Slow-roll violation in production of primordial black hole

Size: px
Start display at page:

Download "Slow-roll violation in production of primordial black hole"

Transcription

1 Slow-roll violation in production of primordial black hole Hayato Motohashi Center for Gravitational Physics Yukawa Institute for Theoretical Physics HM & Wayne Hu, PRD 92, (2015), [arxiv: ] PRD 96, (2017), [arxiv: ] PRD 96, (2017), [arxiv: ] nd workshop on gravity and cosmology by young researchers

2 This talk Sasaki, Suyama, Tanaka, Yokoyama, Kocsis, Suyama, Tanaka, Yokoyama, Inflation References Carr, Kohri, Sendouda, Yokoyama, Carr, Kuhnel, Sandstad, Sasaki, Suyama, Tanaka, Yokoyama, DM GW source

3 - High density region collapses at horizon reentry if 0 > 0 D Zel dovich, Novikov (1966) Hawking (1971) Carr (1975) - PBH fraction at formation! # $%& # '(' = 2,-. / 0 10 = erfc, : 7 8, - ; < = - > >? 8 > - 0 M holds at the horizon reenty! 6 : O P ; < Q - P - > Musco, Miller, Harada, Yoo, Kohri, Young, Byrnes, Sasaki, >R > P, MD = S D =

4 - High density region collapses at horizon reentry if 0 0E/ E > 0 D PBH fraction at formation! # $%& # '(' = 2,-. / 0 10 = erfc, : Gaussian / 0 ; < 6:7 8-0 Q holds at the horizon reenty! 6 : S T ; < U - T - > RD = > Zel dovich, Novikov (1966) Spherical collapse of closed universe 7 8, - ; < Hawking (1971) Carr (1975) = - > >? 8 > >? 8 > A B 0 D : Rare event Nearly scale inv. Δ U 6 for a few efolds around the reenty Musco, Miller, Harada, Yoo, Kohri, Young, Byrnes, Sasaki, >V > T, QD = W D =

5 Large peak in Δ " # Δ " # Δ # " 1 PBH A large peak of Δ " # can source PBH. Leading-order slow-roll CMB $ % 1 Δ # " 1# Δ # " 10 IJ End of inf. 8B # $ Approximation $ % $ ' is often used in the literature Δ # 3 <E " 24B #, $ ' <? = 3 3 Is $ % $ ' valid? $ ' 1 = 1 + $ % 2(3 $ % ) <ln$ % <? # $ % 1/1 # $ ' 3 4 /3 # /2 Naively, a large ( )* +, (- seems necessary for PBH.

6 Monochromatic mass function - PBH mass = Horizon mass! =! # = $%& '# ( = ) *+# 10*$ / / 1 10 M N? )O! # *! Horizon reentry - PBH fraction at formation 6 & 89: = 89:>? & ;<; = A B B 2 ( RD: P * = Q%+ ' % H 'I R S $ 2 = / E ( Ω / U P * I 4 E$ 1 10 EF / / 1 2 C = 89: G H I.)* K K )/*

7 CD E= CMB pivot scale Large mass PBH Small mass PBH C 1 C FGHI C + C - efolds between CMB and PBH scales Δ" ln & '()*+ ),- &. + ),- = ln 18 = => ln??. = > ln A A &

8 No go for slow-roll HM, Hu, ! # $ % & ) * ' ( & ( + +, & + 10 */ # 8 8 7/# ; < = 1.3 Δ@ 18 7 # ln 8 8 Given (Ω GHI, K) Δ ' # (N GHI ) and Δ@ Δ ' # N OPH 10 */ SR: Δ # ' R *7 S Δ ln R S Δ@ Δ ln R S

9 No go for slow-roll For (Ω #$%, ') = (Ω *+, ',-. ) HM, Hu, ',-. 10 <1D ' : Smallest PBH mass that does not evaporate by matterradiation equality barring merging and accretion Lower bound ü Δ 0 1 (2 #$% ) : from Δ ;+$ 10 <= ü 2 #$% exits the horizon Δ> 42 after 2 ;+$ = 0.05Mpc <D Slow-roll violation Δ ln G H Δ> > 0.38 for any single-field canonical inflation 10 : L M, N M, O ln N M O ln 2 PBH ',-. Δ> 42

10 No go for slow-roll HM, Hu, (Ω #$, & '() ), -). /,0 Ω 678, & = (10 ;< Ω #$, & '() ), -). /,0 (10 ;< Ω #$, 30& ), -). /,0 > 0.38 > 0.37 > 0.99 PBH = LIGO event scenario Sasaki, Suyama, Tanaka, Yokoyama, D PBH 30& E F, G F, H ln G F H ln K ΔA 17

11 Case study 1: Inflection model Garcia-Bellido, Morales, Ezquiaga, Garcia-Bellido, Morales, SR-V approx.!"!# &' & Δ * & ) * / 0

12 Case study 1: Inflection model HM, Hu, Exact SR-V approx.!"!# &' & Slow-roll violation

13 Case study 1: Inflection model HM, Hu, See also Germani, Prokopec, Exact SR-V approx. Δ # & " $ 24) # * +

14 Case study 1: Inflection model HM, Hu, ( ), + ),, ln + ), ln / Impossible to suppress 10 $% See also Ballesteros, Taoso, for different inflection potential for 10 $% suppression of & '.

15 Improve approximation Large SR violation! "# $ % > 0.38!& SR-V :, -, / Particularly bad Standard SR : Δ 2 3 Optimized SR : Δ $ % Not good $ % Works well - Minimize truncation error by optimization :; = = > - Apply for Horndeski, GLPV, subclass of DHOST Unitary gauge C 3 C A3 = DE F A, - G A 3 C K3 = DE F K 4G K 3 I 3 G A 3 : 3 D 3 3 M N, G K 3 : 3 D 3 I3 M 3 N, HM, Hu, , Kobayashi et al, Gleyzes et al, , Kase et al, Langlois et al,

16 Unitary gauge vs comoving gauge For canonical inflation!" $ # =!& ' $ #!) unitary gauge (!) = 0) = comoving gauge (!& ' $ # = 0)

17 Unitary gauge vs comoving gauge For noncanonical inflation!" $ # =!& ' $ #!) unitary gauge (!) = 0) = comoving gauge (!" $ # = 0), -./.0 =, !9 -./.0 =!9 123 : :; 5 6 < 7 8 For theories with 2nd-order EOM for scalar perturbation Einstein eq constraint eq!9 123, 123 Δ = Γ, 123, -./.0, 123 = : A2 B CDE :F, -./.0, 123 if G 7 8 Γ 0 (canonical case: Γ = 0), 123 const. HM, Hu, Δ J!9 123, 123

18 Optimized slow-roll approximation 1. Write down the formal solution of Mukhanov-Sasaki equation by using Green function (Generalized SR) 2. First order iteration * ln Δ $ +, % = ( ), -., / ln, -, = $: $: ; 6 <=7 $: : > / ln, = 2 + $ 6 ln ln Window function $: $: 5 > BC > D E F E G H I) $ 6 J I K 6 L MI I 6 N MI 5 > $C > D O F O B K 6 L PI I 6 N PI HM, Hu, , Stewart, astro-ph/ , %1 Sound horizon Source function - Function of 2, 4 5 etc - Information of model 4 5 2/2 $ J I + ln 4 5 /+T/2 4 5 L UI + ln V U /+T N UI + ln W U /+T

19 Optimized slow-roll approximation 1. Write down the formal solution of Mukhanov-Sasaki equation by using Green function (Generalized SR) 2. First order iteration *, %= ln Δ $ +, % = ( ), -., / ln, 3. Taylor expand /(ln,) around the evaluation point ln, 2 * ln Δ $ % = / ln, ln, 2 / 5 (ln, 2 ) 4. Truncate at 9 and optimize ln, 2 so that 8 5:7 ln, 2 = 0 HM, Hu, , Sound horizon

20 Optimized slow-roll approximation ln Δ $ % = ' ln ( ) + + Standard SR /,-. 0, ln ( ) ', (ln ( ) ) ln Δ $ = ' 0 : correction = 4(0. (0)' 0 ) HM, Hu, , ln ( ) = 0 : horizon exit 0. (0) /Δ: 0.35 for Δ: 3 ( %A ' ln ( = 2 ln D + $ E ln D F ln ln G H IJ H K L M L N O.P E Q G $ E R. S E T U. Ė V U. G H $J H K W M W I E Q G S E T X. Ė V X.

21 Optimized slow-roll approximation / HM, Hu, , ln Δ $ % = ' ln ( ) + + 0, ln ( ) ', (ln ( ) ) Standard SR,-. ln Δ $ = ' 0 : correction = 4(0. (0)' 0 ) ( %D ln ( ) = 0 : horizon exit 0. (0) /Δ: 0.35 for Δ: 3 Optimized SR ln Δ $ = ' ln (. : correction = 4(0 $ (ln (. )' ln (. ) ln ( ) = ln ( with 0. ln (. = 0 ~1 efold before horizon exit 0 $ ln ( for Δ: 3 1/Δ: $

22 HM, Hu, Case study 2: Running mass model Drees, Erfani, ! =! # + % & '& ln * * &! # 1 +. / ln * + 23 ln * &

23 HM, Hu, Case study 2: Running mass model Slow-roll violation OSR still works well

24 HM, Hu, Case study 3: Slow roll step model Parametrize ln # $ directly ln # $ = & ' + & ) * &, 1 + tanh * * 1 2

25 HM, Hu, Case study 3: Slow roll step model Parametrize ln # $ directly ln # $ = & ' + & ) * &, 1 + tanh * * 1 2 For Δ* < 10, all approximations do not work.

26 Summary PBH production requires slow-roll violation! "# $ % > 0.38!& Previous slow-roll analyses need reconsideration - Inflection model: No sufficient peak in Δ. / - Running mass model: Shift PBH mass scale Improved approximation: Optimized slow roll - Slow-roll step model: OSR remains a good description for models with 10 1 amplification of Δ. / in Δ2 > 10. Applies for Horndeski, GLPV, subclass of DHOST. Unitary gauge = comoving gauge if 3 4#5 const.

Primordial Black Holes as (part of the) dark matter

Primordial Black Holes as (part of the) dark matter Primordial Black Holes as (part of the) dark matter Anne Green University of Nottingham Lecture 1: Motivation Formation: collapse of large (inflationary) density perturbations other mechanisms Mass function

More information

Primordial Black Holes Dark Matter from Axion Inflation

Primordial Black Holes Dark Matter from Axion Inflation Primordial Black Holes Dark Matter from Axion Inflation Francesco Muia University of Oxford Based on: PBH Dark Matter from Axion Inflation V. Domcke, FM, M. Pieroni & L. T. Witkowski arxiv: 1704.03464

More information

Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki

Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Christian Byrnes University of Sussex, Brighton, UK Constraints on the small scales and

More information

Constructing ghost-free degenerate theories with higher derivatives

Constructing ghost-free degenerate theories with higher derivatives Constructing ghost-free degenerate theories with higher derivatives Hayato Motohashi Center for Gravitational Physics Yukawa Institute for Theoretical Physics HM, Suyama, PRD 91 (2015) 8, 085009, [arxiv:1411.3721]

More information

Primordial Black Holes

Primordial Black Holes Primordial Black Holes In the reheating phase Juan Carlos Hidalgo. Instituto de Ciencias Físicas, UNAM INFLATION I: Primordial Fluctuations The Success of Inflation Explain the origin of our flatuniverse

More information

Degenerate theories with higher derivatives

Degenerate theories with higher derivatives Degenerate theories with higher derivatives Hayato Motohashi IFIC, University of Valencia 2017.03.02 Workshop on gravity & cosmology for young researchers, YITP 1 DOF = 2 initial conditions Ostrogradsky

More information

Primordial Black holes and Gravitational Waves

Primordial Black holes and Gravitational Waves Primordial Black holes and Gravitational Waves Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University COSMO-17, 1 September, 2017 Primordial Black Holes 2 What are Primorial BHs? PBH =

More information

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Christian Byrnes University of Sussex, Brighton, UK Constraints on

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

Formation of Primordial Black Holes in Double Inflation

Formation of Primordial Black Holes in Double Inflation Formation of Primordial Black Holes in Double Inflation Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo) Based on MK Mukaida Yanagida, arxiv:1605.04974 MK Kusenko Tada Yanagida arxiv:1606.07631

More information

P!mor"al Black Holes as. Dark Ma$er. Florian Kühnel. work in particular with Bernard Carr Katherine Freese Pavel Naselsky Tommy Ohlsson Glenn Starkman

P!moral Black Holes as. Dark Ma$er. Florian Kühnel. work in particular with Bernard Carr Katherine Freese Pavel Naselsky Tommy Ohlsson Glenn Starkman P!mor"al Black Holes as Dark Ma$er Florian Kühnel Talk at Particle and Astroparticle Theory Seminar Max Planck Institute for Nuclear Physics Heidelberg, November 20th, 2017 work in particular with Bernard

More information

Dark Matter, Inflation, GW and Primordial Black Holes

Dark Matter, Inflation, GW and Primordial Black Holes Dark Matter, Inflation, GW and Primordial Black Holes Martti Raidal NICPB, Tallinn arxiv: 1705.05567 arxiv: 1705.06225 arxiv: 1707.01480 08.09.2017 Corfu 2017 Hardi Veermäe Ville Vaskonen 1 The success

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Inflation, Primordial Black holes and Gravitational Waves

Inflation, Primordial Black holes and Gravitational Waves Inflation, Primordial Black holes and Gravitational Waves -- Dawn of Gravitational Wave Cosmology -- Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University 21 February, 2018 Yukawa International

More information

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017 Misao Sasaki KIAS-YITP joint workshop September, 017 Introduction Inflation: the origin of Big Bang Brout, Englert & Gunzig 77, Starobinsky 79, Guth 81, Sato 81, Linde 8, Inflation is a quasi-exponential

More information

Extended mimetic gravity:

Extended mimetic gravity: Extended mimetic gravity: Hamiltonian analysis and gradient instabilities Kazufumi Takahashi (JSPS fellow) Rikkyo University Based on KT, H. Motohashi, T. Suyama, and T. Kobayashi Phys. Rev. D 95, 084053

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Inflationary model building, reconstructing parameters and observational limits

Inflationary model building, reconstructing parameters and observational limits Inflationary model building, reconstructing parameters and observational limits Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata Date: 30/09/2014 Contact: sayanphysicsisi@gmail.com

More information

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo COSMO/CosPA 2010 @ The Univ. of Tokyo G-inflation Tsutomu Kobayashi RESCEU, Univ. of Tokyo Based on work with: Masahide Yamaguchi (Tokyo Inst. Tech.) Jun ichi Yokoyama (RESCEU & IPMU) arxiv:1008.0603 G-inflation

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Towards a new scenario of inflationary magnetogenesis. Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016)

Towards a new scenario of inflationary magnetogenesis. Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016) Towards a new scenario of inflationary magnetogenesis Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016) Why modified gravity? Inflation Dark Energy Big Bang Singularity Dark Matter http://map.gsfc.nasa.gov/

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Measuring the dark universe. Luca Amendola University of Heidelberg

Measuring the dark universe. Luca Amendola University of Heidelberg Measuring the dark universe Luca Amendola University of Heidelberg 1 In search of the dark Searching with new probes Searching in new domains Or: a short overview of what I have been doing in the last

More information

Issues in Non-Linear Cosmological Dynamics

Issues in Non-Linear Cosmological Dynamics Issues in Non-Linear Cosmological Dynamics Marco Bruni Institute of Cosmology and Gravitation University of Portsmouth NLCP Workshop - Kyoto - 22/05/09 Outline a couple of reminders on Newtonian cosmology

More information

Inflationary density perturbations

Inflationary density perturbations Cosener s House 7 th June 003 Inflationary density perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! some motivation! Primordial Density Perturbation (and

More information

Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter

Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter IFT UAM/CSIC-17-056, UMN-TH 3630/17 Prepared for submission to JCAP arxiv:1707.02441v1 [astro-ph.co] 8 Jul 2017 Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter

More information

Evading non-gaussianity consistency in single field inflation

Evading non-gaussianity consistency in single field inflation Lorentz Center 7 Aug, 013 Evading non-gaussianity consistency in single field inflation Misao Sasaki Yukawa Institute for Theoretical Physic (YITP) Kyoto University M.H. Namjoo, H. Firouzjahi& MS, EPL101

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

Inflation in a general reionization scenario

Inflation in a general reionization scenario Cosmology on the beach, Puerto Vallarta,, Mexico 13/01/2011 Inflation in a general reionization scenario Stefania Pandolfi, University of Rome La Sapienza Harrison-Zel dovich primordial spectrum is consistent

More information

Primordial non-gaussianity from G-inflation

Primordial non-gaussianity from G-inflation PASCOS 2011 @ Cambridge, UK Primordial non-gaussianity from G-inflation Tsutomu Kobayashi Hakubi Center & Department of Physics Kyoto University Based on work with Masahide Yamaguchi (Tokyo Inst. Tech.)

More information

Introduction to Quantum fields in Curved Spaces

Introduction to Quantum fields in Curved Spaces Introduction to Quantum fields in Curved Spaces Tommi Markkanen Imperial College London t.markkanen@imperial.ac.uk April/June-2018 Solvalla QFT in curved spacetime 1 / 35 Outline 1 Introduction 2 Cosmological

More information

From inflation to the CMB to today s universe. I - How it all begins

From inflation to the CMB to today s universe. I - How it all begins From inflation to the CMB to today s universe I - How it all begins Raul Abramo Physics Institute - University of São Paulo abramo@fma.if.usp.br redshift Very brief cosmic history 10 9 200 s BBN 1 MeV

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Primordial GW from pseudoscalar inflation.

Primordial GW from pseudoscalar inflation. Primordial GW from pseudoscalar inflation. Mauro Pieroni Laboratoire APC, Paris. mauro.pieroni@apc.univ-paris7.fr July 6, 2016 Overview 1 A review on inflation. 2 GW from a Pseudoscalar inflaton. 3 Conclusions

More information

Generalized Galileon and Inflation

Generalized Galileon and Inflation Generalized Galileon and Inflation Tsutomu Kobayashi Hakubi Center & Department of Physics Kyoto University RESCEU/DENET Summer School @ Kumamoto DENET Summer School @ Kochi, 8.31 2010 Last year, I talked

More information

Particle Astrophysics, Inflation, and Beyond

Particle Astrophysics, Inflation, and Beyond Particle Astrophysics, Inflation, and Beyond - A Historical Perspective - KIAS, December, 017 Yukawa Institute for Theoretical Physics, Kyoto University Misao Sasaki 1 Progress in Particle Cosmology (1)

More information

Tests of cosmological gravity

Tests of cosmological gravity Tests of cosmological gravity Jeremy Sakstein University of Pennsylvania Astrophysics Seminar UC Irvine 23 rd January 2018 Who am I? Particle-cosmology (baryogenesis, early universe) Modified gravity (dark

More information

Gravitational waves from Massive Primordial Black Holes as Dark Matter

Gravitational waves from Massive Primordial Black Holes as Dark Matter Gravitational waves from Massive Primordial Black Holes as Dark Matter based on S. Clesse & JGB, arxiv:1603.05234 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

Dark Energy at the Speed of Gravitational Waves

Dark Energy at the Speed of Gravitational Waves New probes of gravity and cosmic acceleration Nordita & BCCP Theoretical Cosmology in the Light of Data - July 2017 with A. Barreira, F. Montanari, J. Renk (1707.xxxxx) D. Bettoni, JM Ezquiaga, K. Hinterbichler

More information

Primordial Black Holes in Cosmology. Lecture 3 : Constraints on their existence. Massimo Ricotti (University of Maryland, USA)

Primordial Black Holes in Cosmology. Lecture 3 : Constraints on their existence. Massimo Ricotti (University of Maryland, USA) Primordial Black Holes in Cosmology Lecture 3 : Constraints on their existence Massimo Ricotti (University of Maryland, USA) 23/10/2017 Astrophysical Constraints Microlensing Macho, EROS, etc UCMHs: lensing,

More information

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING Vincent Desjacques ITP Zurich with: Nico Hamaus (Zurich), Uros Seljak (Berkeley/Zurich) Horiba 2010 cosmology conference, Tokyo,

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models Noemi Frusciante Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

arxiv: v2 [astro-ph.co] 18 Dec 2016

arxiv: v2 [astro-ph.co] 18 Dec 2016 Constraint on the abundance of primordial black holes in dark matter from Planck data arxiv:1608.02174v2 [astro-ph.co] 18 Dec 2016 Lu Chen, Qing-Guo Huang and Ke Wang 1 CAS Key Laboratory of Theoretical

More information

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions Josh Goldstein ASTR688 May 18, 2008 Primordial Black Holes Primordial black holes are hypothetical black holes that formed under conditions of extreme density in the very early universe. Studying primordial

More information

Gravity at the Horizon

Gravity at the Horizon from the cosmic dawn to ultra-large scales Nordic Institute for Theoretical Physics UC Berkeley KICP - April 2016 with L. Amendola, E. Bellini, J. Lesgourgues, F. Montanari, V. Pettorino, J. Renk, I. Sawicki

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences New Perspectives on Cosmology Mimetic Cosmology Alexander Vikman Institute of Physics of the Czech Academy of Sciences 07.01.2016 This talk is mostly based on arxiv: 1512.09118, K. Hammer, A. Vikman arxiv:

More information

Bielefeld Probing Two-Field Open Inflation by Resonant Signals in Correlation Functions

Bielefeld Probing Two-Field Open Inflation by Resonant Signals in Correlation Functions Bielefeld 2013 Probing Two-Field Open Inflation by Resonant Signals in Correlation Functions arxiv: 1302.3877 Thorsten Battefeld University of Goettingen tbattefe@astro.physik.uni-goettingen.de In collaboration

More information

Primordial Black Holes in Cosmology. Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA)

Primordial Black Holes in Cosmology. Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA) Primordial Black Holes in Cosmology Lectures 1 & 2 : What are PBHs? Do they exist? Massimo Ricotti (University of Maryland, USA) Institute of Cosmos Sciences, University of Barcelona 23/10/2017 What are

More information

Supergravity and inflationary cosmology Ana Achúcarro

Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Ana Achúcarro Supergravity and inflationary cosmology Slow roll inflation with fast turns: Features of heavy physics in the CMB with J-O. Gong, S. Hardeman, G. Palma,

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Probing the early Universe and inflation with indirect detection

Probing the early Universe and inflation with indirect detection Probing the early Universe and inflation with indirect detection Pat Scott Department of Physics, McGill University With: Yashar Akrami, Torsten Bringmann, Jenni Adams, Richard Easther Based on PS, Adams,

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Primordial GWs from universality classes of pseudo-scalar inflation

Primordial GWs from universality classes of pseudo-scalar inflation Journal of Physics: Conference Series PAPER OPEN ACCESS Primordial GWs from universality classes of pseudo-scalar inflation To cite this article: M. Pieroni 2017 J. Phys.: Conf. Ser. 840 012033 View the

More information

Can massive primordial black holes (from the primordial spectrum) be the dark matter?

Can massive primordial black holes (from the primordial spectrum) be the dark matter? Can massive primordial black holes (from the primordial spectrum) be the dark matter? Sébastien Clesse based on: S.C., J. Garcia-Bellido arxiv:1501.07565, arxiv:1603.05234, arxiv:1610.08479 RWTH - Aachen

More information

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for? Topics on Galileons and generalized Galileons Pacific 2016, Moorea, Sept the 13th 1. What are scalar Galileons? Cédric Deffayet (IAP and IHÉS, CNRS Paris Bures sur Yvette) 2. What are they useful for?

More information

with EFTCAMB: The Hořava gravity case

with EFTCAMB: The Hořava gravity case Testing dark energy and modified gravity models with EFTCAMB: The Hořava gravity case Noemi Frusciante UPMC-CNRS, Institut d Astrophysique de Paris, Paris ERC-NIRG project no.307934 Based on NF, M. Raveri,

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden A STATUS REPORT ON SINGLE-FIELD INFLATION Raquel H. Ribeiro DAMTP, University of Cambridge R.Ribeiro@damtp.cam.ac.uk Lorentz Center, Leiden July 19, 2012 1 Message to take home Non-gaussianities are a

More information

Features in Inflation and Generalized Slow Roll

Features in Inflation and Generalized Slow Roll Features in Inflation and Generalized Slow Roll Power 3000 1000 10 100 1000 l [multipole] Wayne Hu CosKASI, April 2014 BICEP Exercise Year of the B-Mode Gravitational lensing B-modes (SPTPol, Polarbear...)

More information

Causality in Gauss-Bonnet Gravity

Causality in Gauss-Bonnet Gravity Causality in Gauss-Bonnet Gravity K.I. Phys. Rev. D 90, 044037 July. 2015 Keisuke Izumi ( 泉圭介 ) (National Taiwan University, LeCosPA) -> (University of Barcelona, ICCUB) From Newton to Einstein Newton

More information

The Quantum to Classical Transition in Inflationary Cosmology

The Quantum to Classical Transition in Inflationary Cosmology The Quantum to Classical Transition in Inflationary Cosmology C. D. McCoy Department of Philosophy University of California San Diego Foundations of Physics Munich, 31 July 2013 Questions to Address 1.

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU Effective Field Theory approach for Dark Energy/ Modified Gravity Bin HU BNU NAOC Nov. 2016 Outline 1. Evidence of late-time cosmic acceleration 2. Effective Field Theory approach for DE/MG 3. The structure

More information

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum 4th workshop on observational cosmology @ Yukawa Institute 18/11/2015 Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum Shuntaro Mizuno (Waseda) With Shuichiro Yokoyama (Rikkyo) Phys.

More information

TitleAre black holes overproduced during. Author(s) Suyama, T; Tanaka, T; Bassett, B; K. Citation PHYSICAL REVIEW D (2005), 71(6)

TitleAre black holes overproduced during. Author(s) Suyama, T; Tanaka, T; Bassett, B; K. Citation PHYSICAL REVIEW D (2005), 71(6) TitleAre black holes overproduced during Author(s) Suyama, T; Tanaka, T; Bassett, B; K Citation PHYSICAL REVIEW D (2005), 71(6) Issue Date 2005-03 URL http://hdl.handle.net/2433/49931 RightCopyright 2005

More information

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu Astro 321 Set 4: Inflationary Perturbations Wayne Hu Outline Review of canonical single-field slow roll inflation Scalar field Comoving curvature Gravitational waves EFT of inflation Application to P (X,

More information

Loop Quantum Cosmology holonomy corrections to inflationary models

Loop Quantum Cosmology holonomy corrections to inflationary models Michał Artymowski Loop Quantum Cosmology holonomy corrections to inflationary models University of Warsaw With collaboration with L. Szulc and Z. Lalak Pennstate 5 0 008 Michał Artymowski, University of

More information

Non-Gaussianity from Curvatons Revisited

Non-Gaussianity from Curvatons Revisited RESCEU/DENET Summer School @ Kumamoto July 28, 2011 Non-Gaussianity from Curvatons Revisited Takeshi Kobayashi (RESCEU, Tokyo U.) based on: arxiv:1107.6011 with Masahiro Kawasaki, Fuminobu Takahashi The

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 2 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 GWs from inflation Inflation Accelerated expansion in the early Universe Solves

More information

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal The Big Crunch/Big Bang Transition Neil Turok, Perimeter Institute 1. Measure for inflation 2. Passing through singularities - no beginning proposal 2 inflation * initial conditions * fine-tuned potentials

More information

Anisotropic signatures in cosmic structures from primordial tensor perturbations

Anisotropic signatures in cosmic structures from primordial tensor perturbations Anisotropic signatures in cosmic structures from primordial tensor perturbations Emanuela Dimastrogiovanni FTPI, Univ. of Minnesota Cosmo 2014, Chicago based on:!! ED, M. Fasiello, D. Jeong, M. Kamionkowski!

More information

Cosmology, Scalar Fields and Hydrodynamics

Cosmology, Scalar Fields and Hydrodynamics Cosmology, Scalar Fields and Hydrodynamics Alexander Vikman (CERN) THIS TALK IS BASED ON WORK IN PROGRESS AND Imperfect Dark Energy from Kinetic Gravity Braiding arxiv:1008.0048 [hep-th], JCAP 1010:026,

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

A873: Cosmology Course Notes. VII. Inflation

A873: Cosmology Course Notes. VII. Inflation Readings VII. Inflation Alan Guth s Inflationary Universe paper (Phys Rev D, Vol. 23, p. 347, 1981) is a classic, well worth reading. The basics are well covered by Ryden, Chapter 11. For more physics

More information

Cosmic strings and gravitational waves

Cosmic strings and gravitational waves DECIGO meeting, 18 Oct 2015 @ Kyoto Univ. Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Stochastic Gravitational Wave Background Stochastic Gravitational Wave Background

More information

The New Relationship between Inflation & Gravitational Waves

The New Relationship between Inflation & Gravitational Waves The New Relationship between Inflation & Gravitational Waves Tomohiro Fujita (Stanford) Based on arxiv:1608.04216 w/ Dimastrogiovanni(CWRU) & Fasiello(Stanford) In prep w/ Komatsu&Agrawal(MPA); Shiraishi(KIPMU)&Thone(Cambridge);

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris)

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris) Degenerate Higher-Order Scalar-Tensor (DHOST) theories David Langlois (APC, Paris) Higher order scalar-tensor theories Usual theories (Brans-Dicke, k-essence, ): L(r, ) Generalized theories: L(r µ r, r,

More information

non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach

non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach Marco Bruni, Institute of Cosmology and Gravitation University of Portsmouth, UK Credits work with Irene Milillo

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

Review of Small Field Models of Inflation

Review of Small Field Models of Inflation Review of Small Field Models of Inflation Ram Brustein אוניברסיטת ב ן -גוריון I. Ben-Dayan 0907.2384 + in progress I. Ben-Dayan, S. de Alwis 0802.3160 Small field models of inflation - Designing small

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information