1 Equation set of 7 equations

Size: px
Start display at page:

Download "1 Equation set of 7 equations"

Transcription

1 380(4).wxm 1 / 8 (%i1) kill(all); (%o0) one (%i1) cross(a,b) := [a[2]*b[3] - a[3]*b[2], a[3]*b[1] - a[1]*b[3], a[1]*b[2] - a[2]*b[1]]; (%o1) cross( a,b ):=[a 2 b 3 a 3 b 2,a 3 b 1 a 1 b 3,a 1 b 2 a 2 b 1 ] (%i2) curl(a) := [iff(a[3],y) - iff(a[2],z), iff(a[1],z) - iff(a[3],x), iff(a[2],x) - iff(a[1],y)]; (%o2) curl( a ):=[ y a 3 z a 2, z a 1 x a 3, x a 2 y a 1 ] (%i3) gra(psi) := [iff(psi,x), iff(psi,y), iff(psi,z)]; (%o3) gra( ):=[ x, y, z ] 1 Equation set of 7 equations (%i4) epens([omega_0,omega_x,omega_y,omega_z,q_x,q_y,q_z,phi], [x,y,z,t] (%o4) [! 0 ( x,y,z,t ),! x ( x,y,z,t ),! y ( x,y,z,t ),! z ( x,y,z,t ), Q x ( x,y,z,t ),Q y ( x,y,z,t ),Q z ( x,y,z,t ),( x,y,z,t )] (%i6) omega: [omega_x, omega_y, omega_z]; Q: [Q_x, Q_y, Q_z]; (%o5) [! x,! y,! z ] (%o6) [Q x,q y,q z ] 1.1 Eq.(15) (%i7) E15: iff(cross(omega,q),t) = -omega_0*curl(q)-cross(gra(omega_0),q (%o7) [ Q y t! z t Q y! z +Q z t! y + t Q z! y,q x t! z + t Q x! z Q z t! x t Q z! x, Q x t! y t Q x! y +Q y t! x + t Q y! x ]=[Q y z! Q z y! y Q z z Q y! 0, Q x z! 0 +Q z x! z Q x x Q z! 0,Q x y! Q y x! x Q y y Q x! 0 ] Eqs. from Eq.(15)

2 380(4).wxm 2 / 8 (%i10) E15a: first(lhs(e15))=first(rhs(e15)); E15b: secon(lhs(e15))=secon(rhs(e15)); E15c: thir(lhs(e15))=thir(rhs(e15)); (%o8) Q y t! z t Q y! z +Q z t! y + Q z y! y Q z z Q y! 0 (%o9) Q x t! z + t Q x! z Q z t! x +Q z t Q z! y =Q y t Q z! x = Q x x! z Q x x Q z! 0 (%o10) Q x t! y t Q x! y +Q y t! x + t Q y! x =Q x Q y x! x Q y y Q x! Eqs.(19-22) z! 0 z! 0 y! 0 (%i13) E19: iff(q_z,y) - omega_y*q_z = -(iff(q_y,z) - omega_z*q_y); E20: iff(q_x,z) - omega_z*q_x = -(iff(q_z,x) - omega_x*q_z); E21: iff(q_y,x) - omega_x*q_y = -(iff(q_x,y) - omega_y*q_x); (%o11) y Q z Q z! y =Q y! z z Q y (%o12) z Q x Q x! z =Q z! x x Q z (%o13) x Q y Q y! x =Q x! y y Q x 1.4 Eq.(23) (%i14) E23: Q_x*(iff(omega_z,y)-iff(omega_y,z))+Q_y*(iff(omega_x,z)-iff +Q_z*(iff(omega_y,x)-iff(omega_x,y)) = omega_x*(iff(q_z,y)-iff(q_y,z))+omega_y*(iff(q_x,z)-iff(q_z,x) +omega_z*(iff(q_y,x)-iff(q_x,y)); (%o14) Q x y! z z! y +Q y z! x x! z +Q z x! y y! x = x Q y y Q x! z + z Q x x Q z! y + y Q z z Q y! x

3 380(4).wxm 3 / 8 (%i15) feval(q_x,q_y,q_z,omega_x,omega_y,omega_z,omega_0) := ( print("e15a: ", R1: ev(e15a,iff)), print("e15b: ", R2: ev(e15b,iff)), print("e15c: ", R3: ev(e15c,iff)), print("e19: ", R4: ev(e19,iff)), print("e20: ", R5: ev(e20,iff)), print("e21: ", R6: ev(e21,iff)), print("e23: ", R7: ev(e23,iff)), "" ); (%o15) feval( Q x,q y,q z,! x,! y,! z,! 0 ):=( print( E15a:,R1:ev( E15a,iff )),print( E15b:,R2:ev( E15b,iff )), print( E15c:,R3:ev( E15c,iff )),print( E19:,R4:ev( E19,iff )), print( E20:,R5:ev( E20,iff )),print( E21:,R6:ev( E21,iff )), print( E23:,R7:ev( E23,iff )),) 2 Special cases 2.1 Q (with 3 oscillatory components) (%i16) kill(omega_0,omega_x,omega_y,omega_z,q_x,q_y,q_z,phi,q_0); (%o16) one (%i17) epens([omega_0],[t],[omega_x,omega_y,omega_z,q_x,q_y,q_z,phi], [x, (%o17) [! 0 ( t ),! x ( x,y,z ),! y ( x,y,z ),! z ( x,y,z ),Q x ( x,y,z ),Q y ( x,y,z ), Q z ( x,y,z ),Phi( x,y,z )] (%i20) Q_x: Q_1*cos(%beta*t-(k_x*x+k_y*y+k_z*z)); Q_y: Q_2*cos(%beta*t-(k_x*x+k_y*y+k_z*z)); Q_z: Q_3*cos(%beta*t-(k_x*x+k_y*y+k_z*z)); (%o18) Q 1 cos( k z z+k y y +k x x t) (%o19) Q 2 cos( k z z+k y y +k x x t) (%o20) Q 3 cos( k z z+k y y +k x x t)

4 380(4).wxm 4 / 8 (%i21) feval(q_x,q_y,q_z,omega_x,omega_y,omega_z,omega_0); E15a: Q 3! y sin( k z z+k y y +k x x t) Q 2! z sin( k z z+k y y +k x x t ) =! 0 Q 2 k z sin( k z z+k y y +k x x t) Q 3 k y sin( k z z+k y y +k x x t ) E15b: Q 1! z sin( k z z+k y y +k x x t) Q 3! x sin( k z z+k y y +k x x t ) =! 0 Q 3 k x sin( k z z+k y y +k x x t) Q 1 k z sin( k z z+k y y +k x x t ) E15c: Q 2! x sin( k z z+k y y +k x x t) Q 1! y sin( k z z+k y y +k x x t ) =! 0 Q 1 k y sin( k z z+k y y +k x x t) Q 2 k x sin( k z z+k y y +k x x t ) E19: Q 3 k y sin( k z z+k y y +k x x t) Q 3! y cos( k z z+k y y +k x x t ) =Q 2 k z sin( k z z+k y y +k x x t ) +Q 2! z cos( k z z+k y y +k x x t ) E20: Q 1 k z sin( k z z+k y y +k x x t) Q 1! z cos( k z z+k y y +k x x t ) =Q 3 k x sin( k z z+k y y +k x x t ) +Q 3! x cos( k z z+k y y +k x x t ) E21: Q 2 k x sin( k z z+k y y +k x x t) Q 2! x cos( k z z+k y y +k x x t ) =Q 1 k y sin( k z z+k y y +k x x t ) +Q 1! y cos( k z z+k y y +k x x t ) E23: Q 1 y! z z! y cos( k z z+k y y +k x x t ) +Q 2 z! x x! z cos( k z z+k y y +k x x t ) +Q 3 x! y y! x cos( k z z+k y y +k x x t ) =! x Q 2 k z sin( k z z+k y y +k x x t) Q 3 k y sin( k z z+k y y +k x x t ) +! y Q 3 k x sin( k z z+k y y +k x x t) Q 1 k z sin( k z z+k y y +k x x t ) +! z Q 1 k y sin( k z z+k y y +k x x t) Q 2 k x sin( k z z+k y y +k x x t ) (%o21)

5 380(4).wxm 5 / 8 (%i28) ratsimp(r1/sin(k_z*z+k_y*y+k_x*x-%beta*t)); ratsimp(r2/sin(k_z*z+k_y*y+k_x*x-%beta*t)); ratsimp(r3/sin(k_z*z+k_y*y+k_x*x-%beta*t)); ratsimp(r4); ratsimp(r5); ratsimp(r6); ratsimp(r7); (%o22) Q 3! y Q 2! z =( Q 3 k y Q 2 k z )! 0 (%o23) Q 1! z Q 3! x =( Q 1 k z Q 3 k x )! 0 (%o24) Q 2! x Q 1! y =( Q 2 k x Q 1 k y )! 0 (%o25) Q 3 k y sin( k z z+k y y +k x x t) Q 3! y cos( k z z+k y y +k x x t ) =Q 2 k z sin( k z z+k y y +k x x t ) +Q 2! z cos( k z z+k y y +k x x t) (%o26) Q 1 k z sin( k z z+k y y +k x x t) Q 1! z cos( k z z+k y y +k x x t ) =Q 3 k x sin( k z z+k y y +k x x t ) +Q 3! x cos( k z z+k y y +k x x t) (%o27) Q 2 k x sin( k z z+k y y +k x x t) Q 2! x cos( k z z+k y y +k x x t ) =Q 1 k y sin( k z z+k y y +k x x t ) +Q 1! y cos( k z z+k y y +k x x t ) (%o28) (Q 1 y! z Q 2 x! z Q 1 z! y +Q 3 x! y +Q 2 z! x Q 3 y! x ) cos( k z z+k y y +k x x t ) = ( Q 1 k y Q 2 k x )! z +( Q 3 k x Q 1 k z )! y +( Q 2 k z Q 3 k y )! x sin( k z z+k y y +k x x t) 2.2 Q (with 2 osc. components), omega=const. (%i29) kill(omega_0,omega_x,omega_y,omega_z,q_x,q_y,q_z,phi,q_0); (%o29) one (%i30) epens([omega_0],[t],[omega_x,omega_y,omega_z,q_x,q_y,q_z,phi], [x, (%o30) [! 0 ( t ),! x ( x,y,z ),! y ( x,y,z ),! z ( x,y,z ),Q x ( x,y,z ),Q y ( x,y,z ), Q z ( x,y,z ),Phi( x,y,z )] (%i33) Q_x: Q_1*cos(%beta*t-(k_x*x+k_y*y)); Q_y: Q_2*sin(%beta*t-(k_x*x+k_y*y)); Q_z: Q_3; (%o31) Q 1 cos( k y y +k x x t) (%o32) Q 2 sin( k y y +k x x t) (%o33) Q 3 (%i36) omega_x: 0; omega_y: 0; omega_z: kappa; (%o34) 0 (%o35) 0 (%o36)

6 380(4).wxm 6 / 8 (%i37) feval(q_x,q_y,q_z,omega_x,omega_y,omega_z,omega_0); E15a: Q 2 cos( k y y +k x x t ) =0 E15b: Q 1 sin( k y y +k x x t ) =0 E15c: 0=! 0 Q 1 k y sin( k y y +k x x t) Q 2 k x cos( k y y +k x x t ) E19: 0= Q 2 sin( k y y +k x x t ) E20: Q 1 cos( k y y +k x x t ) =0 E21: Q 2 k x cos( k y y +k x x t ) =Q 1 k y sin( k y y +k x x t ) E23: 0= Q 1 k y sin( k y y +k x x t) Q 2 k x cos( k y y +k x x t ) (%o37) (%i44) E1: ratsimp(r1/cos(k_y*y+k_x*x-%beta*t)); E2: ratsimp(r2/sin(k_y*y+k_x*x-%beta*t)); E3: ratsimp(r3/sin(k_y*y+k_x*x-%beta*t)); E4: ratsimp(r4/sin(k_y*y+k_x*x-%beta*t)); E5: ratsimp(r5/cos(k_y*y+k_x*x-%beta*t)); E6: ratsimp(r6/sin(k_y*y+k_x*x-%beta*t)); E7: ratsimp(r7/sin(k_y*y+k_x*x-%beta*t)); (%o38) Q 2 =0 (%o39) Q 1 =0 (%o40) 0= Q 1 k y! 0 sin( k y y +k x x t) Q 2 k x! 0 cos( k y y +k x x t) sin( k y y +k x x t) (%o41) 0= Q 2 (%o42) Q 1 =0 (%o43) Q 2 k x cos( k y y +k x x t) =Q 1 k sin( k y y +k x x t) y (%o44) 0= Q 1 k y sin( k y y +k x x t) Q 2 k x cos( k y y +k x x t) sin( k y y +k x x t) (%i45) solve([e3,e2,e1], [Q1,Q2,Q3]); (%o45) [] (%i46) solve([e1,e2,e7], [k_x,k_y,k_z]); (%o46) [] 2.3 general Q, omega=const. (%i47) kill(omega_0,omega_x,omega_y,omega_z,q_x,q_y,q_z,phi,q_0); (%o47) one (%i48) epens([omega_0],[t],[omega_x,omega_y,omega_z,q_x,q_y,q_z,phi], [x, (%o48) [! 0 ( t ),! x ( x,y,z,t ),! y ( x,y,z,t ),! z ( x,y,z,t ),Q x ( x,y,z,t ), Q y ( x,y,z,t ),Q z ( x,y,z,t ),Phi( x,y,z,t )]

7 380(4).wxm 7 / 8 (%i51) omega_x: 0; omega_y: 0; omega_z: kappa; (%o49) 0 (%o50) 0 (%o51) (%i52) feval(q_x,q_y,q_z,omega_x,omega_y,omega_z,omega_0); E15a: t Q y = y Q z z Q y! 0 E15b: t Q x = z Q x x Q z! 0 E15c: 0= x Q y y Q x! 0 E19: y Q z =Q y z Q y E20: z Q x Q x = x Q z E21: x Q y = y Q x E23: 0= x Q y y Q x (%o52) 2.4 Aitionally: Q_x = Q_y = f(t) only (%i55) Q_x: q*sin(%beta*t); Q_y: q*cos(%beta*t); Q_z: a(t)*x+b(t)*y; (%o53) q sin( t) (%o54) q cos( t) (%o55) b( t) y +a( t) x (%i56) feval(q_x,q_y,q_z,omega_x,omega_y,omega_z,omega_0); E15a: q sin( t ) =! 0 b( t ) E15b: q cos( t ) =! 0 a( t ) E15c: 0=0 E19: b( t ) = q cos( t ) E20: q sin( t ) = a( t ) E21: 0=0 E23: 0=0 (%o56) (%i57) Omega: curl([q_x,q_y,q_z])-cross([0,0,kappa],[q_x,q_y,q_z]); (%o57) [ q cos( t ) +b( t ), q sin( t) a( t ),0] (%i58) ev(omega, [a(t)=kappa*q*cos(%beta*t), b(t)=-kappa*q*sin(%beta*t)]); (%o58) [ q cos( t) q sin( t ), q sin( t) q cos( t ),0]

8 380(4).wxm 8 / 8 (%i59) Omega: (-sqrt(2)*kappa*q*[sin(%beta*t-%pi/4), sin(%beta*t+%pi/4), 0] (%o59) [ p 2 q sin t 4, p 2 q sin t+ 4,0]

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G q G Y Y 29 8 $ 29 G 6 q )

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n. - - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-

More information

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital. G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X

More information

" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.

 W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ;  * Jm MVERSEO IT. P Y V V 9 G G G -PP - P V P- P P G P -- P P P Y Y? P P < PG! P3 ZZ P? P? G X VP P P X G - V G & X V P P P V P» Y & V Q V V Y G G G? Y P P Y P V3»! V G G G G G # G G G - G V- G - +- - G G - G - G - - G

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

396(1).wxm 1 / 14. (%i3) dr_nabla1(psi) := dx*diff(psi,x) + dy*diff(psi,y) + dz*diff(psi,z); d. d Y +dz d

396(1).wxm 1 / 14. (%i3) dr_nabla1(psi) := dx*diff(psi,x) + dy*diff(psi,y) + dz*diff(psi,z); d. d Y +dz d 396(1).wxm 1 / 14 (%i1) kill(all); (%o0) done 1 Definitions (%i1) cross(a,b) := [a[]*b[3] - a[3]*b[], a[3]*b[1] - a[1]*b[3], a[1]*b[] - a[]*b[1]]; (%o1) cross( a,b ):=[a b 3 a 3 b,a 3 b 1 a 1 b 3,a 1 b

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

CubeSat Simulation. Princeton Satellite Systems, Inc. 6 Market Street, Suite 926 Plainsboro, NJ 08536

CubeSat Simulation. Princeton Satellite Systems, Inc. 6 Market Street, Suite 926 Plainsboro, NJ 08536 CubeSat Simulation Princeton Satellite Systems, Inc. 6 Market Street, Suite 926 Plainsboro, NJ 08536 Phone: 609-275-9606 Fax: 609-275-9609 Email: map@psatellite.com Web: www.psatellite.com 1 Introduction

More information

MATH 2203 Final Exam Solutions December 14, 2005 S. F. Ellermeyer Name

MATH 2203 Final Exam Solutions December 14, 2005 S. F. Ellermeyer Name MATH 223 Final Exam Solutions ecember 14, 25 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation. In

More information

Gyroscope free falling with R

Gyroscope free falling with R 369(1b.wxm 1 / 13 Gyroscope free falling with R (%i1 kill(all; (%o0 one 1 Coorinates (%i1 epens([x,y,theta,phi,psi,r,v,t,u,l,phi,omega],t; (%o1 [x( t,y( t,( t,'( t,( t,r( t,v( t,t( t,u( t,l( t,phi( t,

More information

Vector Calculus - GATE Study Material in PDF

Vector Calculus - GATE Study Material in PDF Vector Calculus - GATE Study Material in PDF In previous articles, we have already seen the basics of Calculus Differentiation and Integration and applications. In GATE 2018 Study Notes, we will be introduced

More information

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

AP Physics 1 Summer Assignment. Directions: Find the following. Final answers should be in scientific notation. 2.)

AP Physics 1 Summer Assignment. Directions: Find the following. Final answers should be in scientific notation. 2.) AP Physics 1 Summer Assignment DUE THE FOURTH DAY OF SCHOOL- 2018 Purpose: The purpose of this packet is to make sure that we all have a common starting point and understanding of some of the basic concepts

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding - G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8

More information

Math 333 Qualitative Results: Forced Harmonic Oscillators

Math 333 Qualitative Results: Forced Harmonic Oscillators Math 333 Qualitative Results: Forced Harmonic Oscillators Forced Harmonic Oscillators. Recall our derivation of the second-order linear homogeneous differential equation with constant coefficients: my

More information

Q.1. Which one of the following is scalar quantity? Displacement Option Electric field Acceleration Work Correct Answer 4 w = F.ds; it does not have any direction, it s a scalar quantity. Q.. Which one

More information

Gyroscope with variable R

Gyroscope with variable R 369(1a).wxm 1 / 11 Gyroscope with variable R (%i1) (%o0) kill(all); one 1 Coorinates (%i1) (%o1) t],!() epens([x,y,theta,phi,psi,r,v,t,u,l,phi,omega],t); t,y() t,ò() t,'() t,é() t,r() t,v() t,t() t,u()

More information

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]

More information

Spinning top - represented by dumbbell

Spinning top - represented by dumbbell Lagange-umbbell.wxm 1 / 10 Spinning top - epesente by umbbell (%i1) kill(all); (%o0) one 1 Cooinates (%i1) epens([x,y,z,x,y,z,theta,phi,theta_1,phi_1,,t,u,l],t); (%o1) [x( t ),y( t ),z( t ),X( t ),Y( t

More information

Compatible Systems and Charpit s Method

Compatible Systems and Charpit s Method MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 28 Lecture 5 Compatible Systems Charpit s Method In this lecture, we shall study compatible systems of first-order PDEs the Charpit s method for solving

More information

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of

More information

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday 1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»

More information

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in 5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\

More information

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Lecture - 56 Fourier sine and cosine transforms Welcome to lecture series on

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes we have a curve in the plane defined by a function Fxy= (, ) 0 (1) that involves both x and y, possibly in complicated ways. Examples. We show below the graphs of the

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

CHAPTER 7 DIV, GRAD, AND CURL

CHAPTER 7 DIV, GRAD, AND CURL CHAPTER 7 DIV, GRAD, AND CURL 1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: (1 ϕ = ( ϕ, ϕ,, ϕ x 1 x 2 x n

More information

Chapter 2: Heat Conduction Equation

Chapter 2: Heat Conduction Equation -1 General Relation for Fourier s Law of Heat Conduction - Heat Conduction Equation -3 Boundary Conditions and Initial Conditions -1 General Relation for Fourier s Law of Heat Conduction (1) The rate of

More information

Solar Flare Prediction Using Discriminant Analysis

Solar Flare Prediction Using Discriminant Analysis Solar Flare Prediction Using Discriminant Analysis Jeff Tessein, KD Leka, Graham Barnes NorthWest Research Associates Inc. Colorado Research Associates Division Motivation for this work There is no clear

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :

 W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. : : D D! Y : V Y JY 4 96 J z z Y &! 0 6 4 J 6 4 0 D q & J D J» Y j D J & D & Y = x D D DZ Z # D D D D D D V X D DD X D \ J D V & Q D D Y D V D D? q ; J j j \V ; q» 0 0 j \\ j! ; \?) j: ; : x DD D J J j ;

More information

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS) OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

More information

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x PartialsandVectorCalclulus.nb? D D f, x gives the partial derivative f x. D f, x, n gives the multiple derivative n f x n. D f, x, y, differentiates f successively with respect to x, y,. D f, x, x 2, for

More information

Math Divergence and Curl

Math Divergence and Curl Math 23 - Divergence and Curl Peter A. Perry University of Kentucky November 3, 28 Homework Work on Stewart problems for 6.5: - (odd), 2, 3-7 (odd), 2, 23, 25 Finish Homework D2 due tonight Begin Homework

More information

The Cameron-Martin-Girsanov (CMG) Theorem

The Cameron-Martin-Girsanov (CMG) Theorem The Cameron-Martin-Girsanov (CMG) Theorem There are many versions of the CMG Theorem. In some sense, there are many CMG Theorems. The first version appeared in ] in 944. Here we present a standard version,

More information

Python. High-level General-purpose Dynamic Readable Multi-paradigm Portable

Python. High-level General-purpose Dynamic Readable Multi-paradigm Portable Python High-level General-purpose Dynamic Readable Multi-paradigm Portable Pre-Defined Functions Python x + y x * y x - y x / y x**y abs(x) sqrt(x) exp(x) pow(x, y) log(x) sin(x) atan(x) atan2(y, x) floor(x)

More information

Outline. Logic. Definition. Theorem (Gödel s Completeness Theorem) Summary of Previous Week. Undecidability. Unification

Outline. Logic. Definition. Theorem (Gödel s Completeness Theorem) Summary of Previous Week. Undecidability. Unification Logic Aart Middeldorp Vincent van Oostrom Franziska Rapp Christian Sternagel Department of Computer Science University of Innsbruck WS 2017/2018 AM (DCS @ UIBK) week 11 2/38 Definitions elimination x φ

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

Math Homework 3 Solutions. (1 y sin x) dx + (cos x) dy = 0. = sin x =

Math Homework 3 Solutions. (1 y sin x) dx + (cos x) dy = 0. = sin x = 2.6 #10: Determine if the equation is exact. If so, solve it. Math 315-01 Homework 3 Solutions (1 y sin x) dx + (cos x) dy = 0 Solution: Let P (x, y) = 1 y sin x and Q(x, y) = cos x. Note P = sin x = Q

More information

1. FUNDAMENTAL CONCEPTS AND MATH REVIEW

1. FUNDAMENTAL CONCEPTS AND MATH REVIEW 1. FUNDAMENTAL CONCEPTS AND MATH REVIEW 1.1. Introduction Here we provide for your reading pleasure a review of some of the math concepts used in part of this course. Most of this falls under the heading

More information

Milankowitch Cycles. 1 Coordinates. 2 Rotation matrix of Eulerian angles. (%i1) kill(all); (%o0) done

Milankowitch Cycles. 1 Coordinates. 2 Rotation matrix of Eulerian angles. (%i1) kill(all); (%o0) done 369(9-rot.wxm 1 / 1 Milankowitch Cycles (%i1 kill(all; (%o one 1 Coorinates (%i1 epens([x,y,theta,phi,psi,theta_1,t,u,l,r,omega],t; (%o1 [x( t,y( t,( t,'( t,( t, 1 ( t,t( t,u( t,l( t,r( t,!( t ] (%i e_r:

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

MULTIPLE PRODUCTS OBJECTIVES. If a i j,b j k,c i k, = + = + = + then a. ( b c) ) 8 ) 6 3) 4 5). If a = 3i j+ k and b 3i j k = = +, then a. ( a b) = ) 0 ) 3) 3 4) not defined { } 3. The scalar a. ( b c)

More information

ANALYSIS OF FIN-LINE WITH THE FINITE METALLIZATION THICKNESS

ANALYSIS OF FIN-LINE WITH THE FINITE METALLIZATION THICKNESS REPORT R-999 OCTOBER 1983 U ILU-EN G-83-2220 g COORDINATED SC IEN C E LABORATORY ANALYSIS OF FIN-LINE WITH THE FINITE METALLIZATION THICKNESS TOSHIHIDE KITAZAWA RAJ MITTRA APPROVED FOR PUBLIC RELEASE.

More information

On Global Solution of Incompressible Navier-Stokes equations

On Global Solution of Incompressible Navier-Stokes equations On Global Solution of Incompressible Navier-Stokes equations Algirdas Antano Maknickas Institute of Mechanics, Vilnius Gediminas Technical University, Sauletekio al., Vilnius, ithuania alm@vgtu.lt December

More information

Math 211. Substitute Lecture. November 20, 2000

Math 211. Substitute Lecture. November 20, 2000 1 Math 211 Substitute Lecture November 20, 2000 2 Solutions to y + py + qy =0. Look for exponential solutions y(t) =e λt. Characteristic equation: λ 2 + pλ + q =0. Characteristic polynomial: λ 2 + pλ +

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01

More information

ME185 Introduction to Continuum Mechanics

ME185 Introduction to Continuum Mechanics Fall, 0 ME85 Introduction to Continuum Mechanics The attached pages contain four previous midterm exams for this course. Each midterm consists of two pages. As you may notice, many of the problems are

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Answers to Problems. For Fundamentals of Logic Design second edition (corrected version)

Answers to Problems. For Fundamentals of Logic Design second edition (corrected version) Answers to Problems For Fundamentals of Logic Design second edition (corrected version) 3 Answers to hapter Problems. (a) 5.875 (b) 38.5 (c) 53.5 (d) 574.75 (e) 4.4535 (f) 474.5. (a) = 33 9 (b) = A 6 (c)

More information

METR 4433 Mesoscale Meteorology. Problem Set #3. Sample Answers

METR 4433 Mesoscale Meteorology. Problem Set #3. Sample Answers METR 4433 Mesoscale Meteorology Problem Set #3 Sample Answers 1. (50%) A vertical wind profile is given by the following table: z (height, km) direction, deg) V(speed, m/s) 0 120 5 1 150 10 2 180 15 3

More information

COORDINATE TRANSFORMATIONS

COORDINATE TRANSFORMATIONS COORDINAE RANSFORMAIONS Members of a structural system are typically oriented in differing directions, e.g., Fig. 17.1. In order to perform an analysis, the element stiffness equations need to be expressed

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos" l u T H I S COMMl'NiTY IN Wilcox

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos l u T H I S COMMl'NiTY IN Wilcox G 093 < 87 G 9 G 4 4 / - G G 3 -!! - # -G G G : 49 q» - 43 8 40 - q - z 4 >» «9 0-9 - - q 00! - - q q!! ) 5 / : \ 0 5 - Z : 9 [ -?! : ) 5 - - > - 8 70 / q - - - X!! - [ 48 - -!

More information

Mathematics Review Exercises. (answers at end)

Mathematics Review Exercises. (answers at end) Brock University Physics 1P21/1P91 Mathematics Review Exercises (answers at end) Work each exercise without using a calculator. 1. Express each number in scientific notation. (a) 437.1 (b) 563, 000 (c)

More information

Two-dimensional flow in a porous medium with general anisotropy

Two-dimensional flow in a porous medium with general anisotropy Two-dimensional flow in a porous medium with general anisotropy P.A. Tyvand & A.R.F. Storhaug Norwegian University of Life Sciences 143 Ås Norway peder.tyvand@umb.no 1 Darcy s law for flow in an isotropic

More information

Investigating the use of the Lomb-Scargle Periodogram for Heart Rate Variability Quantification

Investigating the use of the Lomb-Scargle Periodogram for Heart Rate Variability Quantification Page 1 of 16 Investigating the use of the Lomb-Scargle Periodogram for Heart Rate Variability Quantification The use of the Lomb-Scargle Periodogram (LSP) for the analysis of biological signal rhythms

More information

EE363 homework 2 solutions

EE363 homework 2 solutions EE363 Prof. S. Boyd EE363 homework 2 solutions. Derivative of matrix inverse. Suppose that X : R R n n, and that X(t is invertible. Show that ( d d dt X(t = X(t dt X(t X(t. Hint: differentiate X(tX(t =

More information

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces Chap. 3 Rigid Bodies: Equivalent Systems of Forces Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application of the forces

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Background mathematics Basic mathematical symbols Elementary arithmetic symbols Equals Addition or plus 3 5 Subtraction, minus or less 3 or Multiplication

More information

Introduction to the Variational Bayesian Mean-Field Method

Introduction to the Variational Bayesian Mean-Field Method Introduction to the Variational Bayesian Mean-Field Method David Benjamin, Broad DSDE Methods May 11, 2016 What is variational Bayes? VB replaces a complex probability distribution with a simpler one:

More information

Regular positive ternary quadratic forms. Byeong-Kweon Oh. Department of Applied Mathematics. Sejong University. 22 Jan. 2008

Regular positive ternary quadratic forms. Byeong-Kweon Oh. Department of Applied Mathematics. Sejong University. 22 Jan. 2008 Regular positive ternary quadratic forms Byeong-Kweon Oh Department of Applied Mathematics Sejong University Jan. 008 ABSTRACT A positive definite quadratic form f is said to be regular if it globally

More information

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with Math Review We are already familiar with the concept of a scalar and vector. Example: Position (x, y) in two dimensions 1 2 2 2 s ( x y ) where s is the length of x ( xy, ) xi yj And i, j ii 1 j j 1 i

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

THE MODULAR CURVE X O (169) AND RATIONAL ISOGENY

THE MODULAR CURVE X O (169) AND RATIONAL ISOGENY THE MODULAR CURVE X O (169) AND RATIONAL ISOGENY M. A. KENKU 1. Introduction Let N be an integer ^ 1. The affine modular curve Y 0 (N) parametrizes isomorphism classes of pairs (E ; C N ) where E is an

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Title. Author(s)Tamura, S.; Sangu, A.; Maris, H. J. CitationPHYSICAL REVIEW B, 68: Issue Date Doc URL. Rights. Type.

Title. Author(s)Tamura, S.; Sangu, A.; Maris, H. J. CitationPHYSICAL REVIEW B, 68: Issue Date Doc URL. Rights. Type. Title Anharmonic scattering of longitudinal acoustic phono Author(s)Tamura, S.; Sangu, A.; Maris, H. J. CitationPHYSICAL REVIEW B, 68: 143 Issue Date 3 Doc URL http://hdl.handle.net/115/5916 Rights Copyright

More information

StokesI Theorem. Definition. Let F = PT + QT + $ be a continuously differentiable,

StokesI Theorem. Definition. Let F = PT + QT + $ be a continuously differentiable, StokesI Theorem Our text states and proves Stokes' Theorem in 12.11, but ituses the scalar form for writing both the line integral and the surface integral involved. In the applications, it is the vector

More information

HAMBURGER BEITRÄGE ZUR MATHEMATIK

HAMBURGER BEITRÄGE ZUR MATHEMATIK HAMBURGER BEITRÄGE ZUR MATHEMATIK Heft 243 On small contractible subgraphs in 3-connected graphs of small average degree Matthias Kriesell, Hamburg März 2006 On small contractible subgraphs in 3-connected

More information

Solving Systems of Polynomial Equations: Algebraic Geometry, Linear Algebra, and Tensors?

Solving Systems of Polynomial Equations: Algebraic Geometry, Linear Algebra, and Tensors? Solving Systems of Polynomial Equations: Algebraic Geometry, Linear Algebra, and Tensors? Philippe Dreesen Bart De Moor Katholieke Universiteit Leuven ESAT/SCD Workshop on Tensor Decompositions and Applications

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

A( x) B( x) C( x) y( x) 0, A( x) 0

A( x) B( x) C( x) y( x) 0, A( x) 0 3.1 Lexicon Revisited The nonhomogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x) F( x), A( x) dx dx The homogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x), A( x) dx

More information

Fundamental Electromagnetics [ Chapter 2: Vector Algebra ]

Fundamental Electromagnetics [ Chapter 2: Vector Algebra ] Fundamental Electromagnetics [ Chapter 2: Vector Algebra ] Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-6919-2160 1 Key Points Basic concept of scalars and vectors What is unit vector?

More information

CIRCLES: #1. What is an equation of the circle at the origin and radius 12?

CIRCLES: #1. What is an equation of the circle at the origin and radius 12? 1 Pre-AP Algebra II Chapter 10 Test Review Standards/Goals: E.3.a.: I can identify conic sections (parabola, circle, ellipse, hyperbola) from their equations in standard form. E.3.b.: I can graph circles

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

Math 240 Calculus III

Math 240 Calculus III Line Math 114 Calculus III Summer 2013, Session II Monday, July 1, 2013 Agenda Line 1.,, and 2. Line vector Line Definition Let f : X R 3 R be a differentiable scalar function on a region of 3-dimensional

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

Fundamental Electromagnetics ( Chapter 2: Vector Algebra )

Fundamental Electromagnetics ( Chapter 2: Vector Algebra ) Fundamental Electromagnetics ( Chapter 2: Vector Algebra ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-6919-2160 1 Key Points Basic concept of scalars and vectors What is unit vector?

More information

A tutorial on SE(3) transformation parameterizations and on-manifold optimization

A tutorial on SE(3) transformation parameterizations and on-manifold optimization A tutorial on SE(3) transformation parameterizations and Jose-Luis Blanco joseluisblancoc@gmail.com http://www.ual.es/personal/jlblanco/ Last update: 21/10/2014 Málaga, Tuesday 21 st October, 2014 MAPIR:

More information