Application of the lattice Boltzmann method for solving conduction problems with heat flux boundary condition.

Size: px
Start display at page:

Download "Application of the lattice Boltzmann method for solving conduction problems with heat flux boundary condition."

Transcription

1 November 5-7, 9 - Sousse Tunsa Applcaton of the lattce Boltzmann method for solvng conducton problems wth heat flux boundary condton. Raoudha CHAABANE, Faouz ASKRI, Sass Ben NASRALLAH Laboratore d Etudes des Systèmes Thermques et Energétques Ecole Natonale des Ingéneurs de Monastr Av. Ibn ElJazzar 519 Monastr- Tunse Raoudha.Chaabane@ssatgb.rnu.tn ABSTRACT The lattce Boltzmann method (LBM) has been developed over the last decade as an alternatve promsng tool for flud flows. It has been wdely used n many knds of complex flows such as turbulent flow, solar collectors, multphase flow and mcro flow. Ths artcle deals wth the mplementaton of the lattce Boltzmann method (LBM) for the soluton of conducton problems wth heat flux and temperature boundary condtons. Problems n two dmensonal rectangular geometres have been consdered. In the -D geometry, the south and the north boundary are subjected to constant heat flux condton. The remanng boundares are at prescrbed temperatures. The energy equaton s solved usng the LBM. The results of the LBM have been found to compare very well wth those avalable n the lterature. Index Terms: Lattce Boltzmann method, heat conducton, unform lattces, heat flux, D heat transfer. 1. INTRODUCTION Nowadays, the lattce Boltzmann method (LBM) s beng vewed as a potental computatonal tool to analyze a large class of problems n scence and engneerng [1 11]. Recently, thermal lattce Boltzmann method has attracted much attenton because of ts potental applcatons as well as practcal mportance n engneerng desgns and energy related problems, such as solar collectors, thermal nsulaton, coolng of electronc components, heat exchangers, ar heatng systems for solar dryers, passve solar heatng and storage technology to name just a few. Varous confguratons may be consdered for ths problem. In comparson wth the conventonal computatonal technques based on the fnte dfference method, the fnte element method and the fnte volume method, ths surge n nterest s attrbuted to the bottom-up approach nherent wth the LBM. A smple calculaton procedure, smple and more effcent mplementaton for parallel computaton, straghtforward and effcent handlng of complex geometres and boundary condtons and hgh computatonal performance wth regard to stablty and precson are some of the man advantages of the LBM [1 8]. Owng to the above attrbutes, these days, the LBM s ncreasngly beng appled n the analyss of a large class of flud flow and heat transfer problems [1 11]. Analyss of conducton problems wth flux boundary condtons fnds applcatons n furnace desgn, fre protecton systems, foam nsulatons, soldfcaton/meltng of semtransparent materals, hgh-temperature porous nsulatng materals, glass-fludzed bed, electroncs chp and power plants, etc. [1-13]. A few papers have dscussed the problems wth flux boundary condtons [14-15]. Thus, the present work ams at further extendng the applcaton of the LBM to solve heat conducton problems dealng wth temperature as well as heat flux boundary condtons. We consder two-dmensonal rectangular geometry where one or two boundares can be at prescrbed heat flux condtons. The energy equaton s solved usng the LBM and obtaned results are compared wth those avalable n the lterature.. FORMULATION AND KINETIC EQUATION We have consdered transent heat conducton heat n a -D rectangular geometry. Thermo-physcal propertes of the medum are assumed constant. The system s ntally at temperaturet E. For tme t>, the south and the north boundares are subjected to heat fluxes q T, S and q T, N, respectvely. The east and the west boundares are kept at temperatures T E and T W, respectvely. For the problem under consderaton, and n the absence of convecton and radaton, the energy equaton s gven by T T Q (1) t Where s the thermal dffusvty. The startng pont of the LBM s the knetc equaton satsfes a dscretzed evoluton equaton of the form [16] f e. f, 1,,3,.., b t () - 1 -

2 The collson operator represents the rate of change of fdue to collsons. It ncorporates all the physcs and modellng of any partcular problem at hand. The smplest model for s the Bhatnagar Gross Krook (BGK) model [16] 1 ( ) [ f f ] fs the partcle dstrbuton functon denotng the number of partcles at the lattce node drecton wth (3) r at tme t movng n veloctye along the lattce lnk r et connectng the nearest neghbours. b s the number of drectons n a lattce through whch the nformaton propagates. The bass of the dscrete velocty model s a fnte set of vrtual veloctes e or equvalently, of vrtual fluxes of the consdered scalar feld T whch gven by b T f (4) The observed flux s expressed by b f r, e ( (5) It s a sngle-relaxaton-tme model wth relaxaton constant that can be related, va Chapmann Enskog analyss, to the dffusvty of the medum. f s the equlbrum dstrbuton functon. The relaxaton tme can be related wth the thermal dffusvty, the lattce velocty C and the tme step [17] by the followng relaton 3 t (7) C For the DQ9 model n partcular, the 9 veloctes ther correspondng weghts w are the followng e and e (,) (8) 1 1 e (cos( ),sn( )). C for 1,,3, 4 (9) 1 1 e (cos( ),sn( )). C for 5,6,7, 8 (1) w (11) 9 1 w for 1,,3, 4 (1) 9 1 w for 5,6,7, 8 (13) 36 It s to be noted that n the above equatons, C x / t y / t and the weghts satsfy the relaton b w 1. After dscretzaton, and consderng heat generaton, equaton (6) can be wrtten as t f ( r et, t f [ f f ] wtq * (14) Fg.1: Schematc dagram of the DQ9 lattce. The well-known DQ9 lattce model (Fg.1) wll be consdered here. In that model, the set of e s s such that they connect the pont, on whch the lattce stencl s centred, to ts nearest neghbours on a spatal grd wth unform spacng n both coordnate drectons. Any LBM advances the probablty denstes f n tme and thereby computes the evoluton of the consdered scalar. In the absence of external sources or fluxes for the scalar, the correspondng dscrete evoluton equaton can be wrtten n the followng general form: f 1 e f r t f r t f r t t (6). (, ) [ (, ) (, )] * whereq s the non dmensonal heat generaton and weght n correspondng drecton. w s the To process equaton (8), an equlbrum dstrbuton functon s requred. For heat conducton problems, ths s gven by f wt (15) 3. RESULTS AND DISCUSSION We consder transent heat conducton problems n -D Cartesan geometry wth the followng condtons: Case1: the four boundares are at known temperatures The ntal and the boundary condtons for cases 1 are the followng

3 Intal condton T ( x, y, ) Tref (16) Boundary condtons T x t T (17) (,, ).5 r e f T ( x, Y, T (, y, T ( X, y, Tref (18) Steady state condtons were assumed to have been acheved when the temperature dfference between two consecutve tme levels at each lattce centre dd not 6 exceed1. Non dmensonal tme was defned as t / L where L s the characterstc length. was taken as 4 1. To check the accuracy of the present LBM algorthm, the same problem was solved usng the fnte volume method and the results gven by the two algorthms are compared wth those avalable n the lterature. Fg. 3. Comparson of centrelne (=.5) temperature n the presence and the absence of heat generaton. In fg. 3, the effects of volumetrc heat generaton are shown. The non dmensonal volumetrc heat generaton s taken as unty. Effect of heat generaton s very less n the begnnng compared to steady state because t takes some tme to nfluence the temperature profle. For the -D geometry, the number of teratons for a 5x5 grd s 3719 ( seconds) compared to that cted at the lterature 357 [18]. Case3: The bottom and top boundares are at prescrbed fluxes and remanng two boundares at known temperatures Fg.. Centerlne(=.5) temperature evoluton for dfferent nstants (case 1). In fg., the non dmensonal centrelne ( =.5 ) temperature has been compared at dfferent nstants for Intal condton T ( x, y,) T (19) Boundary condtons q( x,, qs ; q( x, Y, qn ; T (, y, T ( X, y, T () It s seen from the fgure 4 that the steady state results match exactly whch each other. the case 1. Case: Effects of heat generaton and the four boundares are at specfed temperatures - 1 -

4 1. 1. at steady state Fg. 4. Centrelne(=.5) temperature evoluton for dfferent nstants (case3). Fg.5. Isotherms when the bottom and the top boundares are at prescrbed fluxes and remanng two boundares at known temperatures for dfferent. 1. In fg. 5, we present the tme-space evoluton of the sotherms when the bottom and the top boundares are at prescrbed fluxes and remanng two boundares at known temperatures Table 1: CPU tmes (second) and number of teratons of the LBM code (case3) sze Lattces teratons CPU tme (seconds) Temperature at steady state(=.5) 8x x x x Table : Effect of heat generaton on CPU tmes (second) and number of teratons of the LBM code (case3) Lattce sze teratons CPU tme In the absence of heat generaton 5x In the presence of heat generaton 5x To have an dea of the number of teratons for the converged solutons and the CPU tme, tests were performed wth dfferent lattces. The LBM code was found to take slghtly less number of teratons for the lttle lattces (Table 1)

5 The effect of heat generaton on CPU tmes (second) and number of teratons when all boundares at known temperatures, was hghlghted n table. 5. CONCLUSIONS The LBM s used to solve transent heat conducton problems n two dmensonal geometres wth unform lattces havng constant temperature and/or flux boundary condtons. Effect of heat generaton s also studed. The same problems are solved usng the fnte volume method. The results gven by the two numercal approaches are compared wth those avalable n the lterature and good agreement s obtaned. On the other hand, the effect of lattce sze s hghlghted va the number of teratons and the CPU tme. The consdered D geometry s a smple one, to allow smple valdaton. Advecton and radaton are omtted. Thus, t remans to demonstrate the vablty of the LBM as heat dffuson-advecton solver. 4. REFERENCES [1] Chen S, Doolen GD. Lattce Boltzmann method for flud flows. Annual Revew of Flud Mechancs 1998; 3: [] He X, Chen S, Doolen GD. A novel thermal model for the Lattce Boltzmann method n ncompressble lmt. Journal of Computatonal Physcs 1998; 146:8 3. [3] X H, Peng G, Chou S-H. Fnte-volume Lattce Boltzmann schemes n two and three dmensons. Physcal Revew E 1999; 6: [4] Takada N, Msawa M, Tomyama A, Fujwara S. Numercal smulaton of two- and three-dmensonal twophase flud moton by Lattce Boltzmann method. Computer Physcs Communcatons ; 19: [5] Wolf-Gladrow DA. Lattce-Gas Cellular Automata and Lattce Boltzmann Models: An Introducton. Sprnger: Berln-Hedelberg,. [6] Succ S. The Lattce Boltzmann Method for Flud Dynamcs and Beyond. Oxford Unversty Press: New York, 1. [7] Nourgalev RR, Dnh TN, Theofanous TG, Joseph D. The Lattce Boltzmann equaton method: theoretcal nterpretaton, numercs and mplcatons. Internatonal Journal of Multphase Flow 3; 9: [8] Zhu L, Tretheway D, Petzold L, Menhart C. Smulaton of flud slp at 3D hydrophobc mcro channel walls by the Lattce Boltzmann method. Journal of Computatonal Physcs 5; : [9] Ho JR, Kuo C-P, Jaung W-S, Twu C-J. Lattce Boltzmann scheme for hyperbolc heat conducton equaton. Numercal Heat Transfer, Part B ; 41: [1] W.-S Jaung, J.R. Ho, C.-P. Kuo, Lattce Boltzmann Method for heat conducton problem wth phase change, Numercal Heat Transfer, Part B 39, pp ,1. [11] Chatterjee D, Chakraborty S. An enthalpy-based Lattce Boltzmann model for dffuson domnated sold lqud phase transformaton. Physcs Letters A 5; 341:3 33. [1] Segel R, Howell J. Thermal Radaton Heat Transfer (4th edn). Taylor & Francs: New York,. [13] Modest MF. Radatve Heat Transfer (nd edn). Academc Press: New York, 3. [14] Fernandes R, Francs J. Fnte element analyss of planer conductve and radatve heat transfer wth flux boundary. 3rd AIAA/ASME Jont Thermophyscs, Fluds, Plasma and Heat Transfer Conference, Sant Lous, MO, 7 11 June, 199. Paper No [15] Barker C, Sutton WH. The transent radaton and conducton heat transfer n a gray partcpatng medum wth sem-transparent boundares, radaton heat transfer. ASME Journal of Radaton Heat Transfer 1985; 49:5 36. [16] S. Succ, The Lattce Boltzmann Method for Flud Dynamcs and Beyond, Oxford Unversty Press, New York, 1. [17] D.A.Wolf-Gladrow, Lattce Gas Cellular Automata and Lattce Boltzmann Models : An ntroducton, Sprnger Verlag, Berln-Hedelberg,. [18] S.C. Mshra, M. Bttagopal, K. Tanuj, B.S.R. Krshna, Solvng transent heat conducton problems on unform and non unform lattces usng the Lattce Boltzmann Method, Internatonal Communcatons n Heat and Mass Transfer, 36, pp.3-38,

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method Appled Mathematcs Volume 01, Artcle ID 9590, 13 pages do:10.1155/01/9590 Research Artcle A Multlevel Fnte Dfference Scheme for One-Dmensonal Burgers Equaton Derved from the Lattce Boltzmann Method Qaoe

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM

Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II - LBM Perumal & Dass CFD Letters Vol. 2(1) 2010 www.cfdl.ssres.net Vol. 2 (1) March 2010 Smulaton of Incompressble Flows n Two-Sded Ld-Drven Square Cavtes. Part II - LBM D. Arumuga Perumal 1c and Anoop K. Dass

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

A Solution of Porous Media Equation

A Solution of Porous Media Equation Internatonal Mathematcal Forum, Vol. 11, 016, no. 15, 71-733 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/mf.016.6669 A Soluton of Porous Meda Equaton F. Fonseca Unversdad Naconal de Colomba Grupo

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface

Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface Proceedngs of the Asan Conference on Thermal Scences 017, 1st ACTS March 6-30, 017, Jeju Island, Korea ACTS-P00545 Lattce Boltzmann smulaton of nucleate bolng n mcro-pllar structured surface Png Zhou,

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION

HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION HYBRID LBM-FVM AND LBM-MCM METHODS FOR FLUID FLOW AND HEAT TRANSFER SIMULATION Zheng L a,b, Mo Yang b and Yuwen Zhang a* a Department of Mechancal and Aerospace Engneerng, Unversty of Mssour, Columba,

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R.

More information

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN KOREA OCTOBER 7-30 003 Hgher Order Wall Boundary Condtons for Incompressble Flow Smulatons Hdetosh Nshda. Department of Mechancal and System Engneerng

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Lattice Boltzmann Method and its Application to Flow Analysis in Porous Media

Lattice Boltzmann Method and its Application to Flow Analysis in Porous Media Specal Issue Multscale Smulatons for Materals 7 Research Report Lattce Boltzmann Method and ts Applcaton to Flow Analyss n Porous Meda Hdemtsu Hayash Abstract Under the exstence of an external force, a

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

The Solution of the Two-Dimensional Gross-Pitaevskii Equation Using Lattice-Boltzmann and He s Semi-Inverse Method

The Solution of the Two-Dimensional Gross-Pitaevskii Equation Using Lattice-Boltzmann and He s Semi-Inverse Method Internatonal Journal of Mathematcal Analyss Vol., 7, no., 69-77 HIKARI Ltd, www.m-hkar.com https://do.org/.988/jma.7.634 The Soluton of the Two-Dmensonal Gross-Ptaevsk Equaton Usng Lattce-Boltzmann and

More information

Various Speed Ratios of Two-Sided Lid-Driven Cavity Flow using Lattice Boltzmann Method

Various Speed Ratios of Two-Sided Lid-Driven Cavity Flow using Lattice Boltzmann Method Penerbt and Thermal Scences ISSN (onlne): 2289-7879 Varous Speed Ratos of Two-Sded Ld-Drven Cavty Flow usng Lattce Boltzmann Method Nor Azwad Che Sdk *,a and St Asyah Razal b Department of Thermo-Fluds,

More information

The Analysis of Convection Experiment

The Analysis of Convection Experiment Internatonal Conference on Appled Scence and Engneerng Innovaton (ASEI 5) The Analyss of Convecton Experment Zlong Zhang School of North Chna Electrc Power Unversty, Baodng 7, Chna 469567@qq.com Keywords:

More information

Research & Reviews: Journal of Engineering and Technology

Research & Reviews: Journal of Engineering and Technology Research & Revews: Journal of Engneerng and Technology Case Study to Smulate Convectve Flows and Heat Transfer n Arcondtoned Spaces Hussen JA 1 *, Mazlan AW 1 and Hasanen MH 2 1 Department of Mechancal

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Nodal analysis of finite square resistive grids and the teaching effectiveness of students projects

Nodal analysis of finite square resistive grids and the teaching effectiveness of students projects 2 nd World Conference on Technology and Engneerng Educaton 2 WIETE Lublana Slovena 5-8 September 2 Nodal analyss of fnte square resstve grds and the teachng effectveness of students proects P. Zegarmstrz

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST Appled Computer Scence, vol. 13, no. 4, pp. 56 64 do: 10.23743/acs-2017-29 Submtted: 2017-10-30 Revsed: 2017-11-15 Accepted: 2017-12-06 Abaqus Fnte Elements, Plane Stress, Orthotropc Materal Bartosz KAWECKI

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Significance of Dirichlet Series Solution for a Boundary Value Problem

Significance of Dirichlet Series Solution for a Boundary Value Problem IOSR Journal of Engneerng (IOSRJEN) ISSN (e): 5-3 ISSN (p): 78-879 Vol. 6 Issue 6(June. 6) V PP 8-6 www.osrjen.org Sgnfcance of Drchlet Seres Soluton for a Boundary Value Problem Achala L. Nargund* and

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

CONTROLLED FLOW SIMULATION USING SPH METHOD

CONTROLLED FLOW SIMULATION USING SPH METHOD HERI COADA AIR FORCE ACADEMY ROMAIA ITERATIOAL COFERECE of SCIETIFIC PAPER AFASES 01 Brasov, 4-6 May 01 GEERAL M.R. STEFAIK ARMED FORCES ACADEMY SLOVAK REPUBLIC COTROLLED FLOW SIMULATIO USIG SPH METHOD

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm J Comput Electron (213) 12:752 756 DOI 1.17/s1825-13-479-2 A constant recursve convoluton technque for frequency dependent scalar wave equaton bed FDTD algorthm M. Burak Özakın Serkan Aksoy Publshed onlne:

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

arxiv: v1 [physics.comp-ph] 20 Nov 2018

arxiv: v1 [physics.comp-ph] 20 Nov 2018 arxv:8.08530v [physcs.comp-ph] 20 Nov 208 Internatonal Journal of Modern Physcs C c World Scentfc Publshng Company Valdty of the Molecular-Dynamcs-Lattce-Gas Global Equlbrum Dstrbuton Functon M. Reza Parsa

More information

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave 014 4th Internatonal Conference on Future nvronment and nergy IPCB vol.61 (014) (014) IACSIT Press, Sngapore I: 10.776/IPCB. 014. V61. 6 1-mensonal Advecton-ffuson Fnte fference Model ue to a Flow under

More information

Wavelet chaotic neural networks and their application to continuous function optimization

Wavelet chaotic neural networks and their application to continuous function optimization Vol., No.3, 04-09 (009) do:0.436/ns.009.307 Natural Scence Wavelet chaotc neural networks and ther applcaton to contnuous functon optmzaton Ja-Ha Zhang, Yao-Qun Xu College of Electrcal and Automatc Engneerng,

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Simulation of Gas Exothermic Chemical Reaction in Porous Media Reactor with Lattice Boltzmann Method

Simulation of Gas Exothermic Chemical Reaction in Porous Media Reactor with Lattice Boltzmann Method Journal of Thermal Scence Vol.22, No.1 (2013) 42 47 DOI: 10.1007/s11630-013-0590-5 Artcle ID: 1003-2169(2013)01-0042-06 Smulaton of Gas Exothermc Chemcal Reacton n Porous Meda Reactor wth Lattce Boltzmann

More information

HEAT TRANSFER THROUGH ANNULAR COMPOSITE FINS

HEAT TRANSFER THROUGH ANNULAR COMPOSITE FINS Journal of Mechancal Engneerng and Technology (JMET) Volume 4, Issue 1, Jan-June 2016, pp. 01-10, Artcle ID: JMET_04_01_001 Avalable onlne at http://www.aeme.com/jmet/ssues.asp?jtype=jmet&vtype=4&itype=1

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

Mathematical modeling for finding the thermal conductivity of solid materials

Mathematical modeling for finding the thermal conductivity of solid materials Mathematcal modelng for fndng the thermal conductvty of sold materals Farhan Babu 1, Akhlesh Lodwal 1 PG Scholar, Assstant Professor Mechancal Engneerng Department Dev AhlyaVshwavdyalaya, Indore, Inda

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

On Higher Order Dynamics in Lattice-based Models Using Chapman-Enskog Method

On Higher Order Dynamics in Lattice-based Models Using Chapman-Enskog Method NASA/CR-1999-209346 ICASE Report No. 99-21 On Hgher Order Dynamcs n Lattce-based Models Usng Chapman-Enskog Method Yue-Hong Qan Columba Unversty, New York, New York Ye Zhou IBM, Yorktown Heghts, New York

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations Appled Mathematcs Volume 22, Artcle ID 4587, 8 pages do:.55/22/4587 Research Artcle Cubc B-Splne Collocaton Method for One-Dmensonal Heat and Advecton-Dffuson Equatons Joan Goh, Ahmad Abd. Majd, and Ahmad

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Buckling analysis of single-layered FG nanoplates on elastic substrate with uneven porosities and various boundary conditions

Buckling analysis of single-layered FG nanoplates on elastic substrate with uneven porosities and various boundary conditions IOSR Journal of Mechancal and Cvl Engneerng (IOSR-JMCE) e-issn: 78-1684,p-ISSN: 30-334X, Volume 15, Issue 5 Ver. IV (Sep. - Oct. 018), PP 41-46 www.osrjournals.org Bucklng analyss of sngle-layered FG nanoplates

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich Chapter 02: Numercal methods for mcrofludcs Xangyu Hu Techncal Unversty of Munch Possble numercal approaches Macroscopc approaches Fnte volume/element method Thn flm method Mcroscopc approaches Molecular

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information