimension; Linear maps Travis Schedler Tues, Sep 28, 2010 (version: Tues, Sep 28, 4:45 PM) Goal To briefly correct the proof of the main Theorem from last time. (See website for

More information

EE5120 Linear Algebra: Tutorial 3, July-Dec

EE5120 Linear Algebra: Tutorial 3, July-Dec EE5120 Linear Algebra: Tutorial 3, July-Dec 2017-18 1. Let S 1 and S 2 be two subsets of a vector space V such that S 1 S 2. Say True/False for each of the following. If True, prove it. If False, justify

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Vectors. Vectors and the scalar multiplication and vector addition operations:

Vectors. Vectors and the scalar multiplication and vector addition operations: Vectors Vectors and the scalar multiplication and vector addition operations: x 1 x 1 y 1 2x 1 + 3y 1 x x n 1 = 2 x R n, 2 2 y + 3 2 2x = 2 + 3y 2............ x n x n y n 2x n + 3y n I ll use the two terms

More information

General Vector Space (2A) Young Won Lim 11/4/12

General Vector Space (2A) Young Won Lim 11/4/12 General (2A Copyright (c 2012 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process Worksheet for Lecture Name: Section.4 Gram-Schmidt Process Goal For a subspace W = Span{v,..., v n }, we want to find an orthonormal basis of W. Example Let W = Span{x, x } with x = and x =. Give an orthogonal

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold:

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold: Inner products Definition: An inner product on a real vector space V is an operation (function) that assigns to each pair of vectors ( u, v) in V a scalar u, v satisfying the following axioms: 1. u, v

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information

Final Examination 201-NYC-05 December and b =

Final Examination 201-NYC-05 December and b = . (5 points) Given A [ 6 5 8 [ and b (a) Express the general solution of Ax b in parametric vector form. (b) Given that is a particular solution to Ax d, express the general solution to Ax d in parametric

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

Sept. 3, 2013 Math 3312 sec 003 Fall 2013

Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Section 1.8: Intro to Linear Transformations Recall that the product Ax is a linear combination of the columns of A turns out to be a vector. If the columns of

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 :

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 : Length, Angle and the Inner Product The length (or norm) of a vector v R 2 (viewed as connecting the origin to a point (v 1,v 2 )) is easily determined by the Pythagorean Theorem and is denoted v : v =

More information

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3 Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. An n n matrix

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii) . Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Vector Spaces 4.5 Basis and Dimension

Vector Spaces 4.5 Basis and Dimension Vector Spaces 4.5 and Dimension Summer 2017 Vector Spaces 4.5 and Dimension Goals Discuss two related important concepts: Define of a Vectors Space V. Define Dimension dim(v ) of a Vectors Space V. Vector

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5 Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,

More information

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by:

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by: Page 1 This is a 60 min Quiz. Please make sure you put your name on the top right hand corner of each sheet. Remember the Honors Code will be enforced! You may use your book. NO HELP FROM ANYONE. Problem

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

1 Invariant subspaces

1 Invariant subspaces MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. AMS 10: Review for the Midterm Exam The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. Complex numbers

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Review for Exam 2 Solutions

Review for Exam 2 Solutions Review for Exam 2 Solutions Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.. Determine if the following sets V together with operations

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Chapter 2: Matrix Algebra

Chapter 2: Matrix Algebra Chapter 2: Matrix Algebra (Last Updated: October 12, 2016) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). Write A = 1. Matrix operations [a 1 a n. Then entry

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

ORIE 6300 Mathematical Programming I August 25, Recitation 1

ORIE 6300 Mathematical Programming I August 25, Recitation 1 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Calvin Wylie Recitation 1 Scribe: Mateo Díaz 1 Linear Algebra Review 1 1.1 Independence, Spanning, and Dimension Definition 1 A (usually infinite)

More information

Math 113 Winter 2013 Prof. Church Midterm Solutions

Math 113 Winter 2013 Prof. Church Midterm Solutions Math 113 Winter 2013 Prof. Church Midterm Solutions Name: Student ID: Signature: Question 1 (20 points). Let V be a finite-dimensional vector space, and let T L(V, W ). Assume that v 1,..., v n is a basis

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Matrix of Linear Xformations

Matrix of Linear Xformations Matrix of Linear Xformations Theorem: If "L" is a linear transformation mapping R n into R m, there exists an mxn matrix "A" such that Lx Ax. This matrix is called the Standard Matrix for the Linear Transformation

More information

Mathematical Foundations: Intro

Mathematical Foundations: Intro Mathematical Foundations: Intro Graphics relies on 3 basic objects: 1. Scalars 2. Vectors 3. Points Mathematically defined in terms of spaces: 1. Vector space 2. Affine space 3. Euclidean space Math required:

More information

SOLUTIONS TO EXERCISES FOR MATHEMATICS 133 Part 1. I. Topics from linear algebra

SOLUTIONS TO EXERCISES FOR MATHEMATICS 133 Part 1. I. Topics from linear algebra SOLUTIONS TO EXERCISES FOR MATHEMATICS 133 Part 1 Winter 2009 I. Topics from linear algebra I.0 : Background 1. Suppose that {x, y} is linearly dependent. Then there are scalars a, b which are not both

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

Test 3, Linear Algebra

Test 3, Linear Algebra Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information